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A few words before we start

This lecture is intended to give an overview of important concepts in track
reconstruction
• Have tried to keep the level of mathematics I show explicitly small

• Otherwise I will probably get it wrong ;-)
• Only when it is useful/necessary for the conceptual understanding
• However this mathematics is clearly very important to understand when

implementing or applying any of the methods discussed
• Will provide links to places where complete and rigorous discussions of the

mathematical underpinnings and implementations are discussed
• For example: Strandlie, Frühwirth (2010) is a great overview

• With that out of the way… let’s begin!

Setting the context

https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.82.1419


Page 4

Goals of Track Reconstruction

Why do we want to know about charged particles?
• They are a crucial aspect of a lot of Physics processes we want to study!

• Large fraction of total momentum in collider events carried by charged particles
• Many interesting final states are composed of charged particles
• photons convert to charged e+/e- in material
• etc...

• They have very useful properties as a “laboratory tool”
• They can be steered by a magnetic field
• Their properties can be determined via non-destructive measurements

The “Why” before the “How”...

of particular relevance for the topics of this workshop
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Goals of Track Reconstruction

What is it do we want to know about charged particles?
• Essentially we want to know their trajectory
• No magnetic field => Straight line!

• Can compare where we expect them to go with where they actually go
• Do our measurements match our predictions?

• With (typically solenoidal, uniform along z) magnetic field => Helix!
• From curvature of helix, we can infer the momentum

• Measure the “Impact Parameter” with respect to a specific reference plane
• Also other, more specialized measurements possible depending on choice of

detector design and technology

The “What” before the “How”...
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Track Parameterization

Need a way to encode the information
about our trajectories
• This is our “Track Parameterization” - a

typical parameterization with respect to a
reference surface could be:
(d0, z0, ϕ, 𝛉, q/p)

• This is a special version of this
parameterization expressed on perigee
surface (closest approach)
• On this surface, first two parameters are

transverse (d0) and longitudinal (z0)
Impact Parameters

• Can also express at any “generic” surface
• First two parameters become simply lx

and ly - local coordinates on that surface

How to describe our Tracks

ϕ = azimuthal angle
𝛉 = polar angle
q/p = curvature*
*choose this rather than p itself, as errors
are gaussian

Figure by A. Salzburger
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Track Parameterization
How to describe our Tracks

Need a way to encode the information about our trajectories
• Requiring knowledge about our surfaces is not always the most convenient…
• It is also possible to derive track parameterizations based on Curvilinear

Coordinates - these are independent of any surface definition
• For instance, (x, y, z, pz, py, pz)

• Typical just used as helpful “intermediate” format
• Measurements in general will be with respect to a surface of some sort
• Therefore predictions or expressions of “representative” track parameters are also

typically in the same form
• NB: This is assuming 3D tracking information - can of course be simplified for 2D

case!
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Momentum Resolution
Resolution:
δpT/pT ∝ δs/BL2 x pT

s is “sagitta”, deviation from straight
trajectory
pT is momentum in transverse
(bending) plane
B is magnetic field
From equations of motion of
particle in Uniform B field:
pT [GeV/c] = 0.3 x B [T] x R [m]
R ≅ L2/2s
This gives us:
δpT/pT = 8pT /0.3BL2 x δs

From P. Wells

https://indico.cern.ch/event/96989/contributions/2124495/attachments/1114189/1589705/WellsTracking.pdf
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Impact Parameter Resolution

In a simplified system with 2
measurements, with
uncertainties δ:
δd02 = (r12δ22 + r22δ12)/(r2 - r1)2

Both this and momentum
resolution become more
complicated when faced with
reality…
We’ll revisit them later!

adapted from P. Wells

https://indico.cern.ch/event/96989/contributions/2124495/attachments/1114189/1589705/WellsTracking.pdf
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Multiple Scattering and Material Effects
Dealing with physical reality...
Particles traversing distance x/X0 through a
material will undergo multiple Rutherford
scattering-type interactions
• Random, stochastic process

