# The Years 2022 and 2023 in PS & SPS Physics Coordination and Irradiation Facilities at CERN

Eva Barbara Holzer (PS & SPS Physics Coordinator), Blerina Gkotse, Martin Jaekel, Federico Ravotti, Martin Schwinzerl

**CERN EP Department** 

#### Content

- CERN PS and SPS Accelerator and User Schedules and Beam Availability
- EURO-LABS
- GIF++ and IRRAD/CHARM Facilities

## **CERN Long Term Accelerator Schedule**



## **Changes to the Run Schedule due to Energy Crisis**

- Shortage of Electrical Energy in France at the end of 2022 and strong increase of energy prices → Shortening of the 2022 and 2023 Runs
- 2022 physics period was shortened by two week at the end of the run
  - SPS Physics users: AWAKE shortened by 1 week, NA61 ion run shortened by two weeks
  - PS irradiation programs: CHIMERA Pb ion beam time reduced from 14 to 5 days → first full beam time in 2023
    - CHARM High-energy Ions for Micro Electronics Reliability Assurance (https://indico.cern.ch/event/971222)
    - CERN-ESA collaboration for testing of stat-of-the-art microelectronics with a unique combination of high range and high energy deposition Pb ions (100 MeV/n to 5 GeV/n, 10<sup>2</sup> - 10<sup>5</sup> ions/cm<sup>2</sup>/s, up to 20x20 cm<sup>2</sup> beam size)
  - SPS Pb ion test beams were shortened to two weeks  $\rightarrow$  parallel running
- 2023 accelerator and physics schedules reduced by 15% to 25% with respect to 2022
  - Strong over-booking of the SPS test beam lines (booked on average to 180%)
  - Particular problem for high purity electron beam users and for those which cannot share the beam time with other users (e.g. EM calorimeter tests)
- Other user (tracking detectors, timing detectors, ...) share the beam with up to 3 or more other users in the SPS

## **2022 User Beam Schedules**

- 2022 User Schedule was updated frequently
- High number of teams that had to canceled their beam time → redistribution to other users
  - 4 PS weeks and 17 SPS weeks
- Additional beam time requests, requests for rescheduling
- Introducing a semi-formalized way to handle additional, fully parasitic beam time → will be fully integrated in 2023 run.

SPS H6 beam line:

