Silicon sensor technologies for vertex and tracking detectors at future e⁺e⁻ colliders

BTTB 11 – DESY (Hamburg) April 17, 2023

Dominik Dannheim (CERN)

April 17, 2023

Outline

- Future e⁺e⁻ Higgs Factories
- Vertex and tracker requirements
- Detector concepts
- Technology R&D examples
- Conclusions

Disclaimer:

Not a complete overview; can show only few examples of the many ongoing developments!

e⁺e⁻ Higgs Factory proposals

- European Strategy Update for Particle Physics in 2020:
 - Higgs Factory highest-priority post-LHC project
 - No decision yet about which and where
- Several e⁺e⁻ collider Higgs-Factory proposals:
 - √s ~ 350 GeV 3 TeV
 - Circular / linear collider designs
 - Possible sites in Europe and Asia
 - Time scale ~2035-2040

April 17, 2023

- Physics goals for post-LHC future Lepton Colliders:
 - Precision Higgs / EW / top measurements
 - Direct/indirect BSM searches

- Physics goals for post-LHC future Lepton Colliders:
 - Precision Higgs / EW / top measurements
 - Direct/indirect BSM searches
- Requires excellent vertex/tracking detector performance
 - Flavour tagging (c, b), life-time measurements
 - →Vertex resolution: $\sigma(d0) \sim 5 \oplus 15/(p[GeV]sin^{3/2} \theta) \mu m$

April 17, 2023

- Physics goals for post-LHC future Lepton Colliders:
 - Precision Higgs / EW / top measurements
 - Direct/indirect BSM searches
- Requires excellent vertex/tracking detector performance
 - Flavour tagging (c, b), life-time measurements
 - →Vertex resolution: $\sigma(d0) \sim 5 \oplus 15/(p[GeV]sin^{3/2} \theta) \mu m$
 - Precise measurement of leptonic final states (e.g. recoil-mass measurement in ZH)
 - →Track-momentum: $\sigma(p_T) / p_T^2 \leq 2 \times 10^{-5} \text{ GeV}^{-1}$

Higgs recoil mass reconstruction

April 17, 2023

- Physics goals for post-LHC future Lepton Colliders:
 - Precision Higgs / EW / top measurements
 - Direct/indirect BSM searches
- Requires excellent vertex/tracking detector performance
 - Flavour tagging (c, b), life-time measurements \rightarrow Vertex resolution: $\sigma(d0) \sim 5 \oplus 15/(p[GeV]sin^{3/2} \theta) \mu m$
 - Precise measurement of leptonic final states (e.g. recoil-mass measurement in ZH)
 - →Track-momentum: $\sigma(p_T) / p_T^2 \leq 2 \times 10^{-5} \text{ GeV}^{-1}$
 - Heavy-flavor physics → PID (K/pi separation) by dE/dx, dN/dx and/or 10's of picosecond timing layers
 - Background rejection \rightarrow low-angle coverage, timing
 - Exotics (e.g. highly ionizing or feebly coupled particles)
 - \rightarrow dE/dx, many layers, large radius, precision timing

Higgs production processes

Decay of Heavy Neutral Lepton (1m from IP)

 $e^+e^- \rightarrow vN, N \rightarrow e^-W^{*+}$

April 17, 2023

Higgs recoil mass reconstruction ∧_____300 CLICdp vs = 350 GeV

April 17, 2023

Experimental constraints on vertex/tracker

CLIC backgrounds in tracking region Main experimental constraints in linear lepton colliders: CLIC_ILD incoherent pairs + $\gamma\gamma \rightarrow$ hadrons: silicon hits, no safety factors ш зоо Significant rates of beam-induced backgrounds hits mm^{2.} train (incoherent e⁺e⁻ pairs, $\gamma\gamma$ \rightarrow hadrons): · Constrains layout, granularity, impacts physics Backgrounds concentrated in very short bunch trains 200 High instantaneous hit rates (up to 6 GHz/cm² @ 3 TeV CLIC) → Time-stamping: few ns @ 3 TeV CLIC, ~1-10 µs @ ILC 100 → Fast detector signals / frontend 10⁻² • Low duty cycle: ~20-200 ms gaps between bunch trains -2000 \rightarrow trigger-less readout, pulsed powering -1000 1000 0 2000 z (mm)

