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The Tangerine Project Towards Next Generation Silicon Detectors

✔ Develop the next generation of silicon pixel sensors:
✔ Vertex detector for future lepton colliders
✔ Reference detector at DESY-II test beam 
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Compact Linear Collider (CLIC)
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Compact Linear Collider (CLIC)

✔ Performance parameters:
✔ Material budget: ~ 50 µm silicon
✔ Spatial resolution: ≤ 3 µm
✔ Time resolution: ~ ns 
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Monolithic Active Pixel Sensor (MAPS)
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Monolithic Active Pixel Sensor (MAPS)

✔ Readout electronics integrated inside in sensor volume

→ reduction of costs and material

✔ 65 nm CMOS imaging process

→ improvement in logic density of pixels and power consumption

✔ Small collection electrode

→ small capacitance

→ improvement in S/N and power consumption

Characteristics and Advantages
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Monolithic Active Pixel Sensor (MAPS)

Small pn-junction → small depleted volume

→ low efficiency and slow charge collection

     Electric Field Optimization

              Sensor Design

It’s not all fun and games...

✔ Readout electronics integrated inside in sensor volume

→ reduction of costs and material

✔ 65 nm CMOS imaging process

→ improvement in logic density of pixels and power consumption

✔ Small collection electrode

→ small capacitance

→ improvement in S/N and power consumption

Characteristics and Advantages
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Sensor Modifications
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Sensor Modifications

Sensor layouts are studied with simulations and prototype testing
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Sensor Modifications

Sensor layouts are studied with simulations and prototype testing
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Simulation Tools

Technology Computer-Aided Design

Electric field of MAPS 
near collection implant

S. Spannagel et al.

✔ Model semiconductor fabrication and device 
operation

✔ Electric Fields: accurate and realistic
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Simulation Tools

Technology Computer-Aided Design

Electric field of MAPS 
near collection implant

S. Spannagel et al.

S. Spannagel et al.

✔ Model semiconductor fabrication and device 
operation

✔ Electric Fields: accurate and realistic

✔ Simulate full response of semiconductor 
detector

✔ Particle Events: fast and high statistics

Allpix2: Monte Carlo Simulations
for Semiconductor Detectors

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

https://doi.org/10.1016/j.nima.2020.163784
https://doi.org/10.1016/j.nima.2018.06.020
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Simulations

✔ Results in BTTB10

✔ Create realistic design with generic doping profiles

✔ Scans over different geometrical and functional parameters

✔ Observe the behavior of the electric field, lateral electric 
field and depleted volume

✔ Select sensible parameters

TCAD Workflow | N-gap Layout

Doping Concentration

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023
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Simulations

✔ Results in BTTB10

✔ Create realistic design with generic doping profiles

✔ Scans over different geometrical and functional parameters

✔ Observe the behavior of the electric field, lateral electric 
field and depleted volume

✔ Select sensible parameters

higher lateral electric 
field in pixel corners

- improvement in efficiency 
and charge collection time
- impairment of resolution

TCAD Workflow | N-gap Layout

Lateral Electric Field

Doping Concentration

Electric Field
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TCAD electric field input for Monte-Carlo simulations with Allpix2 to produce performance plots.

https://indico.cern.ch/event/1058977/contributions/4636892/
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Prototype Testing✔ International collaboration for common submissions to foundry with 
65 nm CMOS process

✔ A first submission was done as a Multi Layer Reticle (MLR1)

The Prototype

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023
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Prototype Testing✔ International collaboration for common submissions to foundry with 
65 nm CMOS process

✔ A first submission was done as a Multi Layer Reticle (MLR1)

The Prototype

Analog Pixel Test Structure (APTS)
✔ Designed by ALICE
✔ Available in all layouts
✔ 4x4 pixels
✔ More about this in G. Alocco’s talk

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

W. Deng et al.

https://indico.cern.ch/event/1232761/contributions/5315811/
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01065
https://iopscience.iop.org/article/10.1088/1748-0221/18/01/C01065
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The Test Beam
Facility

✔ Used for testing and characterizing new devices under 
realistic conditions

✔ Tests performed at DESY-II with 4 GeV e- beam and 
MIMOSA26 telescope
J. Dreyling-Eschweiler et al.