|      | Sub-zone    |        |            | a         | Ь         | c      | d                 | е            | f                 | a         | h               | 1          | i        |
|------|-------------|--------|------------|-----------|-----------|--------|-------------------|--------------|-------------------|-----------|-----------------|------------|----------|
|      | Telescope   |        |            | KARTEL    | STRASSBOU | RG     | ACONITE           | CHROMIE      |                   | MALTA     | AIDA            |            | EP PIXEL |
| Week | Beam        |        |            |           |           |        |                   |              |                   |           |                 |            |          |
| 17   | 120 GeV/c   |        |            |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     | CMS PIXELS      |            | n.a.     |
| 18   | 120 GeV/c   |        | NA62 CEDAR |           |           |        | ATLAS HGTD        |              |                   | ATLAS BCM | CMS PIXELS      | ATLAS AFP  | n.a.     |
| 19   | 120 GeV/c   |        | NA62 CEDAR |           |           |        | ATLAS HGTD        |              |                   | MALTA     | CMS PIXELS      | ATLAS AFP  | n.a.     |
| 20   | high rate   |        |            |           |           |        | ATLAS ITk pixel ( | in telescope | but without teles | MALTA     | CMS PIXELS      |            | EP PIXEL |
| 21   | 120 GeV/c   |        | NA62 CEDAR |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       |            | EP PIXEL |
| 22   | 120 GeV/c   |        | NA62 CEDAR |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       |            | EP PIXEL |
| 23   | CERF        | CERF   | n.a.       | n.a.      | n.a.      | n.a.   | n.a.              | n.a.         | n.a.              | n.a.      | n.a.            | n.a.       | n.a.     |
| 24   | 120 GeV/c   |        |            | RD42      | RD42      |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       | ALICE ITS3 | n.a.     |
| 25   | 120 GeV/c   |        |            |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       | ALICE ITS3 | n.a.     |
| 26   | high rate   | main   | user       |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     |                 | ALICE ITS3 | EP PIXEL |
| 27   | 120 GeV/c   |        |            |           |           |        | ATLAS Itk strip   |              |                   | MALTA     | EP hybrid       |            | EP PIXEL |
| 28   | 120 GeV/c   | parall | e user     |           |           |        | ATLAS HGTD        |              |                   | MALTA     | ATLAS Itk pixel |            | EP PIXEL |
| 29   | 120 GeV/c   | Paran  | er aber    |           |           |        | ATLAS HGTD        |              |                   | MALTA     | ATLAS Itk pixel |            | n.a.     |
| 30   | 120 GeV/c   | narae  | itic uso   | 1 C       |           |        | ATLAS Itk pixel   |              |                   |           | CMS PIXELS      |            | n.a.     |
| 31   | 120 GeV/c   | Dalas  | itic use   |           |           |        | ATLAS Itk pixel   |              |                   |           | CMS PIXELS      |            | EP PIXEL |
| 32   | high rate   |        | 1          |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     |                 |            | EP PIXEL |
| 33   | 120 GeV/c   |        |            |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       |            | EP PIXEL |
| 34   | 120 GeV/c   |        |            | RD42      | RD42      |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       |            | EP PIXEL |
| 35   | 120 GeV/c   |        |            |           |           | PICSEL | ATLAS HGTD        |              |                   | MALTA     | EP hybrid       |            | n.a.     |
| 36   | 120 GeV/c   |        |            |           |           | CMS-OT | ATLAS HGTD        |              | ALICE FOCAL       |           | EP hybrid       |            | n.a.     |
| 37   | ALICE FOCAL |        | n.a.       | n.a.      | n.a.      | n.a.   | n.a.              | n.a.         | ALICE FOCAL       |           |                 |            | n.a.     |
| 38   | 120 GeV/c   |        |            |           |           |        | CMS PIXELS        |              |                   | MALTA     | EP hybrid       |            | n.a.     |
| 39   | 120 GeV/c   |        |            | ATLAS BCM | ATLAS BCM |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       | ATLAS AFP  | n.a.     |
| 40   | 120 GeV/c   |        |            |           |           |        | ATLAS Itk pixel   |              |                   | MALTA     | EP hybrid       | ATLAS AFP  | n.a.     |
| 41   | high rate   |        | NA62 CEDAR |           |           |        | ATLAS ITk pixel ( | in telescope | ALICE ITS3        | MALTA     |                 | MONOLITH   | EP PIXEL |
| 42   | 75 GeV/c    |        | NA62 CEDAR |           |           |        | ATLAS HGTD        |              |                   | MALTA     | RD50            |            | EP PIXEL |
| 43   | 75 GeV/c    |        | NA62 CEDAR |           |           |        | ATLAS HGTD        |              |                   | MALTA     | EP hybrid       |            | n.a.     |
| 44   | 75 GeV/c    |        | NA62 CEDAR |           |           |        | ATLAS Itk pixel   |              |                   |           | CMS PIXELS      |            | n.a.     |
| 45   | high rate   |        |            |           |           |        | ATLAS Itk pixel   |              | ALICE ITS3        | MALTA     | 1               | MONOLITH   | EP PIXEL |





11<sup>th</sup> BTTB Workshop, 17.04.2023

Eva Barbara Holzer - PS & SPS Physics Coordinator

### **2022 Injectors Availabilities**

Extended fault periods for the SPS NA

| Facility | Destination     | Achieved 2022<br>Total [%] | Period                  |  |  |  |
|----------|-----------------|----------------------------|-------------------------|--|--|--|
| LINAC4   | -               | 97.1                       | 28.03.2022 - 21.11.2022 |  |  |  |
| DCD      | PS              | 95.5                       | 28 02 2022 21 11 2022   |  |  |  |
| FJD      | ISOLDE          | 95.5                       | 20.03.2022 - 21.11.2022 |  |  |  |
|          | SPS             | 89.6                       |                         |  |  |  |
| DS       | nTOF            | 90.0                       | 28.03.2022 – 21.11.2022 |  |  |  |
| FJ       | AD              | 90.6                       |                         |  |  |  |
|          | East Area       | 91.6                       |                         |  |  |  |
|          | LHC             | 89.9                       |                         |  |  |  |
| SDS      | North Area 73.2 |                            |                         |  |  |  |
| 353      | AWAKE           | 92.3                       | 20.04.2022 - 21.11.2022 |  |  |  |
|          | HiRadMat        | 93.6                       |                         |  |  |  |