10⁻¹

Experimental constraints on vertex/tracker

Main experimental constraints in linear lepton colliders: Significant rates of beam-induced backgrounds (incoherent e⁺e⁻ pairs, γγ→hadrons): Constrains layout, granularity, impacts physics Backgrounds concentrated in very short bunch trains → High instantaneous hit rates (up to 6 GHz/cm² @ 3 TeV CLIC) → Time-stamping: few ns @ 3 TeV CLIC, ~1-10 µs @ ILC → Fast detector signals / frontend Low duty cycle: ~20-200 ms gaps between bunch trains → trigger-less readout, pulsed powering

Main experimental constraints in circular lepton colliders:

- 30 mrad crossing angle of beams, focusing quadrupoles inside det. volume
- → B-field limited to ~2 Tesla
- High rate of physics events (up to 100 kHz, bunch spacing down to 30 ns)
- → Integration time <~1 µs required for occupancy and pile-up (30 ns @ Z-pole)
- → Fast detector frontend and DAQ
- Main backgr.: synchrotron radiation (reduced by shielding), incoh. pairs
- Continuous collisions (100% duty cycle)
- \rightarrow Beam-induced backgrounds more spaced out, less severe impact on detectors,
- → Pulsed powering not possible

Experimental constraints on vertex/tracker

Main experimental constraints in linear lepton colliders: Significant rates of beam-induced backgrounds (incoherent e⁺e⁻ pairs, γγ → hadrons): Constrains layout, granularity, impacts physics Backgrounds concentrated in very short bunch trains → High instantaneous hit rates (up to 6 GHz/cm² @ 3 TeV CLIC) → Time-stamping: few ns @ 3 TeV CLIC, ~1-10 µs @ ILC → Fast detector signals / frontend Low duty cycle: ~20-200 ms gaps between bunch trains → trigger-less readout, pulsed powering

Main experimental constraints in circular lepton colliders:

- 30 mrad crossing angle of beams, focusing quadrupoles inside det. volume
- → B-field limited to ~2 Tesla
- High rate of physics events (up to 100 kHz, bunch spacing down to 30 ns)
- \rightarrow Integration time <~1 µs required for occupancy and pile-up (30 ns @ Z-pole)
- → Fast detector frontend and DAQ
- Main backgr.: synchrotron radiation (reduced by shielding), incoh. pairs
- Continuous collisions (100% duty cycle)
- → Beam-induced backgrounds more spaced out, less severe impact on detectors,
- → Pulsed powering not possible
- Moderate radiation exposure (≥10⁴ below LHC run 1!) for all lepton-collider proposals:
 - NIEL: < 10¹¹ n_{eq}/cm²/y
 - TID: < 1 kGy / year

FCC-ee detector region

Vertex/tracking detector concepts

Collider	ILC		CLIC		FCC-ee			CEPC	
Detector Concept	SiD	ILD	CLICdet	CLD	FCC-ee IDEA	Noble LAr/LKr	CEPC baseline	CEPC IDEA	
B-field [T]	5	4	4	2	2	2	3	2	
Vertex inner radius [mm]	14	14	31	17 → 12	17 → 12	17 → 12	16	16	
Tracker out. radius [m]	1.25	1.8	1.5	2.2	2.0	2.0	1.81	2.05	
Vertex	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	
Tracker	Si-strips	TPC/ Si-strips	Si-pixel	Si-pixel	DC/ Si-strips	DC/Si-strips or Si-pixel	TPC/Si-strips or Si-strips	DC/ Si-strips	
arxiv:1306.6329 arxiv:1812.07337 arXiv:1911.1220 doi.org/10.1140/epist/e2019-900045-4 arXiv:1811.10545 Image: state of the stat									
IDEA UNIT			Noble L via kand via	Ar/LCr		CEPC baseline		FST	

April 17, 2023

Vertex/tracking detector concepts

Collider	ILC		CLIC	FCC-ee			CEPC	
Detector Concept	SiD	ILD	CLICdet	CLD	FCC-ee IDEA	Noble LAr/LKr	CEPC baseline	CEPC IDEA
B-field [T]	5	4	4	2	2	2	3	2
Vertex inner radius [mm]	14	14	31	17 → 12	17 → 12	17 → 12	16	16
Tracker out. radius [m]	1.25	1.8	1.5	2.2	2.0	2.0	1.81	2.05
Vertex	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel
Tracker	Si-strips	TPC/ Si-strips	Si-pixel	Si-pixel	DC/ Si-strips	DC/Si-strips or Si-pixel	TPC/Si-strips or Si-strips	DC/ Si-strips
	<u>arXiv:1306.</u>	<u>6329</u>	<u>arXiv:1812.07337</u>	<u>arXiv:1911.12230</u>	doi.org/10.1140/6	epjst/e2019-900045-4	<u>arXiv:1811</u>	<u>1.10545</u>

