

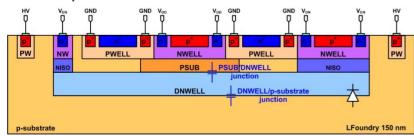
Test-Beam Instrumentation and Results of the RD50-MPW3 HV-CMOS Detector

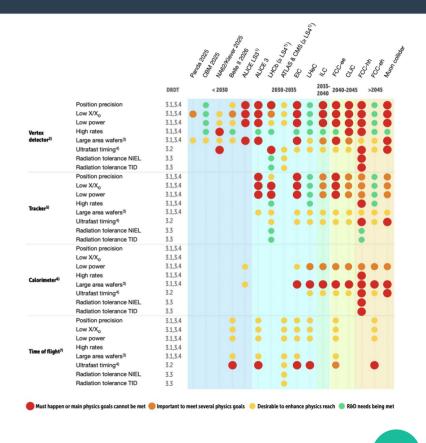
BTTB11

Bernhard Pilsl on behalf of RD50

CERN RD50 HV-CMOS

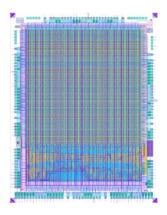
- 17 institutes
- Developing radiation hard DMAPS
 - So far 3 detectors (RD50-MPW1,
 -MPW2 and -MPW3) developed
- ASIC design
- TCAD studies
- DAQ development
- Detector Characterization

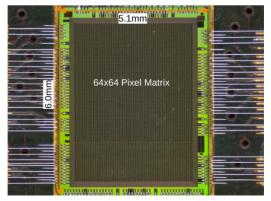




Our Goals

- No specific target experiment
- Generic RnD for future detector goals
 - According to the ECFA roadmap (2021)
- Focus on radiation hardness and low material budget
 - DMAPS with large collection electrode
 - Manufactured by LFoundry in 150nm process



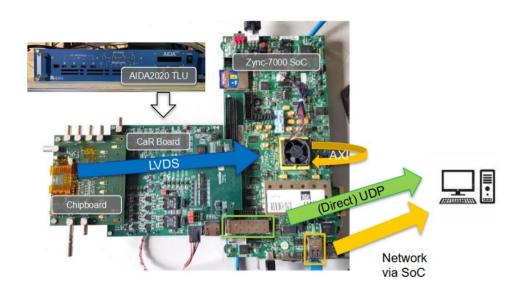


RD50-MPW3

- 64 x 64 Pixel with pitch of 62μm
 - Arranged in 32 double columns
- Full analog and digital electronics inside pixel
- Fast clock at 320MHz
- 8 bit 50ns timestamps for ToT
- Digital periphery
 - I2C server for configuration
 - 8 bit per pixel
 - Data FIFO depth of 32 words for each double column

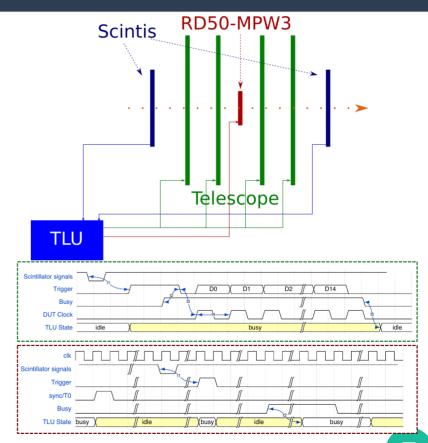
Base DAQ

- Caribou system
- Implemented Peary Device
 - Custom I2C interface (16 bit addresses)
- GUI for configuration
 - Generating Peary config files



Testbeam DAQ

- Fully integrated into EUDAQ2
- CaribouProducer too slow for full read-out rate
 - Only used for run-control commands
- Custom UDP (1 Gbit/s) Data-Collector implemented
 - Multi-threaded approach
 - More like a EUDAQ-producer, but directly storing to disk
- EUDAQ-monitor integrated in GUI
- EUDAQ-Run-Control for submission of run info to ELog server