## **SPS North Area Beams on T2 and T4 Targets**

#### Extended periods of faults in May, June and July 2022

→ Rescheduling of beam time could compensate for almost all of the test beam users

- a) TCSC cooling water leak – collimator protecting a splitter magnet (9 days)
- b) Electrostatic septum, ZS, failures – cables exchanged and feedthroughs cleaned (total: 7 days)
- c) T2 TBIU replacement

   vacuum failure in
   the upstream beam
   instrumentation
   box of the T2 target
   (6.5 days)



- SPS.T4:INTENSITY - SPS.T2:INTENSITY

#### 152<sup>nd</sup> LHCC Meeting, 30.11.2022

#### Eva Barbara Holzer

# SPS NA physics delivery – intensities

2022 Summer period: high intensity requests from experiments, excellent machine performance and the LHC down  $\rightarrow$  Unprecedented extraction rate!



- Extracted intensities were reviewed
- Per-week extracted intensities still need limit to be established → 0.8e18 ppw looks like a reasonable number

٠

 Cumulative extracted intensity for a typical year (29 weeks in 2022) not more than 23e18 p+

- Very high intensities requested and reached during most part of the summer!
- Struggling with stability running close to the machine limits (beam stability, losses,...)
- Still, managed to obtain mostly stable, solid and reliable beam parameters throughout the summer... up to **beyond** the generally accepted limits!
- → Unprecedented intensities and extraction rates during summer period in 2022!



## IEFC - Kevin Li

## **SPS North Area Long Term Statistics**

 CERN Long Shutdown 3: 2019, 2020, part of 2021



|               | SPS NA<br>weeks | Proton<br>weeks | lon<br>weeks | lons<br>% | AWAKE<br>weeks | AWAKE<br>% |
|---------------|-----------------|-----------------|--------------|-----------|----------------|------------|
| 2017          | 32              | 24              | 8            | 25        | 11.8           | 37         |
| 2018          | 35              | 31              | 4            | 11        | 13             | 37         |
| 2021          | 18              | 18              |              |           | 7.3            | 41         |
| 2022 original | 33              | 29              | 4            | 12        | 12             | 36         |
| 2022 reduced  | 31              | 29              | 2            | 6         | 11             | 35         |
| 2023          | 26/27           | 21/22           | 4            | 15        | 9.5            | 37         |

Weeks of SPS North Area Physics and AWAKE

## **SPS North Area Statistics**

- Statistics for EHN1 (4 multi purpose beam lines) plus EHN2 and ECN3 (2 dedicated beam lines for experiments)
- Increasing number of parallel and parasitic running of test beams to cope with the increased number of beam requests and the reduced number of weeks of user beams





## Access to Research Infrastructures for Nuclear Physics - Accelerator R&D – Particle Physics

- 4 year project started September 2022
- Transnational Access to a range of facilities emphasis on students and post-docs
- PS & SPS test beam users

#### Financial support for coming to CERN for beam times in 2023 to 2025

Development of a data-base driven software tool for User's request submission, scheduling, statistics, reporting

## **Participants**

- 34 participating Laboratories
- Access to 43 Research Infrastructures (RIs)
- Spread in 12 countries across Europe