All concepts contain silicon-pixel vertex detectors:

- 5-6 barrel and up to 6 endcap layers (in doublets or singlets)
- high single point resolution per layer: $\sigma_{SP} \sim 3 \ \mu m \rightarrow pixel sizes <\sim 25 \ \mu m^2$
- low material budget: ≤ 0.2% X₀ / layer (equivalent to ~200 µm silicon)
 → thin sensors, low-power ASICs for air cooling (~50 mW/cm²)

Vertex/tracking detector concepts

Collider	ILC		CLIC	FCC-ee			CEPC	
Detector Concept	SiD	ILD	CLICdet	CLD	FCC-ee IDEA	Noble LAr/LKr	CEPC baseline	CEPC IDEA
B-field [T]	5	4	4	2	2	2	3	2
Vertex inner radius [mm]	14	14	31	17 → 12	17 → 12	17 → 12	16	16
Tracker out. radius [m]	1.25	1.8	1.5	2.2	2.0	2.0	1.81	2.05
Vertex	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel	Si-pixel
Tracker	Si-strips	TPC/ Si-strips	Si-pixel	Si-pixel	DC/ Si-strips	DC/Si-strips or Si-pixel	TPC/Si-strips or Si-strips	DC/ Si-strips

Silicon-based large-area trackers:

- many layers (barrel/endcap), large outer radius (scaling with B field)
- Large pixels or strip detectors
- \sim 7 µm single-point resolution in bending plane \rightarrow ~25-50 µm R ϕ pitch
- ~1-2% X0 per layer

 \rightarrow low-mass supports + services, low power ~150 mW/cm²

20

40

60

80 θ [deg]

Detector concept optimization / validation

- Detecor concepts are optimised with fast parametric and full Geant-4 simulations;
- All detector concepts fulfil physics requirements in simulations;
 - So far: SiD,ILD,CLICdet,CLD validated in Geant4 based full-detector simulations
 - Other concepts validated in fast simulation, full simulation in progress
- All concepts contain 4π trackers with barrel+endcap → similar to ATLAS, CMS, ALICE3, but different from Belle, ALICE ITS3, Mu3e with their barrel-only inner trackers

Silicon pixel-detector R&D examples

- Diverse R&D performed within various collaborative frameworks (ILD, SiD, CLICdp, IDEA, CERN EP R&D, AIDAinnova, DRD3/7, ...), with strong links to other developments (HL-LHC, Belle II, Mu3e, CBM@FAIR, ...)
- Mostly focusing on conceptual studies + technology demonstrators
- Flexible tools developed, to support the R&D and exploit synergies between the various R&D lines

Silicon pixel-detector R&D examples

- Diverse R&D performed within various collaborative frameworks (ILD, SiD, CLICdp, IDEA, CERN EP R&D, AIDAinnova, DRD3/7, ...), with strong links to other developments (HL-LHC, Belle II, Mu3e, CBM@FAIR, ...)
- Mostly focusing on conceptual studies + technology demonstrators
- → Flexible tools developed, to support the R&D and exploit synergies between the various R&D lines

April 17, 2023

Hybrid pixel detectors

Hybrid pixel detectors

- Target applications: CLIC vertex detector, track-timing layers
- Separate interconnected sensor and readout ASIC layers
- → Factorise R&D on sensors and readout ASICs
- Develop new sensor concepts, e.g.:
 - Thin sensors (50 μm) with large fill factor (active edge)
 - Active / passive CMOS sensors
 - Sensors with enhanced lateral drift (ELAD) for optimal position resolution
 - Sensors with charge amplification (LGAD) for picosecond timing
- Profit from advanced industry technologies for highest ASIC performance (rate, timing)
- Profit from synergy with (HL)-LHC developments, medical imaging, gaseous detector r/o (GridPix)
- Refine and develop new interconnect technologies
- Challenges: material budget, interconnect: cost, minimum pitch