• Angular deflection of outgoing particle, θMS,
follows an approximately gaussian distribution

• Non-gaussian tail contribution ~2%, follows
approximately sin-4(θMS/2) distribution

• Multiple Scattering contributions depends
upon material properties and particle
momentum (minimized at large momentum)

θMS = (13.6 MeV/βcp) z √(x/X0) [1 + 0.0038ln(x/X0)]

X0 is “radiation length”,
characteristic property
of material
Silicon has X0 9.37 cm
Lead has X0 0.5612 cm

adapted from P. Wells

https://indico.cern.ch/event/96989/contributions/2124495/attachments/1114189/1589705/WellsTracking.pdf


Data Preparation
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Measurements
What Type of Inputs can we use?
May have to deal with a few typical types of
measurement
• Spatial measurements from highly-segmented

semiconductor detectors
• Segmentation in 1D (microstrip-type detectors) or

2D (pixel-type detectors)
• Typically few measurements per track

• Drift time measurements from gaseous
detector
• Converted into distance of particle from “sense

wire” - includes left/right ambiguity
• Typically many measurements per track

https://www.mpp.mpg.de/fileadmin/_processed_/a/4/csm_Wafer-
Pixeldetektor_ae68fbcfa0.jpg

https://www.fz-
juelich.de/ikp/EN/Forschung/ExperimentelleEntwicklungen/Driftrohr
Kammern/DriftrohrKammern.html
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Clustering
From semiconductor detector outputs to tracking inputs

Single particle contribute charge to
multiple detector channels
• Typically group channels with

above-threshold charge deposits as
a cluster
• Effects of dead, noisy pixels, lorentz

angles, must be accounted for
• Cluster information provides incident position estimate and uncertainties

• Single channel resolution given by pitch/√12
• Information per channel can be digital (“on/off”) or analogue (e.g. signal time over

threshold)
• The latter provides more information that can be used for calculating cluster “centre of

gravity” => better position resolution

From “A neural network clustering algorithm for the ATLAS silicon pixel
detector”, ATLAS Collaboration, 2014

https://iopscience.iop.org/article/10.1088/1748-0221/9/09/P09009
https://iopscience.iop.org/article/10.1088/1748-0221/9/09/P09009
https://iopscience.iop.org/article/10.1088/1748-0221/9/09/P09009
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Further Data Preparation Techniques
Making the most of detector information

Stereo Angle Pairs
• Small rotation between pairs of strip

sensors can improve precision in “long”
direction
• correlate which strip pair were hit
• Caveat: Increasing stereo angle increases

precision and rate of “Ghost Hits”
(degenerate combinations)

Drift Circles
• Need to calibrate arrival times of charges to

provide wire-to-track distance
• Total amount of charge can also be used in

some cases for particle Identification
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Measurement Model
How to represent our measurements mathematically

mk = hk(qk) + 𝞬k

measurement
track dependence model (e.g. on
incident angle, etc)
track parameters (see later...)
error/noise term

Hk = δmk / δqk
Jacobian of track dependence
model

Gk
measurement covariance

after M. Elsing

https://indico.cern.ch/event/847626/contributions/3585799/attachments/1926286/3192537/PascalLecture.pdf


Finding Tracks
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Let’s Start Simple
A toy example

In a trivial example, looks very easy to
find a track… you need:
• Initial starting parameters
• Knowledge about detector layout

• Where (e.g. which layer) to look for
first/next hit

• How much material is passed through
• A way to calculate Track Parameters

and their uncertainties on the next
surface
• Often referred to as “Track Model”

• Simple! Well, let’s see...
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Let’s Start Simple
A toy example

Once things start getting more
realistic...
• Initial starting parameters

• Different choice of starting parameters
can lead down completely different path

• (Even in very low multiplicity scenarios
can have noise, secondaries, etc)

• Should aim to minimize attempts made
down “wrong” paths

• Use possible additional constraints from
knowledge of physics, detector, initial
particle distributions, etc to make sensible
choices
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Let’s Start Simple
A toy example

Once things start getting more
realistic...