Figure 1 - Map of participating RIs in EURO-LABS

11<sup>th</sup> BTTB Workshop, 17.04.2023

| Participant<br>short name | Participant name                                                      |                           | Country | Role        | WP                 |  |
|---------------------------|-----------------------------------------------------------------------|---------------------------|---------|-------------|--------------------|--|
| INFN                      | National Institute for Nuclear Physics                                | Italy                     | IT      | Coordinator | WP1, WP2, WP3, WP5 |  |
| GANIL                     | GRAND ACCELERATEUR NATIONAL D'IONS LOURDS                             | France                    | FR      | Partner     | WP2, WP5           |  |
| CERN                      | European Organization for Nuclear Research                            | Switzerland               | СН      | Partner     | WP1, WP2, WP3, WP4 |  |
| JSI                       | INSTITUT JOZEF STEFAN                                                 | Slovenia                  | SI      | Partner     | WP4                |  |
| IFJ-PAN                   | THE HENRYK NIEWODNICZANSKI INSTITUTE OF NUCLEAR PHYSICS, F            | Poland                    | PL      | Partner     | WP2, WP4           |  |
| DESY                      | STIFTUNG DEUTSCHES ELEKTRONEN-SYNCHROTRON DESY                        | Germany                   | DE      | Partner     | WP4                |  |
| UCLouvain                 | UNIVERSITE CATHOLIQUE DE LOUVAIN                                      | Belgium                   | BE      | Partner     | WP4                |  |
| RBI                       | RUDER BOSKOVIC INSTITUTE                                              | Croatia                   | HR      | Partner     | WP4                |  |
| CNRS                      | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS                     | France                    | FR      | Partner     | WP2, WP3, WP5      |  |
| FBK                       | FONDAZIONE BRUNO KESSLER                                              | Italy                     | IT      | Partner     | WP2                |  |
| ITAINNOVA                 | INSTITUTO TECNOLOGICO DE ARAGON                                       | Spain                     | ES      | Partner     | WP4                |  |
| UoB                       | THE UNIVERSITY OF BIRMINGHAM                                          | UK                        | UK      | Partner     | WP4                |  |
| UNIWARSAW                 | UNIWERSYTET WARSZAWSKI                                                | Poland                    | PL      | Partner     | WP2                |  |
| GSI                       | GSI HELMHOLTZZENTRUM FUR SCHWERIONENFORSCHUNG GMBH                    | Germany                   | DE      | Partner     | WP2, WP5           |  |
| IFIN                      | INSTITUTUL NATIONAL DE CERCETARE-DEZVOLTARE PENTRU FIZICA             | Romania                   | RO      | Partner     | WP2, WP5           |  |
| USE                       | UNIVERSIDAD DE SEVILLA                                                | Spain                     | ES      | Partner     | WP2                |  |
| IST                       | INSTITUTO SUPERIOR TECNICO                                            | Portugal                  | PT      | Partner     | WP2                |  |
| ATOMKI                    | ATOMMAGKUTATO INTEZET                                                 | Hungary                   | HU      | Partner     | WP2                |  |
| UYU                       | JYVASKYLAN YLIOPISTO                                                  | Finland                   | FI      | Partner     | WP2                |  |
| UU                        | UPPSALA UNIVERSITET                                                   | Sweden                    | SE      | Partner     | WP3                |  |
| CEA                       | COMMISSARIAT A LENERGIE ATOMIQUE ET AUX ENERGIES ALTERN               | France                    | FR      | Partner     | WP2, WP3, WP5      |  |
| КІТ                       | KARLSRUHER INSTITUT FUER TECHNOLOGIE                                  | Germany                   | DE      | Partner     | WP3                |  |
| UKRI                      | UNITED KINGDOM RESEARCH AND INNOVATION                                | UK                        | UK      | Partner     | WP3                |  |
| UMCG                      | ACADEMISCH ZIEKENHUIS GRONINGEN                                       | Netherlands               | NL      | Partner     | WP2                |  |
| FEP                       | Fraunhofer Institute for Organic Electronics, Electron Beam and Plasm | Germany                   | DE      | Partner     |                    |  |
| INCT                      | INSTYTUT CHEMII I TECHNIKI JADROWEJ                                   | Poland                    | PL      | Partner     | WP3                |  |
| CSIC                      | AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENT             | Spain                     | ES      | Partner     | WP5                |  |
| PSI                       | PAUL SCHERRER INSTITUT                                                | Switzerland               | СН      | Associated  | WP4                |  |
| JINR                      | JOINT INSTITUTE FOR NUCLEAR RESEARCH                                  | <b>Russian Federation</b> | RU      | Associated  |                    |  |
| RIKEN                     | RIKEN THE INSTITUTE OF PHYSICAL ANDCHEMICAL RESEARCH                  | Japan                     | JP      | Associated  |                    |  |
| MSU                       | MICHIGAN STATE UNIVERSITY                                             | USA                       | US      | Associated  |                    |  |
| TUD                       | TECHNISCHE UNIVERSITAET DRESDEN                                       | Germany                   | DE      | Associated  |                    |  |
| UMIL                      | UNIVERSITA DEGLI STUDI DI MILANO                                      | Italy                     | IT      | Partner     | WP2                |  |
| LIP                       | LABORATORIO DE INSTRUMENTACAO E FISICA EXPERIMENTAL DE F              | Portugal                  | PT      | Associated  |                    |  |
|                           |                                                                       |                           |         |             |                    |  |

#### Eva Barbara Holzer – PS & SPS Physics Coordinator

## **CERN User Facilities participating to EURO-LABS**

#### PS and SPS test beams

The CERN Proton Synchrotron (PS) and Super Proton Synchrotron (SPS) provide highly configurable test beams in the energy range from 1 GeV to 400 GeV. A total of six general purpose test beam lines and their large, well-equipped experimental areas are available for Transnational Access.