H. Jansen et al.
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https://doi.org/10.1016/j.nima.2018.11.133
https://doi.org/10.1140/epjti/s40485-016-0033-2
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The Test Beam
Facility

✔ Used for testing and characterizing new devices under 
realistic conditions

✔ Tests performed at DESY-II with 4 GeV e- beam and 
MIMOSA26 telescope

Setup
✔ Telescope: 6 detector planes perpendicular to beam → tracking

✔ Trigger plane: Telepix (See A. Wintle’s talk)

✔ DUT: Device Under Test → placed in the center

✔ DAQ system based on Caribou

✔ Corryvreckan framework for track reconstruction
D. Dannheim et al.

J. Dreyling-Eschweiler et al.

H. Jansen et al.

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

T. Vanat

L.Huth et al.

P. Ahlburg et al.

https://indico.cern.ch/event/1232761/contributions/5320335/
https://doi.org/10.1088/1748-0221/16/03/P03008
https://doi.org/10.1016/j.nima.2018.11.133
https://doi.org/10.1140/epjti/s40485-016-0033-2
https://pos.sissa.it/370/100
https://doi.org/10.1016/j.nima.2022.167947
https://iopscience.iop.org/article/10.1088/1748-0221/15/01/P01038
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Data Analysis
Corryvreckan

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

✔ Particle tracks reconstructed with Telescope data

✔ DUT pulse shape per pixel acquired

✔ Threshold applied to pixel with highest charge 
(seed pixel) and surrounding pixels to form 
clusters

✔ Clusters associated to tracks

✔ Perform studies: detection efficiency, spatial 
resolution, charge distribution, etc.

✔ ADC units calibrated to charge

✔ 1000 ADC units ~ 200 e

Threshold

Example Charge Pulse
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Efficiency vs. Threshold
Simulation vs. Experiment

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

Preliminary

APTS
25 μm pitch

Bias = -4.8 V

✔ Similar trend in experimental data and simulation

N-gap Layout

Only statistical uncertainties
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Efficiency vs. Threshold
Simulation vs. Experiment
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Preliminary

APTS
25 μm pitch

Bias = -4.8 V

Preliminary

✔ Similar trend in experimental data and simulation
✔ Experimental efficiency < simulated efficiency → might recover experimental efficiency with finer analysis

N-gap Layout

Only statistical uncertainties Only statistical uncertainties
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Efficiency vs. Threshold
Simulation vs. Experiment - Bias Voltage Comparison

Exp. 
Data

Simulation

✔ No significant impact
✔ Similar trend in experimental data and simulation
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Efficiency vs. Threshold
Simulation vs. Experiment - Bias Voltage Comparison

Exp. 
Data

Simulation

✔ No significant impact
✔ Similar trend in experimental data and simulation
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Preliminary

APTS
25 μm pitchN-gap Layout

Only statistical uncertainties Only statistical uncertainties

We can take a look at a specific threshold...
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In-pixel Efficiency
Simulation vs. Experiment

✔ Efficiency affected by inner structures of pixel?

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

Preliminary

Exp. Data Simulation

APTS
25 μm pitch

Bias = -4.8 V
Threshold = 200 e

N-gap Layout
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In-pixel Efficiency
Simulation vs. Experiment

✔ Efficiency affected by inner structures of pixel?

✔ Fairly uniform in-pixel efficiency

✔ Similar trend in experimental data and simulation

✔ Difference due low statistics in measurements

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

Preliminary

Exp. Data Simulation

APTS
25 μm pitch

Bias = -4.8 V
Threshold = 200 e

N-gap Layout
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✔ Seed pixel: pixel with highest collected 

charge per event

✔ Charge Distribution: Landau*Gaussian

✔ MPV ~ 550 e

✔ Similar trend in experimental data and 
simulation

Preliminary

N-gap Layout

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

APTS
25 μm pitch

Bias = -4.8 V

Charge Distribution
Simulation vs. Experiment

Seed Pixel Charge Distribution
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Conclusions
✔ First development cycle of a MAPS in a 65 nm CMOS Imaging Technology

✔ Detector Layouts: standard, n-blanket and n-gap

✔ TCAD simulations using generic doping profiles have provided very useful insights for future sensor optimization

✔ Monte Carlo simulations produced results comparable with measurements

✔ Beam test of Analog Pixel Test Structure (APTS), thanks to the ALICE collaboration and EP R&D

✔ Preliminary detection efficiency and charge collection results

✔ TCAD + Monte Carlo Simulations and experimental results follow a similar trend

✔ See other studies in the following talks by M. A. Del Rio Viera and S. Ruiz Daza!