• Knowledge about detector layout
• Where (e.g. which layer) to look for

first/next hit
• Different technologies per layer, barrel or

endcap orientation (and transition
between them), overlaps, tilt angles...

• How much material is passed through
• Very large local variations possible; need

a way to store and retrieve information
with appropriate granularity
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Let’s Start Simple
A toy example

Once things start getting more
realistic...

• A way to calculate Track Parameters
and their uncertainties on the next
surface
• Often referred to as “Track Model”
• With non-constant magnetic field, no

analytic solution! Need to use numerical
methods.
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Let’s Start Simple
A toy example

Once things start getting more
realistic...

• Simple! Well, let’s see…
• Not so much!
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Pattern Recognition
How to separate the “real” tracks from “everything else”

• In telescope and test beam scenarios, typically far fewer particles to be
considered at a given time
• This can mean there will be fewer candidates found, and fewer chances for

combinatorial “fake tracks”
• Less prohibitive to simply reconstruct all possible tracks and take “the best ones” at

the end

A realistic picture starts to look much
more tricky...
• Compared to a toy situation, a hadron

collider type event is very different
• By eye, seems impossible to find

tracks in it...
• Fortunately, we have algorithms that

can do this very well!

???
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Local Approaches
“Following” a Track
“Seeding” the track
• Typical first step is to create track

seeds
• Group small number of compatible

measurements
• Provides initial rough estimate of track

parameters
• Typically many more seeds than

final tracks expected
• Use knowledge about detector

geometry, event topology, etc to reject
“impossible” combinations as early as
possible

• In high multiplicity situations, book-
keeping of hits may be needed
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Local Approaches
“Following” a Track

Next step: Collecting compatible measurements along possible trajectories
• General procedure - look on next layer for hits

• E.g. “hit road” based approach, propagate track parameters onto possible surfaces
and check for hits

• Various ways of deciding what is a “compatible” hit (is it on the expected sensor, does
it pass a 𝝌2 criteria, etc…)

• May be multiple possibilities for compatible hits!
• In this case, can either take “best one” or do a “combinatorial” approach - branch your

track, and collect further hits according to both options
• In latter case, will have more options later to choose between, but more “costly”

• Keep going until you reach the end of your detector
• Congratulations, you now have a candidate track!
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Kalman Filter
Progressive State Updates

Commonly-used method for estimating states of dynamic systems
• Combines predictions (based on underlying model and knowledge of prior

state) and measurements to provide more accurate state estimate than either
individually - Original paper by R. E. Kalman from 1960
• Predictions alone accumulate increasingly large uncertainties due to stochastic

processes along trajectory (multiple scattering, etc)
• Measurements alone are “noisy”

• Nice feature: Need only the state estimate at prior step to have full
information needed for the next step!
• No need to keep track of full history; it is “encoded” in the state estimate plus its

covariance
• “Real world” example: Combine telemetry data on thrust with GPS position to

estimate the true position and velocity of a projectile

https://www.cs.unc.edu/~welch/kalman/media/pdf/Kalman1960.pdf
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Kalman Filter
Progressive State Updates

qk = fk|i(qi)
track states
track model

Ck = Fk|iCiFk|iT
track states covariance
track model Jacobian

Fk|i= δqk/ δqi

See: P. Billoir, R. Frühwirth

Technically showing here an
*Extended* Kalman Filter since by
using the Jacobian we are using a
Taylor expansion to linearise our
track model, which often has non-
linear components...