#### IRRAD

IRRAD is located in the EAST AREA of the CERN PS and allows for the irradiation of materials and devices with protons of 24 GeV/c. Objects up to 10 cm2 can be exposed to up to 10<sup>15</sup> p/cm2 and smaller objects, for which a beam spot of 5 mm2 FWHM is sufficient, up to 10<sup>17</sup> p/cm2.

#### GIF++

GIF++ is located in the H4 beam line of the CERN SPS North Area. It combines a high energy charged particle beam (mainly muons with up to 100 GeV/c) with a 14 TBq 137Cesium source. The main application is to perform test beam experiments of gas detectors in an intense gamma background field.

#### CLEAR

CLEAR is a versatile accelerator installation, including a 200 MeV electron linac followed by an experimental beamline and operated at CERN as a multi-purpose user facility, providing high quality e- beams with high availability and easy access to a broad user community.

#### HiRadMat

HiRadMat is a unique test irradiation facility, providing fastly extracted, high brightness, LHC-type beams for allowing validation and R&D on novel materials, target concepts, detectors or accelerator components. It is serving the international community for more than 10 years.

#### ISOLDE

Radioactive beam facility where >1200 different isotopes of >74 elements are produced with 1.4-GeV protons on thick targets. Beams are available at low energy or reaccelerated and used in a variety of setups for nuclear physics, fundamental interactions, condensed matter and biochemical research.

#### nTOF

Spallation neutron source for time-of-flight experiments. Experimental setups for neutron induced reactions measurements. Activities in the fields of nuclear astrophysics, advanced nuclear technologies and basic nuclear science.

#### XBOX

The XBOX at CERN refers to state-of-the art klystron-based X-band (11.994 GHz) test stands dedicated to the development of high-gradient accelerating structures, in the range of 100 MV/m, and very high peak power, above 100 MW, RF devices.

## Focus Point: WP 4.1 Development Of A User Schedule Management Tool





n python"

**SharePoint** 



 User requests, schedules, requirements, etc. managed by a set of disconnected scripts, emails, spreadsheets, & adhoc solutions

#### **Goals:**

- Data-base driven software solution
- Adapt data model to the diverse user groups
- Separation of data, processes, and visualization
- Improve management of user requirements and constraints (schedules of different beam lines are highly interlinked)

#### Goals cont.:

- Improve management of roles and successions within user teams
   → targeted communication
- Quicker turn-around for user and change management
- Automatizing repetitive tasks
- Include reviews and comments into the data model for increased transparency, traceability and accountability









Status: first iteration (v0.8.14) in productive use, development in parallel.

Milestone Release: (v1.0) planned for Aug. 2023

### First Use Case: Call For Beam Requests & Scheduling in 2023



- Dec. 7th 2022 to Jan. 4th 2023
- 96 beam requests for 183 runs (main/parallel, parasitic, no beam)
   2022: 97 beam requests => different system, not directly comparable
- Approx 300 users registered at the system (CERN SSO)
- Resulting in 184 scheduled runs (no 1:1 correspondence to requested runs: some runs split, some could not be scheduled, additional parasitic and parallel runs added since end of beam request call)
- Important lessons learned about necessary improvements of data model, user logic and UI / UX elements
- → First successes in improving workflows and data management

### **Improvements For Users Already Present & Under Development**

- Beam requests are stateful => can be edited & reviewed over longer period of time
- Users can export beam requests as PDF (early version)
- Schedules, GANTT diagrams, spreadsheets, etc. are generated dynamically & automatically => fast updates!
- Users can delegate rights on beam requests (coming: also on activities, scheduled runs, hardware setups)
- Generation of meeting agendas, reports, etc. from data (under development)

- Scheduling history for each run (coming soon: timeline)
- Comments, reviews & conclusions stored together with the schedule information
- Targeted communication to specific groups of user
- Accessible to users with self-registered accounts (to be released soon)

• .....



