

Bundesministerium für Bildung und Forschung

Track classification for high density beams in beam tests

Christopher Krause christopher2.krause@tu-dortmund.de

Kevin Kröninger, Jens Weingarten **April 21. 2023** TU Dortmund Department of Physics

11th BTTB Workshop

- Track reconstruction of high density beam causes combinatorial problems
- All cluster combinations on first and last plane are taken into account
- Wrong combinations possible \longrightarrow False tracks

- Allpix² simulation in air, 200 pions per event (1000 events)
- Telescope consists of 6 Mimosa26 sensors
- No sensor misalignment
- Beam opening angle: 0.1mrad
- Beam energy: $(120.0\pm0.5)~{\rm GeV}$

 364k tracks in total, less than 200k clusters on each plane

Demand hit on all planes for track
Matching Radius: 10 × spatial resolution

• Number of tracks significantly larger than expected number of true tracks

Can true and false tracks be distinguished?

50

• Reconstruction configurations:

- Using machine learner (XGBoost) to determine true and false tracks
- Training data set: 200k $\pi^+,$ Validation/Test data set: 50k π^+
- Input quantities: $\chi^2/{\rm ndof}$ kink angles, cluster sizes

XGBoost

5 / 14

• True and false track distributions of the input features

• True and false track distributions of the input features

• Using ROC curve and precision-recall curve for performance evaluation

- FPR = $f_p/(f_p + t_n)$ Probability for false tracks to be labeled as true
- TPR = Recall = $t_p/(t_p + f_n)$ Ability to find all true tracks
- Precision = $t_p/(t_p + f_p)$ Ability to not label false tracks as true

		Actual	
		Positive	Negative
cted	Positive	True Positive	False Positive
Predi	Negative	False Negative	True Negative

[C. Dilmegani, Machine Learning Accuracy: True-False Positive/Negative, 2023]

ROC and PR curve

1.0

ГРВ

technische universität dortmund

- FPR = $f_p/(f_p + t_n)$ Probability for false tracks to be labeled as true
- TPR = Recall = $t_p/(t_p + f_n)$ Ability to find all true tracks
- Precision = $t_p/(t_p + f_p)$ Ability to not label false tracks as true
- Comparison to most important quantity: $\chi^2/{\rm ndof}$
- Cut on χ^2/ndof almost as good

• Only using one track per cluster (keeping track with lowest χ^2 /ndof)

- Using Cern Testbeam data from October 2021 (High track densities)
- Telescope precisely aligned Masking: Frequency cut = 20
- Matching Radius: 10 × spatial resolution

Beam

October 2021 TB

Telescope

152

304

469 569

Ó

1067

915

763

- Using only 1k events from real data (Run 1771)
- Simulated data has significantly higher track density → Less false tracks in real data

ML Results

• Clear distinction between tracks with low and high probabilities

- High track density beams in past campaigns had $\approx 2x$ larger track multiplicity
- Applying $\chi^2\text{-}\mathrm{cut}$ yields high precision and recall values
- False tracks have significantly larger χ^2 -values on average
- Using adequate $\chi^2 \text{-} \mathrm{cut}/\mathrm{unique}$ clusters filters out most false tracks

Track reconstruction of high density beams in beam tests possible

- High track density beams in past campaigns had $\approx 2x$ larger track multiplicity
- Applying χ^2 -cut yields high precision and recall values
- False tracks have significantly larger χ^2 -values on average
- Using adequate χ^2 -cut/unique clusters filters out most false tracks

Track reconstruction of high density beams in beam tests possible

Thank You!