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The LHCb-RICH detector

The 2 RICHes provide the PID of charged
hadrons in final state: m, K e p

@ RICH1

@ Radiator: C4Fyg
@ p € [1-65] GeV/c

@ RICH2

@ Radiator: CFy
@ p € [15-100] GeV/c

Photodetectors:

@ Old RICH (Run 1 and Run 2): Hybrid
Photon Detectors

@ Pixel size: 2.5 x 2.5mm?
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@ New RICH (Run 3): MaPMTs

Pixel size: 3 x 3mm? (R-type) or
6 x 6mm? (H-type)
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Why we need timing information

@ Measuring the time of arrival of the photons is crucial to maintain the

excellent performances of the current RICH system throughout the
HL-LHC phase after the start of Run 4
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What time resolution do we need?

@ The RICH performance is assessed by looking at the PID curves
@ Given that the majority of tracks are pions, we look at the curve
AlInL(K — m) — Kaon ID efficiency against pion misID efficiency
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@ A single photon time resolution better than 100 ps is needed
for the Upgrade Il phase (Run 5-6) — SiPMs among the possible
new photodetector candidates
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The SPS Campaign

The SPS test beam campaign focuses on the development and testing of a
prototype readout chain with fast-timing information

@ 3 testbeam campaigns since October 2021 dedicated to
Upgrade Ib/II

@ The FastlC is coupled to SiPMs/MAPMTs and read out by a
TDC-in-FPGA (temporary solution)

@ Valuable information is collected on fast-timing techniques, FastlC
operation, sensor coupling, etc.

o Large TB datasets available for many interesting studies

Sensor DC
SiPM / MAPMT FastiC FPGA DAQ PC
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The setup in the beam area
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The opto-electronics chain

T0
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Detector plane

Blackened
mask
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Beam

PMT

Scintillator |:|

@ Borosilicate lens to create

Cherenkov light o R-type MaPMT, 3mm, 8x8
@ Cherenkov rings create arcs o H-type MaPMT, 6mm, 8x8
on the sensors plane @ SiPM matrix, 2mm, 8x8

@ 180 GeV hadron beam
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The FastlC chip

Designed by the micro-electronics section at CERN and the University
of Barcelona

8 channel ASIC designed in 65 nm CMOS technology for the readout
of precise timing detectors

6 mW/ch of power dissipation at 1.2 V

Positive or negative polarity with a wide dynamic range of input
current — 5 uA to 20 mA

@ The output driver can be configured either in single-ended or
differential mode
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The Digital board

Digital board for testbeam, containing
RICH front-end boards (FEBS) Kintex7 FPGA with 32-channel TDC
MAPMT / SiPM sensor. with FastiC ASICs. with 260 ps time bins.

Digital boards:
o 3 digital boards, one for every photodetector
@ Each board contains a Kintex 7 Chimaera with 34 channel TDC

@ When a trigger arrives, data are stored in a buffer and readout by a
USB interface.
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The TDC firmware

A multi-channel TDC core in a KINTEX-7 FPGA that was succesfully
implemented and used in our test beam campaigns

@ it uses 16 clock phases @ 420 MHz for a 150 ps timestamp
@ The skeleton of the TDC core is based on the work of Wang et. al !
@ Provides both ToA and ToT information for time-walk correction
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Yu Wang et al.,High-resolution time-to-digital converters (TDCs) with a bidirectional encoder, Measurentent
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Threshold optimization

@ Channel-to-channel variations mean that careful tuning of the
threshold for individual channels is required for optimal signal-to-noise
ratio

@ Scanning the threshold allows to characterise the noise behaviour per
channel and to find the optimal setting

@ Sharp and clear transition from signal to noise region
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The trigger scheme and the MCP timing reference

5 Trigger-logic unit
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@ The MCP is combined with the o The timing jitter
scintillator in the trigger logic introduced by the MCP
@ When a trigger arrives, the binary is =~ 110 ps
traces (35 ns time window) are
stored in a buffer and readout.
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TDC calibration

@ The TDC bins of each channel are calibrated using a lab procedure

whereby a signal from a pulse generator is delayed by small steps in
time and sent to the each channel.

o For every signal delay the fraction of edges recorded in each bin is

measured

@ The bin width is determined by looking the intersection with the 0.5

line

Fraction of edges in bin
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@ The vast majority of TDC bins have a width around the

nominal value of 150 ps
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Results (preliminary)

2,049+ 0.01419

o After time-walk correction the o
scales as expected with the number

of photons on the ring Ny,
@ The reconstructed radius a

; °
from the occupancy plot is or v/ Nph
consistent with the expected ¢ a%p'h ~ 250ps (preliminary)
value of 60 cm
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Geant4 simulation

@ Precise timing measurement in single photon regime is challenging
and many factors can cause additional timing jitter

@ A very detailed simulation of the experimental setup was created to
allow for different studies of systematic effects( see D.F.Holt talk
" Time resolved RICH testbeam simulation”)
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Evolution of the opto-electronics chain

@ TDC in FPGA limited to 150 ps time bin and data bandwith limited
by USB readout

@ picoTDC (recently available) will be used in the future testbeams. Its
12 ps bin width will allow more detailed studies of fast sensors

@ Use IpGBT (10 Gbit/s) module coupled to back-end compatible with
the current LHCb online architecture to increase readout rate

Sensor f iR bc i Back-end
2023 beam tests | O FastiC picoTDC 10GBT / VL+ -end.

Sensor DC Optical link (12 Back-end
LHC Run 4 MAPMT FaStRICH ﬁGBTIVL+ > PCle40 / PCle40++

Sensor DC oJ ilEINIeoc Back-end
HL-LHC Run 5 SiPM / MAPMT / MCP FaStRICH ﬁGBTIVL-ﬁ PCled0++
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