## **Outlook for 2023: Iterative Change & Request Management**

- Currently: Nearing publication of the v1.0 schedule for all beamlines / accelerators
- New tool already allows for more flexible approach (PS: already at v1.1 while H6 & H8 at pre-release)

#### Goal for v1.0 release (EURO-LABS wp4 MS 08/2023)

- Handle full iterative workflow via tool
- Seamless tracking of changes to the schedule (including parasitic beam-time & cancellations)
- Allow generation of reports & statistics on-the-fly



## Wider Software Ecosystem at the CERN EP



11<sup>th</sup> BTTB Workshop, 17.04.2023

**GIF++** and **IRRAD** 





# Current EP-DT GIF++ Team



- **GIF++** Physics Coordinator (Deputy to SPS Physics Coordinator for the GIF++)
- Overall facility responsibility
- Future development of the GIF<sup>++</sup> facility



- **EP-DT** Facilities Team Responsible, **IRRAD** Facility Coordinator
- Irradiation Facilities EXSO



- GIF<sup>++</sup> & IRRAD: users supervisor, contact to EN services
- General user support
- Gas system first level support,



Deputy EXSO



- Tasks leader AIDAinnova & RADNEXT EU-projects
- **Facilities Computing** (Controls, DAQ, Data Management) M&O / R&D





**EP-DT operated** 





Irradiator operation throughout the whole year

**Irradiation Bunker** 





https://gif-irrad.web.cern.ch/

# GIF++ @ EHN1

- Joint facility (EP & BE) operated by EP-DT-DD
- Unique place, combining a high energy muon beam with a 14 TBq\* <sup>137</sup>Cs gamma source
- Designed for testing real size muon gas detectors, of up to several m<sup>2</sup>, as well as a broad range of smaller prototype detectors and electronic / optical components
- 160 m<sup>2</sup> irradiation bunker with 2 independent irradiation zones (30 m<sup>2</sup> & 75 m<sup>2</sup>), separated attenuation systems
- All year operation from Cs-Irradiator
- Muon beam (H4) for 7-9 weeks per year (on average)
- Central Control System, recording all relevant parameters and provides interlocks
- Wide range of available gases (+ custom gases) in irradiation bunker & preparation zone
- around 15-20 different large setups scheduled during the year (up to 14 participating in muon beam time in parallel) \*) as of 2014



## Successful 2022 with extended muon beam operation :

## Irradiator operation from 14.Jan. to 16. Dec. = 48 weeks of operation !

(stop only during CERN Christmas closure and essential maintenance)

 9 weeks of dedicated muon beam, up from 7 weeks requested (Will be less in 2023 due to shortened beam operation)
 Providing essential muon beam time for critical projects like ECOGAS beyond requests

|               | Setup / Week       |
|---------------|--------------------|
|               | ATL NSW MM         |
|               | ATL NSW sTGC       |
|               | ATL RPC            |
|               | ATL sMDT           |
| Set-uns       | CMS CSC – 1        |
|               | CMS CSC – 2        |
| participating | CMS CSC – 3        |
|               | CMS DT             |
|               | CMS GEM            |
|               | CMS RPC – 1        |
|               | CMS RPC - 3        |
|               | iRPC (inside RPC3) |
|               | EP DT2             |
|               | RPC ECOGAS         |
|               | ProTov-RPC         |
|               | RE21/CBM           |

- ▶ 2 dedicated weeks for GIF<sup>++</sup>
- ▶ 5 shared weeks with RD51
- I parasitic week
- +2 extra weeks due to cancelation of other H4 users
- Up to 15 set-ups scheduled
- Up to 11 set-up hosted in parallel during beam weeks



**ECOgas** 



- Test of alternative gas mixtures with reduced GWP (Global Warming Potential)
- Gas recirculation, better flow and pressure regulations
- Monitoring, detection of abnormalities
- Offline analysis, deeper understanding of dynamics
- Some potential candidate mixtures not a trivial search !