Without this we would not have
gaussian distributions, and our KF
procedure does not work!

https://www.sciencedirect.com/science/article/pii/0168900287908874
https://www.sciencedirect.com/science/article/pii/0167508784902746?via%3Dihub
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Kalman Filter
Progressive State Updates

qk = fk|i(qi)
track states
track model

Ck = Fk|iCiFk|iT
track states covariance
track model Jacobian

Fk|i= δqk/ δqi

propagate prior state (qk-1)
onto next detector (k):
qk|k-1 = fk|k-1(qk-1)
Ck|k-1= Fk|k-1Ck-1Fk|k-1T + Qk
Qk is stochastic contribution
(e.g. from Multiple Scattering)

See: P. Billoir, R. Frühwirth

https://www.sciencedirect.com/science/article/pii/0168900287908874
https://www.sciencedirect.com/science/article/pii/0167508784902746?via%3Dihub
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Kalman Filter
Progressive State Updates

qk = fk|i(qi)
track states
track model

Ck = Fk|iCiFk|iT
track states covariance
track model Jacobian

Fk|i= δqk/ δqi

Gain matrix defines the combination
of prediction with measurement:
Kk = Ck|k-1HkT(Gk + HkCk|k-1HkT)-1

(Could be replaced by weighted mean)

See: P. Billoir, R. Frühwirth

https://www.sciencedirect.com/science/article/pii/0168900287908874
https://www.sciencedirect.com/science/article/pii/0167508784902746?via%3Dihub
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Kalman Filter
Progressive State Updates

qk = fk|i(qi)
track states
track model

Ck = Fk|iCiFk|iT
track states covariance
track model Jacobian

Fk|i= δqk/ δqi

Update prediction to get final
parameter estimate qk and Ck

qk = qk|k-1+ Kk[mk - hk(qk|k-1)]
Ck = (I - KkHk)Ck|k-1

Repeat the procedure starting from qk
to get get qk+1, and so on...

See: P. Billoir, R. Frühwirth

https://www.sciencedirect.com/science/article/pii/0168900287908874
https://www.sciencedirect.com/science/article/pii/0167508784902746?via%3Dihub
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Propagating Parameters
Track Model and Extrapolation

• When extrapolating track parameters must account for multiple scattering
effects on particle trajectory (increases direction uncertainty), but also energy
loss due to material interactions (impacts curvature)
• Energy loss according to Bethe formula

• Must also account for magnetic field
• dp/dt = qv x B
• For a uniform field, simply use helix model
• As mentioned earlier, no analytical solution in case of

non-constant B-field
• Estimate typically obtained via Runge-Kutta methods

(or Runge-Kutta-Nyström – see E. Lund et al (2009))
• Can be computationally expensive! Step size needs to

be set carefully to an appropriate value for the
application and conditions

from wikipedia (HilberTraum)

https://iopscience.iop.org/article/10.1088/1748-0221/4/04/P04001
https://commons.wikimedia.org/w/index.php?curid=64366870
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Global Approaches
Looking at the whole picture...

Can use similar approaches to “feature extraction” in image processing
• Transform measurements into a “parameter space” allowing parameters to be

found by simple maxima search (e.g. with histogramming methods)
• e.g. Hough Transform, where hits become straight lines in u,v space
• Initially developed for extracting tracks from bubble chamber images
u = x/(x2+y2) v = y/(x2+y2) => v = -(x/y)u + (x2+y2/2y)

• Particularly well suited for 2D tracking with many measurements
• E.g. drift tube based detectors
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Global Approaches
Looking at the whole picture...

from: Machine Analysis of Bubble Chamber Pictures
P.V.C. Hough (Michigan U.)
Sep 1959

http://inspirehep.net/search?cc=Institutions&p=institution:%22Michigan%20U.%22&ln=en
http://inspirehep.net/author/profile/Hough%2C%20P.V.C.?recid=919922&ln=en


Fitting Tracks



Page 34

Fitting Tracks
Now that you’ve found it...

Finding the the measurements belonging to a track is not the end of the
story!
• May be advantageous to make simplifications during track finding

• E.g. to allow early rejection for anything that is “not interesting” or not meeting some
basic quality requirements

• May need to resolve “competing claims” on measurements between multiple
track candidates before final hit content is known

• In such cases, a further step (generally referred to as fitting) is required to give
best estimate of track parameters
• Both at each measurement surface…
• ...and also at any representative/defining surface, such as the Perigee
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Kalman-Based Fit
Already half-way there….