Synchronization

MPW3 has a data-driven readout

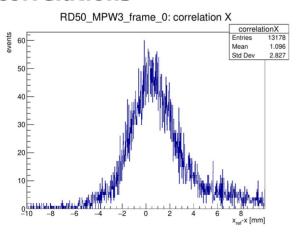
- Syncing via timestamps (TS)
- Faster than sampling trigger-numbers
- Telescope triggered by scintillators
- AIDA-TLU
 - EUDET mode for telescope
 - Synchronous AIDA mode for MPW3
- EUDAQ AidaTluProducer
 - Matching trigger-numbers to TS

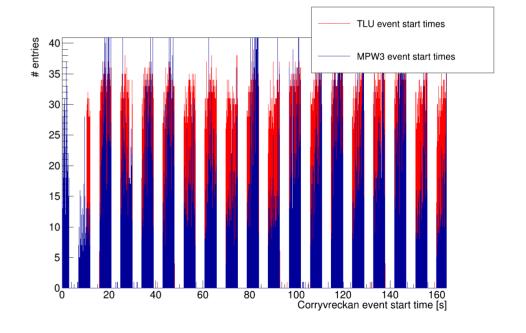
TB MedAustron

- **MedAustron** is a medical facility located close to Vienna
- 800MeV 200kHz proton beam
 - Gaussian shape of $\emptyset \sim 3$ mm
- **Telescope consisting of 4 DSSD planes**
 - 512 x 512 "quasi" pixel with pitch of 100μm x 50μm
 - Telescope veto time ~25µs
- 2 scintillators and AIDA-TLU for triggering

MedAustron

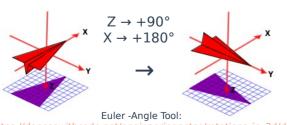
TB Analysis

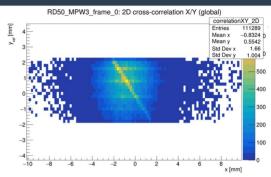

- Corryvreckan Sused for data analysis
- TLU defines events with trigger-number and time window
 - Initially [EventLoaderEUDAQ2] used
- Telescope hits matched to trigger-number
 - Custom event loader developed
- RD50-MPW3 hits matched to TLU time windows
 - [EventLoaderEUDAQ2] used

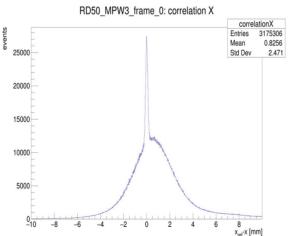


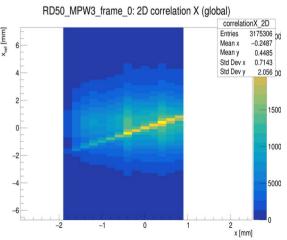
Event-Building

- Beam structure well represented
 - 5 sec spill, 5 sec pause, ...
- TLU and MPW3 events seem to line up fine
- Very few hits matched, no correlations

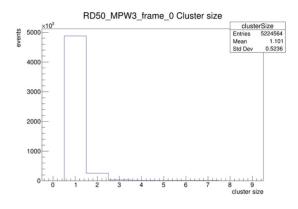


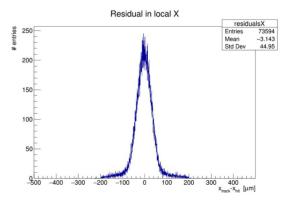

Road to Correlations




- TLU event length mostly 25ns
- MPW3 time resolution: 50ns
- Hits matched only when start times line up perfectly
- Enlarged TLU event-window
- Anti correlations between X → Y
 - Wrong initial orientation

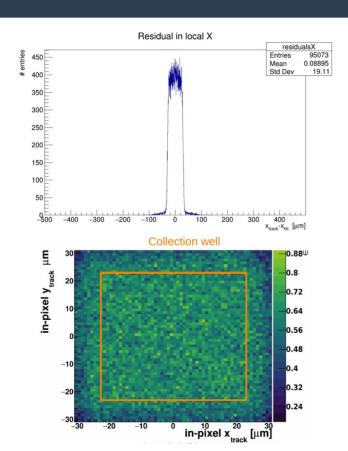
https://danceswithcode.net/engineeringnotes/rotations_in_3d/de mo3D/rotations in 3d tool.html