Hybrid pixel detectors

Hybrid pixel detectors

- Target applications: CLIC vertex detector, track-timing layers
- Separate interconnected sensor and readout ASIC layers
- → Factorise R&D on sensors and readout ASICs
- Develop new sensor concepts, e.g.:
 - Thin sensors (50 μ m) with large fill factor (active edge)
 - Active / passive CMOS sensors
 - Sensors with enhanced lateral drift (ELAD) for optimal position resolution
 - Sensors with charge amplification (LGAD) for picosecond timing
- Profit from advanced industry technologies for highest ASIC performance (rate, timing)
- Profit from synergy with (HL)-LHC developments, medical imaging, gaseous detector r/o (GridPix)
- Refine and develop new interconnect technologies
- Challenges: material budget, interconnect: cost, minimum pitch

Efficiency, spatial and timing resolution targets are achieved, but not yet simultaneously with material budget target \rightarrow need advanced sensors / smaller pitch (\rightarrow 28 nm ASICs, also considered for HL-LHC)

Talk by Peter Svihra on CLICpix2 test-beam results on Thursday

19

Fine-pitch hybridization

- Sensor/ASIC interconnect is one of the main challenges for hybrid pixel-detectors:
 - Cost / complexity, material budget, minimum pitch, single-die processing during R&D
- Different interconnect technologies are under study for future-collider detectors

Fine-pitch hybridization

- Sensor/ASIC interconnect is one of the main challenges for hybrid pixel-detectors:
 - Cost / complexity, material budget, minimum pitch, single-die processing during R&D
- · Different interconnect technologies are under study for future-collider detectors

Single-die bump-bonding process developed by IZM:

- pitch 25 μ m, sensor thickness down to 50 μ m
- Support-wafer processing of CLICpix2 ASICs from MPW for UBM and SnAg bump deposition
- Excellent interconnect yield >99.7% observed in laboratory and test-beam measurements

https://arxiv.org/abs/2210.02132

Fine-pitch hybridization

- Sensor/ASIC interconnect is one of the main challenges for hybrid pixel-detectors:
 - Cost / complexity, material budget, minimum pitch, single-die processing during R&D
- Different interconnect technologies are under study for future-collider detectors

Single-die bump-bonding process developed by IZM:

- pitch 25 μm, sensor thickness down to 50 μm
- Support-wafer processing of CLICpix2 ASICs from MPW for UBM and SnAg bump deposition
- Excellent interconnect yield >99.7% observed in laboratory and test-beam measurements

https://arxiv.org/abs/2210.02132

Hybridisation with Anisotropic Conductive Films (ACF):

- Adhesive epoxy film with embedded conductive micro-particles, electrical connection through thermo-mechanical compression
- Ongoing development / optimization of two single-die in-house processes:
 - Chemical Electroless Nickel Immersion Gold (ENIG) deposition for Under Bump Metallization (UBM)
 → uniformity, thickness, edge effects
 - Semi-automatic flip-chip bonding with ACF layer
 → ACF material (particle diameter and density), epoxy
 thickness, bonding profile
- Proof-of-principle results for Timepix3 hybrid assemblies

 high interconnect yield in regions with good UBM
 - \rightarrow ongoing optimization of UBM process for single dies
- ACF also under study for module integration
 → 'easier' use case (large-pitch interconnect)
- Also tests with paste (ACP) and non-conductive (NCP)

ACF bonding w/ conductive micro-particles
Silicon sensor substrate

_0_0_0<u>00000</u>0

Read-out chip substrate

55 um ACF interconnect

https://arxiv.org/abs/2210.13046

0

00

TB pixel effic. Timepix3 ACF ass W0043_L08 Pixel efficiency matrix

April 17, 2023

Silicon sensor technologies for vertex and tracking

Hybrid strip detectors

Hybrid strip detectors:

- Baseline for ILC trackers (also suitable for CLIC outer layers)
- Well-established technology (e.g. HL-LHC)
 - low material + power (sparse readout)
 - large and fast signals (dE/dx)
 - high spatial resolution (charge interpolation) in R/phi direction
 - Advanced sensor concepts (e.g. stitched passive CMOS strip sensors)
 - Challenges: not for high occupancy regions; complex interconnect

Lycoris module

- Lycoris development DESY / SLAC:
 - 320 µm thick SiD sensors, 25 µm strip pitch, 50 µm r/o pitch
 - KPiX r/o ASIC bump-bonded on-sensor \rightarrow high fill factor
 - 7 µm single-point resolution achieved in test beam
 - Test-case: beam telescope for PCMAG@DESY

→ talks by Geetika J. on ATLAS ITk strip upgrade, Younes O. on CMS pixel-strip modules, Naomi A.D. on pass. CMOS strips