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

https://indico.cern.ch/event/1232761/contributions/5320361/
https://indico.cern.ch/event/1232761/contributions/5321146/
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Prospective Work
✔ More measurements → more statistics

✔ Continue analysis of test beam data

✔ More studies, including spatial resolution and timing

✔ Validate TCAD + Monte Carlo Simulations
| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023

https://indico.cern.ch/event/1232761/contributions/5320361/
https://indico.cern.ch/event/1232761/contributions/5321146/


Page 32

Conclusions
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✔ Detector Layouts: standard, n-blanket and n-gap

✔ TCAD simulations using generic doping profiles have provided very useful insights for future sensor optimization

✔ Monte Carlo simulations produced results comparable with measurements

✔ Beam test of Analog Pixel Test Structure (APTS), thanks to the ALICE collaboration and EP R&D

✔ Preliminary detection efficiency and charge collection results

✔ TCAD + Monte Carlo Simulations and experimental results follow a similar trend

✔ See other studies in the following talks by M. A. Del Rio Viera and S. Ruiz Daza!

Prospective Work
Thank you!✔ More measurements → more statistics

✔ Continue analysis of test beam data

✔ More studies, including spatial resolution and timing

✔ Validate TCAD + Monte Carlo Simulations
| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023
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Simulations

✔ Create realistic design with 
generic doping profiles

✔ Scans over different geometrical 
and functional parameters

✔ Observe the behavior of the 
electric field, lateral electric field 
and depleted volume

✔ Select sensible parameters
D
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small depleted volume larger depleted volume higher electric field in 
pixel corners

- low efficiency
- high charge sharing 

between pixels

- improvement in efficiency
- impairment of resolution

- improvement in 
efficiency and charge 

collection time
- impairment of resolution

TCAD Workflow
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Combining Tools
TCAD + Monte Carlo Simulations

Performance parameters:

• Spatial resolution

• Timing resolution

• Detection efficiency

S. Spannagel et al. 
https://doi.org/10.1016/j.nima.2020.163784

Why do we need to combine 
TCAD + Allpix2?

Electric Fields:

• Linear

• Customized (TCAD)

Resolution vs. Threshold for MAPS

https://doi.org/10.1016/j.nima.2020.163784
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APTS Operational Parameters
✔ Samples: 19 (AF25), 24 (AF25B), 29 (AF25P)

✔ Pitch: 25 μm

✔ Type: standard, n-blanket and n-gap

✔ Split: 4

✔ Vsub = Vpwell = -1.2 V, -2.4 V, -3.6 V, -4.8 V (,-5.2 V only for sample 19)

✔ Ireset = 1 μA

✔ Ibiasn = 20 μA

✔ Ibiasp = 2 μA

✔ Ibias4 = 546 μA

✔ Ibias3 = 200 μA

✔ Vreset = 0.5 V

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023
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Preliminary Fake-Hit Rate

Preliminary Preliminary

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023
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Calibration
✔ Test pulse measurements to characterize non-linearity and 

pixel-to-pixel variations
✔ Apply inverse gain curve from test pulse measurements 

(per pixel)

✔ Perform 55Fe measurements to determine absolute 
calibration factor

✔ Check calibration with Ti X-ray fluorescence
✔ Calibration for all samples and combinations of bias 

voltage

55Fe

Ti X-ray 
fluorescence

F. Feindt

| Simulations and Test Beam Characterization of a MAPS in 65 nm CMOS Imaging Technology | Adriana Simancas, BTTB 2023
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Selection Cuts
● A cut is performed to associate tracks to DUT clusters
● Chosen cut at 30 μm → covering beyond full pixel to 

take into account tracking uncertainties
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Selection Cuts
● A cut at the sensor edge is performed to correct for the tracking uncertainties
● Chosen cut at 0.3 pixel fraction →more than 2 times the tracking resolution  
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