TB Results

- Correlations fine Everything fine (right?)
- Almost exclusively 1 hit clusters
 - High bias voltage of ~100V
 - High threshold voltage applied
- DUT Alignment not working properly
 - Procedure [AlignmentDUTResidual] finishes "too fast"
 - Residuals not well centered at 0
- Bad efficiency of ~3%
 - Even with [DUTAssociation] cuts of 200µm



CERN SPS Results

- Earlier TB at CERN SPS in Sep. 2022
- EUDET-type telescope with 5 MIMOSA26-planes used
- Event building with [EventDefinitionM26] module
- Total efficiency of ~60% evaluated
 - Problem most likely due to high threshold voltage
- Some problems with timestamp assignment to MPW3 hits
 - DAQ did not provide sufficient range

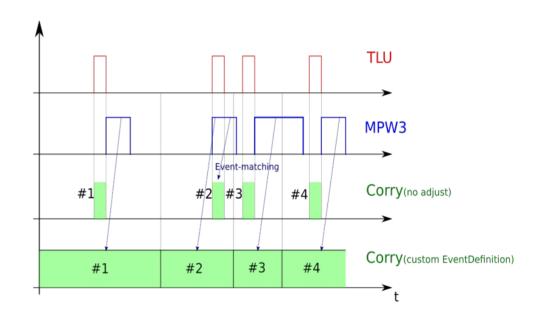
Possible Problems

- Telescope operated for the first time in this way
 - Never used to match to timestamped events before
 - So far (mostly) used stand-alone
 - Possibly trigger-number shift in the data
- Bug in DAQ system
 - Timestamping not working properly?
- Event building procedure not matching MPW3 hits properly
 - 5M clusters, but only 100k inside an event with a track
 - Time offset in the data?
- Work in progress

Outlook

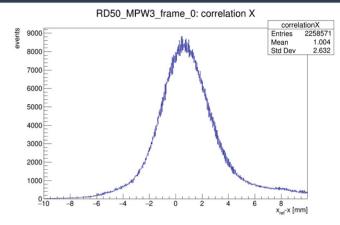
- Debug event-building
 - Implement a trigger-number based synchronization
- File merge-requests
- Upcoming testbeams: May at MedAustron, July at DESY
- Evaluate irradiated samples
- Use multiple MPW3 as "small telescope"
- RD50-MPW4 currently in design-phase
 - Targeted submission in May

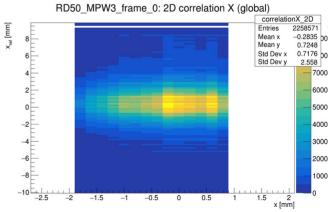
- Thanks for your attention!
- Questions?


Backup

Event Definition Details

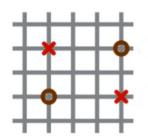
- Custom event definition module written
 - Defines Corry event time frames
- Basically spans whole run-time
 - Start / end time in middle of two consecutive TLU events
- Almost all MPW3 hits matched to an event
 - Most of them to the wrong one(?)

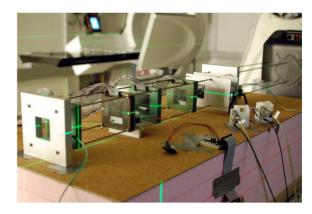


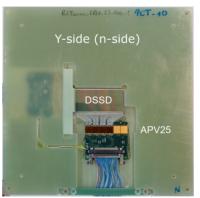


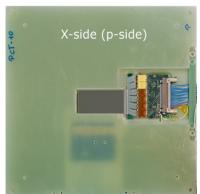
Just Random Efficiency?

- 3% efficiency just random matches?
- Analyzed different DUT run with same telescope data
- No proper correlations observed
 - No correlations → No alignment
- Efficiency ~0.2%




MedAustron Tracker




- Triggered analog readout
 - Calibrated trigger latency
- Voltages > threshold → Hit
- Hits on n-side combined with p-side → "quasi" pixel
- Ghost hits ruled out
 - Only accepting one hit per event (in event loader)

