ARES Linac @ SINBAD

A Precision Tool for Accelerator Science, Technology and Application Developments

BTTB workshop 2023

Florian Burkart for the ARES team

with input from R. Assmann, H. Dinter, A. Eichler, S. Jaster-Merz, J. Kaiser, M. Kellermeier, W. Kuropka, F. Mayet, B. Stacey, O. Stein, T. Vinatier,

Acknowledgements to R. Brinkmann, W. Leemans and the DESY M Technical Groups and FS-LA

HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

ARES – in a nutshell

In operation since 2020

- Normal conducting 160 MeV electron linac for the production of ultra-short electron bunches and diagnostics development
- Novel acceleration techniques / beam manipulation testbed (dielectric laser acceleration)
- Accelerator components R&D and medical applications (VHEE and diagnostics)

ARES in a nutshell

48 m of conventional accelerator technology

Three experimental areas available for users Full flexibility

In UHV, highest precision, best beam control.

In air, highest flexibility.

In low pressure vacuum, FH & M detector test stand.

Already close to nominal parameters

waiting for XBand PolariX TDS.

Parameter	Design parameters	Actual commissioning parameters	
Energy	50 – 160 MeV	20 – 160 MeV	
Charge/pulse	0.5 – 200 pC	0.001 – 280 pC	
Rep. rate	Single pulse @ 50 Hz (*)	50 Hz	
Bunch length	few fs / sub-fs pulse length	20 fs (resolution limited)	
Momentum spread	10 ⁻⁴	10 ⁻⁴ (resolution limited)	
Normalized transverse emittance	105 nm (ASTRA)	102.7 ± 3.8 nm	

*arrival time jitter of <10 fs rms

Unprecedented stability at ARES

High precision temperature and modulator stabilization has resulted in excellent stability and reproducibility:

- 17 μ m rms position jitter (5% of $\sigma_{x/v}$)
- 5.8e-5 rms relative energy stability over 14 hours (average over 3 days: 2.4e-4) still room for improvement.

Mean momentum: 156.21 MeV/c Momentum stability: 9.12 keV/c Relative stability: 5.84e-05

Stable infrastructures (RF power and water cooling)

Excellent engineering

Mean: 39.99992, Std.: 0.00268, N = 10000

+4e1

Gun precision water cooling, Std: 0.0027 deg C

Gun Modulator from Scandinova. Gun RF power calibrated to gradient. Std: 0.016 MV/m

measured over 2.7 h

10000

A unique R&D platform

Test components and beam properties with ultra-short, high brightness beams

Advanced accelerator components R&D

- Vacuum windows
- High stability infrastructures
- Prototyping & 3D printing
- Photocathode Laser development
- .

detector development

State of the art beam controls & diagnostics

- fs synchronization
- Beam tomography studies
- Machine learning towards autonomous accelerators
- Neural network for emittance analysis
- Beam diagnostics in the frame of EIC pathfinder project TWAC

• • •

PolariX - State of the art beam diagnostics

Autonomous accelerators workshop with collaboration partners from KIT

First successful external user experiments

high resolution beam reconstruction and high stability irradiation

ARIES

Accelerator Research and Innovation for **European Science** and Society

EPEL

12 h 8.4.2022

8.4.

Around 4 days continuous beamtime to irradiate a 300 mu thick diamond sample with 2E15 e⁻.

In total: 242 h of beam time for externals

Micro-wirescanner 1 micron thick gold wires

New opportunities – new fields

Started to adapt ARES to the needs of medical research

- Up to 160 MeV high precision electron beams for research & development.
 - Cutting-edge stability of the electron pulse energy
 - Excellent beam control
 - Ideally suited for medical applications (very high electron energy treatment)
- \rightarrow Setting up collaborations and infrastructure.
- Collaboration with UKE Hamburg and University Manchester started to study novel cancer treatment methods (VHEE, FLASH RT)
 - Diagnostics (dose measurements) development.
 - First benchmarking of simulations.
 - Studies on cancer treatments.