Our Kalman formalism already provides us
with the framework for a track fit
• Due to progressive nature of process, only

final step has “full” track information
encoded in its state qn

• Therefore, a further stage going back along
the track is needed to give best possible
estimate at each surface

• This backwards stage is referred to as the
smoothing step

qk|n = qk+ Ak(qk+1|n - qk+1|k)
Ck|n = Ck - Ak(Ck+1|k - Ck+1|k)AkT

Ak = CkFTk+1|k(Ck+1|k)-1

See: P. Billoir, R. Frühwirth

https://www.sciencedirect.com/science/article/pii/0168900287908874
https://www.sciencedirect.com/science/article/pii/0167508784902746?via%3Dihub
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Least-Squares Fit
Fitting based on 𝜒2 minimization

Another typical fitting approach which is frequently used
• Based on minimization of 𝜒2 function defined by track residuals and

their uncertainties
𝜒2 = ∑k rkT GK-1 rk rk = mk - dk(p)
“residuals”, i.e. difference between extrapolated local position
and measurement
p represents defining (“global”) track parameters;
dk product of hk and all prior fiji

• Aim to find set of track parameters which
minimizes 𝜒2

d𝜒2/dp = 0 with p = p0 + δp
p0 is initial parameter estimate

after M. Elsing
See: P. Avery, also ATLAS implementation
(Global 𝜒2Fitter)

https://indico.cern.ch/event/847626/contributions/3585799/attachments/1926286/3192537/PascalLecture.pdf
https://inspirehep.net/files/583fb1d2356cc6b7449ac22c5b07ccee
http://www.phys.ufl.edu/~avery/fitting/fitting1.pdf
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Least-Squares Fit
Fitting based on 𝜒2 minimization

Another typical fitting approach which is frequently used
• Linearize the 𝜒2 function by performing a Taylor expansion and

dropping terms beyond 1st order

dk(p0 + δp) → dk(p0) + Dkδp
Jacobian Dk is product of Hk and Fi|j jacobians

• Rewriting the 𝜒2 minimization condition, we
are left with the following to solve:

δp = (∑kDkTGk-1Dk)-1(∑kDkTGk-1rk|p0)
First term directly gives us covariance of δp

after M. Elsing
See: P. Avery, also ATLAS implementation
(Global 𝜒2Fitter)

https://indico.cern.ch/event/847626/contributions/3585799/attachments/1926286/3192537/PascalLecture.pdf
https://inspirehep.net/files/583fb1d2356cc6b7449ac22c5b07ccee
http://www.phys.ufl.edu/~avery/fitting/fitting1.pdf
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Least-Squares Fit
Fitting based on 𝜒2 minimization
Inclusion of Material Effects
• For small material effects, these can simply be included as additional

uncertainties in fk|i
• However, can also add an explicit term for scattering angles to the 𝜒2

function
• Can be useful if there are e.g large material structures to account for

• Add two additional parameters to be fit on
each material surface (need not be a sensor)

𝜒2 = ∑k rkT GK-1 rk + ∑iδθiTQi-1δθi

rk = mk - dk(p, δθi)
Qi is simply multiple scattering in x/X0

after M. Elsing
See: P. Avery, also ATLAS implementation
(Global 𝜒2Fitter)

https://indico.cern.ch/event/847626/contributions/3585799/attachments/1926286/3192537/PascalLecture.pdf
https://inspirehep.net/files/583fb1d2356cc6b7449ac22c5b07ccee
http://www.phys.ufl.edu/~avery/fitting/fitting1.pdf
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General Broken Lines
Fitting based on 𝜒2 minimization
A commonly-used fitting framework in the context of this workshop
• GBL also uses a similar formalism to the previous slide