Ê Particle -V Track

Silicon-on-Insulator (SOI) / 3D integration

- Silicon-On-Insulator (SOI): r/o electronics on thin low-resistivity electronics wafer, separated from high-resistivity sensor wafer by buried insulation oxide layer
- Thin + fast (fully depleted) "monolithic" sensors
- Challenge: specialized + complex production process (wafer bonding)
- Various developments targeting LC vertex and tracking detectors, e.g.:
 - SOFIST V1 in 200 nm LAPIS SOI 20x20 μ m² pitch, 200 μ m thickness → σ_{SP} ~1.4 μ m
 - Cracow SOI test chip in 200 nm LAPIS SOI process $30x30 \ \mu\text{m}^2$ pitch, 500 μm thickness $\rightarrow \sigma_{\text{SP}} \sim 1.5 \ \mu\text{m}$
 - CPV4 SOI-3D LAPIS SOItest chip (IHEP)
 - IPHC LAPIS SOI test chip (with KEK)
 - 3D developments @ IPHC (with TJ, T-Micro)
- Precision timing not yet demonstrated

https://doi.org/10.1016/j.nima.2018.06.075

<u>Nucl. Instrum. Methods Phys.</u> <u>Res., A 988 (2021) 164897</u>

IPHC double-tier 3D TJ 180

https://indico.cern.ch/event/995633/contributions/ 4259377/attachments/2208714/3738410/LCWS2 021 BESSON vf.pdf

SOI pixel detector readout electronic BOX (insulator) BOX (insulator) sensors

April 17, 2023

Silicon sensor technologies for vertex and tracking

Monolithic CMOS sensors

Monolithic CMOS sensors using (adapted) industry technologies:

- Sensor and readout electronics fully integrated
- Different concepts:
 - Large-collection electrode High-Voltage (HV-CMOS) for large + fast signals, radiation hardness
 - Small-collection-electrode designs for low capacitance, high signal/noise, low power
- Simplified construction (no bonding)
- Challenges: complex non-uniform sensor structures (simulation), interplay sensor/readout, process modifications are foundry dependent / parameters not publicly available

- Many ongoing developments, exploiting progress in semiconductor industry and synergies (HL-LHC, Mu3e, Belle II, CBM@FAIR, ...)
- Trend towards smaller feature sizes (180 nm \rightarrow 65 nm) for improved performance
- Target: vertex/tracker of all Higgs Factory detectors

180 nm High-Voltage CMOS

- Active HV-CMOS sensors with fully integrated readout
- Large collection electrode shielding CMOS circuitry, depleted thin sensors (high-resistivity substrates, >100 V bias), fast frontend
 → large signal (dE/dx), fast, radiation hard
- Studies for CLIC tracker + IDEA outer vertex / tracker
- Same technology initially considered for ATLAS outer tracker and chosen for Mu3e tracker (MuPix8), also under study for LHCb Mighty Tracker upgrade and for DESY beam-telescope timing+trigger planes
- Very good performance observed in test beam:
 - >99.7% efficiency (ATLASpix3)
 - Timing precision ~4 ns (ATLASpix3)
 - Spatial resolution <10 μm (Telepix, 25 μm pitch in R/phi)
 - Power consumption down to 140 mW/cm² (ATLASpix3)
- Plans for dedicated CEPC design in 55 nm HV-CMOS process

Talk by Ryunosuke O'Neil on ATLASpix3 test-beam results this afternoon Talk by Arianna Wintle on Telepix test-beam results on Tuesday morning

April 17, 2023

Silicon sensor technologies for vertex and tracking detectors at future e+e- colliders

26

180 nm small-collection-electrode CMOS (I)

Several ongoing developments targeting Higgs-factory vertex detectors with separate layers for timing (~1 μ s) and position resolution (<=3 μ m)

TaichuPix and JadePix (IHEP et al.) 180nm monolithic sensors

- Standard 180 nm CMOS imaging process with smallcollection electrode + high-resistivity epitaxial layer
- Main target: CEPC vertex detector
- Several prototypes, focusing on different aspects (spatial resolution, data rates, timing, full-scale tests)

MIMOSIS (IPHC)

- 180 nm CMOS imaging process with small-collection electrode + high-resistivity epitaxial layer + modifications for improved performance, including AC coupled electrodes
- Main target CBM@FAIR, in the future: ILC vertex detector
- Evolution of monolithic sensors since 1999, used in various experiments (EUDET telescopes, STAR-PXL, ALICE-ITS2)