#### Studies to reduce greenhouse gas emissions from detectors at the LHC / Gianluca Rigoletti (EP-DT-FS) EP-DT Seminar : <u>https://indico.cern.ch/event/1155238/</u>





## Upcoming challenges (LS3 and beyond) : Proposed GIF<sup>++</sup> Phase II Upgrade Bunker Extension LS3

- While already considered in the 2019 bunker extension, the Saleve wall modifications could not be done in LS2 due to severe manpower shortage, especially with EN-EL
  - Main electrical cupboard of GIF++ would need to be relocated
  - Gas distribution panels need to be relocated....
- After the strong EP endorsement to operated the facility beyond LS3, we now restart the planning of the Phase II upgrade
  - Bunker redesign with increased space to allow better distributions of detectors
  - Possibility to place the full width of a detector inside the muon beam
- Current financial situation (e.g. energy prices, inflation..) makes this proposal more difficult
- Requires a strong support from the user side
- Significant improvement for "moderate" spending





# Statistics 2022

#### • IRRAD:

- 54 experiments registered
- >600 samples processed:
  - LHC Experiments: ATLAS, CMS, LHCb Phase II upgrade
  - R&D & expt. support: EPRD, RD53, RD50, EP-ESE / DT
  - CERN ATS Projects: TE-MSC, EN-EL, R2E
  - EU- projects & external: AIDAinnova, CNES (FR)
- ~50% requests exceeding 10<sup>16</sup> p/cm<sup>2</sup>
  - cold (-25°C), cryogenic & large areas often required
  - irradiations to 10<sup>17</sup> p/cm<sup>2</sup> level require ~1 year!

#### • CHARM:

- 29 users scheduled
- 39 system-level & 13 component tests:
  - ATS: SY-BI / EPC / STI, TE-MPE / VSC, BE-CEM
  - RCS: EP-DT, CMS, ATLAS, Caen, Wiener
  - EU-projects: RADNEXT (3 users)
- increasing number of requests



~2w for 1×1016 p/cm2

on 10×10 mm<sup>2</sup>

>= 1E16

<=2E16



**EXPERIMENTS R&D (IRRAD)** 







90%

80%

70%

60%

40%

30%

20%

10% 0%

<1E16

(%) 50%

#### F. Ravotti - Input for BTTB

>1E17

>5E16

>2E16

Target Proton Fluence (p/cm<sup>2</sup>)



# Feedback T08 beam

- Reporting of Intensity KPI since summer 2022:
  - 2.2×10<sup>16</sup> p/w (facility specification & 2021 beam sharing)
- Cumulated Intensity on T08 in 2022:
  - ~1.8×10<sup>16</sup> p/w vs. 1.6×10<sup>16</sup> p/w (performance 2018)
  - beam sharing target achieved during ~55% of the weeks (target 1 EAST\_T8 each ~ 10 BP)
- Beam Transmission:
  - dedicated AI-foil / BCT calibration of XSEC070 (EDMS 2783968) confirm the ~20% transmission loss during slow-extraction
  - intensity variations ~>1×10<sup>11</sup> p/spill sometime observed
- Beam Profile & Alignment
  - preliminary analysis on BPM2 (center within ± 2mm):
    - improved beam trajectory (both axes), but larger variations
    - slow "drift" of the beam center (x-axis only) along the weeks
  - tail on the horizontal profile (BPM1)
    - scattering of lower energy particles when reducing extraction losses ?





## SUMMARY

## Summary

- CERN "Injector Complex" provides
  - On top of a world class and diverse physics program
  - Approximately 30 weeks per year of highly diverse beams for
    - Test beam users
    - Irradiation facilities offering a vide variety of radiation fields
  - User groups from around the world
    - Not necessarily linked to CERN scientific program
    - Possibilities to support users financially
    - From space experiments and radiation testing for ESA to high school student experiments to calibration of dosimeters for CERN and outside users.

#### **Resources for the Users**

- Find the test beam or the radiation facility for your application (worldwide):
  - https://test-beam-facilities.web.cern.ch/
  - http://irradiation-facilities.web.cern.ch/
- CERN Experimental Area Physicists can help you to find the most appropriate beamline for your requirements and identify possibilities for non-standard beams: sba-physicists@cern.ch
- Main PS and SPS user page: https://ps-sps-coordination.web.cern.ch/ps-sps-coordination/
- PS and SPS Physics Coordinator: sps.coordinator@cern.ch
- Request for beam time in most years to be submitted Q4 for the following year:
  - For the EP irradiation facilities, beam time requests are collected by the facility coordinators.
  - For the LHC experiments, beam time requests are collected by the experiments' test-beam coordinators.
  - Any other requests are submitted directly to the PS / SPS Physics Coordinator

Come and talk to me about any feed-back, wishes, concerns etc. you might have! Martin Schwinzerl, responsible for technical implementation of the User Schedule Management Tool and technical user support is present as well!

## **SPARE SLIDES**