The University of Manchester

INNOVATION & TECHNOLOGIE TRANSFER

Experimental station designed for medical research

Mouse phantom for electron CT studies

Worldwide first VHEE experiments with living cells!

Prof. Roger Jones, Hannah Wanstall

Prostate Cell Survival HW, 2023 0.100 $S(D) = \exp(-0.024 D^2 - 0.325 D)$ ∽ **0.010** 0.001 10^{-4} 10 8 **D** (**G**y)

More experiments scheduled for May. → Towards "real" VHEE experiments with bigger animal phantoms

DESY. DESY BTTB workshop 21.04.2023 | ARES Linac | F. Burkart

The University of Manchester

MANCHESTER

S2 Bio lab next to ARES

Used for medical experiments at ARES. 5 min walking distance

Work place in the Bio-Laboratory.

inverse fluorescence microscope.

BSL2 safety workbench equipped with a mini centrifuge, vortexer, vacuum pump,...

Provides all the necessary equipment to cultivate, store, manipulate and analyse biological agents

Michael Köpke

	•			
E-Mail:	Michael Köpke			
Phone:	+49 (0)40 8998 (9)2406			
Location: 25f / 257				
Project leader biological safety, approval of biosafety declarations				

More info:

https://photon-science.desy.de/facilities/on_site_infrastructure/laboratories_technical_infrastructure_shift_service/biology_laboratory_bsl_2/equipment/%20index_eng.html **DESY.** DESY BTTB workshop 21.04.2023 | ARES Linac | F. Burkart

Automation, machine learning, robotics

Ease the user operation & gain efficiency

Robot arm currently located at PETRA III, Installation at ARES foreseen mid 2023.

Visit of the RoboCup team (TU HH).

-serpentine {todayNow}.

dataFileName, 'ba') as fh: urementDatal. fmt

(target, shots) in (zip(todm(target centres, desc='Target'), target pulse shots))

izontal in scan positions[0]: kePositions.append(tuple((horizontal+target[0], vertical+target[1])))

*pos. *shoot()))

en(dataFileName, 'a') as fh

g	the measurement: pulse-mode-shot-serpentine_2023-01-27_10-55-14.log									
0%		s I	0/4 [00:00 , ?it/s]</td <td></td>							
		target:	0%	0	0/105	[00:00 ,</td <td>?it/s]</td>	?it/s]			
		target:	0%	6	0/105	[00:00 ,</td <td>?it/s]</td>	?it/s]			
		target:	0%	0	0/105	[00:00 ,</td <td>?it/s]</td>	?it/s]			
		target:	0%	0	0/105	[00:00 ,</td <td>?it/s]</td>	?it/s]			

Movementscripts for irradiation patterns

DESY. DESY BTTB workshop 21.04.2023 | ARES Linac | F. Burkart

Electron CT experiments

DESY internal collaboration with M-FH-ITT

Simon Spannagel, Paul Schütze (FH)

First proof-of-principle successful But much more homework to do:

- Real tomography
- Optimize charge / dose
- Optimize resolution
- Scan procedure
- ...

See talk from Simon!

Beam time last week...

Summary and Outlook

- ARES is operational and open for internal and external users.
- Portfolio from component R&D, diagnostics development over detector tests to medical applications.
- Started to adapt ARES to the needs of **medical research**.
- Infrastructure is available and strong support from bio safety and radiation protection.
- Worldwide first VHEE experiments with living cells were done!
 - \rightarrow more experiments with water and animal phantoms in preparation.
- Regular beam time for users scheduled- users extremely happy!

Hope to see you at ARES!

Thank you!

Contact

DESY. Deutsches Florian Burkart Elektronen-Synchrotron MPY1 www.desy.de

florian.burkart@desy.de +49-40-8998-3039