April 17, 2023

Silicon sensor technologies for vertex and tracking detectors at future e+e- colliders

n Pricise time stamp Ors High position resolution

Epitaxial layer

Standard 180 nm process (TaichuPix, JadePix)

Edge of depleted

Collection electrode Deep p-well

Low resistivity substrate

Modified 180 nm process (MIMOSIS)

Low-dose deep n-implant

180 nm small-collection-electrode CMOS (II)

And the second designed

CLICTD 180nm monolithic sensor

- Modified 180 nm CMOS imaging process with small-collection electrode
- Target: CLIC tracker
- Innovative sub-pixel segmentation, Channel pitch: (8 x 37.5) μm x 30 μm

- Exploring large parameter space of sensor-design modifications, substrate materials (epitaxial, highresistivity Czochralski) and thicknesses (40-300 µm), in collaboration with ATLAS MALTA / STREAM
- Detailed TCAD/Geant4-based simulations (Allpix²), validated with test-beam data

	Required (CLIC tracker)	Epi	Cz*
Spatial resolution (transv.)	< 7 µm	4.6 µm	4.3 µm
Time resolution*	~ 5 ns	5.2 ns*	4.4 ns*
Efficiency	> 99.7 %	> 99.7 %	> 99.7 %
Material content	< 200 µm	40 - 100 µm	100 µm

IEEE TNS 67.10 (2020): 2263-2272 NIM A 1006 (2021) 0165396 NIM A 1041 (2022) 167413

K. Dort, CERN-THESIS-2022-071

- Excellent performance observed in test-beam measurements and reproduced by simulations
 Validated simulations used for parameter extract
 - Validated simulations used for parameter extraction
 - Results have served as input to sensor optimization, also for 65 nm process

180 nm small-collection-electrode CMOS (II)

And a state of the second

CLICTD 180nm monolithic sensor

- Modified 180 nm CMOS imaging process with small-collection electrode
- Target: CLIC tracker
- Innovative sub-pixel segmentation, Channel pitch: (8 x 37.5) μm x 30 μm

- Exploring large parameter space of sensor-design modifications, substrate materials (epitaxial, highresistivity Czochralski) and thicknesses (40-300 µm), in collaboration with ATLAS MALTA / STREAM
- Detailed TCAD/Geant4-based simulations (Allpix²), validated with test-beam data

	Required (CLIC tracker)	Epi	Cz*	
Spatial resolution (transv.)	< 7 µm	4.6 µm	4.3 µm	
Time resolution*	~ 5 ns	5.2 ns*	4.4 ns*	
Efficiency	> 99.7 %	> 99.7 %	> 99.7 %	
Material content	< 200 µm	40 - 100 µm	100 µm	

IEEE TNS 67.10 (2020): 2263-2272 NIM A 1006 (2021) 0165396 NIM A 1041 (2022) 167413

٠

K. Dort, CERN-THESIS-2022-071

- **CLICTD** sensor layout example Collection electrode Deep p-well Low-dose deep n-implant Epitaxial layer Low resistivity substrate CLICTD cluster size in data and simulation Mean cluster size Data Allpix² + TCAD - 2.0 kΩcm 2.5 Allpix² + TCAD - 4.4 kΩcm Allpix² + TCAD - 5.3 k Ω cm High-resistivity Czochralski wafer (100 μ m) 1.5 1500 2000 2500 500 1000 n
- Excellent performance observed in test-beam measurements and reproduced by simulations
- Validated simulations used for parameter extraction
- Results have served as input to sensor optimization, also for 65 nm process

Threshold [e]

65 nm monolithic CMOS (I)

TPSCo 65 nm ISC CMOS imaging process currently being validated for HEP:

- Collaboration CERN EP R&D, ALICE ITS3, TANGERINE, many institutes + other projects
- Smaller feature size \rightarrow smaller pixels (~10-35 µm), enhanced performance
- Candidate technology for Higgs-Factory vertex/tracker developments
- Encouraging results from first MLR1 test-chip production in 2021:
 - Common submission of technology demonstrators from various groups
 - Successful and ongoing large-scale testing + simulation campaigns
 - Process modifications and sensor-design optimizations proven to work as expected
 - \rightarrow Full efficiency + nanosecond sensor timing achieved for optimized designs, up to 10¹⁵ n_{eq}/cm²

TANGERINE test-beam + simulation talks by Adriana S., Manuel A.D.R.V., Sara R.D.; APTS talk by Giacomo A. on Thursday

April 17, 2023

65 nm monolithic CMOS (II)

- Recent TPSCo 65 nm submission in stitched engineering run ER1:
 - Wafer-scale MOST/MOSS (ALICE ITS3)
 - H2M test-chip (hybrid architecture in monolithic process)
 - Improved versions of several test chips from previous MLR1 submission
- Production completed, dicing of samples ongoing, testing to start in coming weeks
- Outlook on future submissions:
 - Expect strong focus on ALICE ITS3 for ER2 (2024)
 - More focused designs for Higgs factories proposed for MLR2 (~2025), to be developed within ECFA detector R&D collaborations DRD3 and DRD7
 - Longer term prospects: Explore advanced technology features (pinned diodes, special photodiodes, wafer-stacking to 65 nm CMOS readout wafer, ...)

April 17, 2023

R&D

EP

Silicon track-timing detectors

- Several (technology-driven) developments targeting $\sim 20-100$ ps pixelated timing for MIPs
 - Dedicated timing layer or integrated in tracker
- Use cases for precision timing:

CLIC background suppression with nanosecond timing

- enhanced background/backscatter rejection
- 4D tracking ٠
- particle ID by Time-of-Flight for heavy-flavour physics ٠ \rightarrow <30 ps / 2m for K/pi/p separation up to 3 GeV

Not part of the core Higgs-Factory requirements

https://agenda.linearcollider.org/event/8217/contributions/44430

Track-timing detectors: Sensors with internal gain

Silicon Photomultipliers (SiPM):

- Arrays of Single Photon Avalanche Detectors (SPADs)
- High gain (~10⁶) from thin highly doped multiplication layer
- Challenges: fill factor, quenching, readout, rad. hardness
- Several ongoing developments (hybrid / monolithic)

Talks by Stephan Lachnit and Gianpiero Vignola on digital SiPMs on Wednesday

Low Gain Avalanche Detectors (LGAD):

- Signal amplification in thin multiplication layer, $\sim 10x$ gain
- \rightarrow large (4 fC) and fast (<70 ps RMS) MIP signals
- Achieved so far: ~1 mm² cell sizes, ~95% fill factor, rad.hard. >10¹⁵ n_{eq}/cm^2
- In production now for ATLAS and CMS timing layers (6-16 m²)
- Challenges:
 - Hybridisation
 - Resolution limited by time walk, readout ASIC
 - Cell size / fill factor limited by inactive regions between pixels
 → inverted LGADs (iLGAD): continuous multiplication layer on backside

Talks by Oleksii Kurdysh on ATLAS HGTD LGAD test beams on Wednesday and by Peter Svihra on pixelated iLGAD test-beam results on Thursday

SPAD

resistivity p-type substra

P⁺ electrode

https://arxiv.org/pdf/2202.01552.pdf

Track-timing detectors: AC-coupled LGAD

Resistive (AC-coupled) LGAD (RSD)

- Resistive cathode, AC-coupled to r/o pads

 → enhanced position resolution through amplitude interpolation
 → suitable as timing layer in low-occupance regions
- Time resolution of ~25-30 ps achieved
- Position resolution of 80 μm for 450 μm r/o pitch
 - ightarrow significantly better than standard LGAD with same pitch

http://dx.doi.org/10.1016/j.nima.2022.167228 N. Cartiglia et al.

F. Siviero, Trento Workshop 2023 https://indico.cern.ch/event/1223972/contributions/5261996/

Talk by Shirsendu Nanda on AC-LGAD on Thursday

Track-timing detectors: monolithic

FASTPIX technology demonstrator for sub-ns timing

- Modified 180 nm CMOS imaging process, design optimisations for for fast charge collection
- Small hexagonal pixels (8.7 to 20 µm pitch)
- Focus on sensor performance, with limited in-pixel circuitry and not optimised for low power yet
- · Exploring large parameter space of process and design variations
- Time resolution of ~100 ps achieved in test beam at >99% efficiency
- Position resolution ~1 µm for 8.7 µm pitch

FASTPIX 3D TCAD Simulation

T. Kugathasan et al: Monolithic CMOS sensors for sub-nanosecond timing, Hiroshima 2019

- Optimised for precise sensor timing in 3D TCAD simulation studies
- Hexagonal pixel layout:
 - Improved charge collection at pixel edges
 - Reduced number of neighbouring pixels
 - \rightarrow Less charge sharing

M. Munkeret al.

Small-pitch monolithic timing also explored in SiGe BiCMOS process: talk by Théo Moretti on MONOLITH on Thurdsday

Silicon detector integration

Power-pulsing mockup

Outer barrel tracker support structure

Air-flow cooling mockup and simulation

Bent wafer-scale dummy sensor on foam support

- Engineering studies based on calculations, simulations, prototyping \rightarrow confirm feasibility of detector concepts + provide input for realistic performance simulation
- Profit from recent developments in approved projects (Belle II, ALICE ITS3, CMB@FAIR)
- However: not all critical Higgs-Factory requirements are fulfilled by these developments (e.g. barrel/endcap geometries, combination of low material budget and precise timing)
- More focused effort required, but depends also on choice of project (linear vs. circular)

Conclusions + Outlook

- Stringent requirements for Higgs-Factory vertex and tracking detectors:
 - Precision physics needs
 - Environmental conditions
- Several optimized detector concepts with different technology choices are proposed
- Broad silicon R&D profiting from advancements in semiconductor industry + simulations
- Focus on sensor (test-beam) performance; engineering/system aspects not yet fully addressed (many of them depend on accelerator choice)
- Large synergies with approved projects, but no complete overlap of requirements
- Fulfilling all Higgs-Factory requirements simultaneously remains challenging

Thanks to everyone who provided material for this lecture!

Additional Material

April 17, 2023

ACF for module integration

ACF module integration

Larger bonding pads: 80 μ m – few mm diam.

- \rightarrow Similar to industrial ACF usage
- \rightarrow Good interconnect results
- \rightarrow Topology / uniformity of UBM important

Various proof-of-concept projects:

- Beam tests of ALPIDE ACF modules
- Bonding tests with MALTA silicon bridges
- Tests with FCAL LUXE pad sensors

ALPIDE ACF module in DESY TB

ACF on LUXE pad

MALTA module building with silicon bridge and ACF bonding

Cross section for 5kg of pressure.

M. Mager, F. Dachs, Y. Benhammou

ATTRACT FASTPIX

FASTPIX technology demonstrator for sub-ns timing

- Modified 180 nm CMOS imaging process
- 32 mini matrices of hexagonal pixels (8.66 to 20 µm pitch)
- 4 analogue outputs + 4x16 pixels with ToT/ToA
- · Various sensor designs and process options
- Position and ToT encoding via delay lines (asynchr. r/o)

Simulated chip parameters:

S	1 fF	
Equ	11 e ⁻	
Jitt	20 ps	
Power	In pixel source follower	18 µW
	Periphery discriminator	150 μW
	Analog monitoring buffer	20 mW

3D TCAD Simulation

T. Kugathasan et al: Monolithic CMOS sensors for sub-nanosecond timing, Hiroshima 2019

- Optimised for precise sensor timing in 3D TCAD simulation studies
- Hexagonal pixel layout:
 - Improved charge collection at pixel edges
 - Reduced number of neighbouring pixels
 - \rightarrow Less charge sharing

April 17, 2023

Caribou DAQ

Versatile data acquisition system based on programmable hardware

System-on-Chip (SoC) board

- Embedded CPU for DAQ, user interface, operating system (Linux)
- Field programmable gate array (FPGA) for detector control and data processing

Control and Readout (CaR) interface board

- Physical interface from SoC board to detector chip
- Voltage regulators, ADCs, pulse/clock generator

Application-specific detector carrier board

- Only detector chip and passiv components
- Successfully used for ATLASPix, ATLASPix2, ATLASPix3, CLICpix2/C3PD, H35Demo/FEI4, RD50-MPW1

Experimental conditions at CLIC

- CLIC operates with bunch trains, 50 Hz repetition rate
- \rightarrow Low duty cycle
- → Trigger-less readout between trains
- → Allows for power-pulsed operation of detector, to reduce average power consumption
- Collisions within 156 ns bunch trains
- High E-fields lead to Beamstrahlung
- → High rates of beam-induced background particles
- \rightarrow Drives detector design (layout, granularity, timing)

CLICdet detector design optimisation

- Study impact of technology parameters (pixel size, material budget) on detector performance
- Optimization of detector geometry (# layers, placement) for given technology assumptions
- Using fast simulations (LiC detector toy) and Geant-4 based full detector simulations including beam-induced backgrounds
- Main benchmark parameters: impact-parameter and momentum resolution, flavor-tagging performance, reconstruction efficiency