• Uses “thin scatterer” states which contribute to offsets kiwhich are considered
as part of overall function to minimize (triplet of scatterers defines a “kink”)
• Multiple “thin scatterers” can be used to describe a “thick scatterer”
• Python, Fortran and C++ implementations (plus documentation) available here on

GitHub
• Integrated directly in Corryvreckan

See: General Broken Lines as advanced
track fitting method (C. Kleinwort, 2012)

EUTelescope Workshop talk by C. Kleinwort (2013)

https://github.com/GeneralBrokenLines/GeneralBrokenLines
https://github.com/GeneralBrokenLines/GeneralBrokenLines
https://gitlab.cern.ch/corryvreckan/corryvreckan/-/tree/master/3rdparty/GeneralBrokenLines
https://arxiv.org/pdf/1201.4320.pdf
https://arxiv.org/pdf/1201.4320.pdf
https://arxiv.org/pdf/1201.4320.pdf
https://indico.desy.de/event/7597/contributions/83246/attachments/55984/68113/eut_130326_gbl.pdf
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Going further with fitting
Beyond the “basics”

Several additional techniques and optimizations can improve fit results
• Outlier removal

• Initial candidate may include some erroneous measurements from e.g. noise or
pattern recognition errors

• Procedures can be put in place (based on e.g. contribution to overall 𝜒2) for these to
marked as “outliers” such that they don’t bias final track parameters

• Dedicated electron energy loss treatment to account for bremsstrahlung
energy losses
• Allow for larger uncertainties in track model to account for curvature changes
• Model non-gaussian energy loss from Bethe-Heitler formula by explicitly including

multiple gaussian contributions => Kalman Filter becomes Gaussian Sum Filter (see
W. Adam et al, CHEP 2003)

• Care needed: Not always optimal for other particle types, therefore best combined
with additional information allowing identification of electron candidates

https://arxiv.org/pdf/physics/0306087.pdf
https://arxiv.org/pdf/physics/0306087.pdf


Reconstructing
Vertices
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Finding Vertices
Looking for the common origin

Reconstruction of primary and secondary vertices important for
understanding underlying physics processes
• In collider experiments, often multiple interactions within single “Event”

(referred to as pile-up interactions)
• Understanding which tracks originate from a given interaction/process requires

reconstruction of the vertex
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Finding Vertices
Looking for the common origin

Reconstruction of primary and secondary vertices important for
understanding underlying physics processes
• Not only reconstruction of “Primary” interaction vertices, but also “Secondary”

vertices important
• Decays in flight of particles with significant lifetimes
• Interactions with detector material; photon conversions or hadronic interactions

From Real-time b-jet identification in ATLAS
(ATLAS, 2014)

https://iopscience.iop.org/article/10.1088/1742-6596/513/1/012004/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/513/1/012004/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/513/1/012004/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/513/1/012004/pdf
https://iopscience.iop.org/article/10.1088/1742-6596/513/1/012004/pdf
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Vertex Reconstruction Techniques
What approaches are available

In general two step procedure similar to tracking - Finding and Fitting
• Finding: “Decide which tracks come from a common origin”

• May use just simple geometrical methods, or also include kinematic
information/constraints

• Fitting: “Determining the position of vertex and its covariance”
• Essentially find a vertex solution that minimizes track-to-vertex distance for our track

selection
• Like with track reconstruction, boundary between steps not always clear

• Vertex reconstruction will typically implemented as either “fitting through finding” or
“finding through fitting”

• Two widely-used techniques applied to this problem
• Billoir Fit and Kalman Fit
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Vertex Fitting
Billoir Vs Kalman

• Assuming linearity of dependence on V & pk (within tracking errors), making first-order
approximations, and exploiting matrix structure allows problem to be reduced to
(relatively) simple set of matrices
• Still typically requires an iterative procedure to arrive at solution

• Can be simplified further by dropping correlations between vertex position and momenta

from “Fast vertex fitting with a local parametrization of tracks”,
Billoir, Qian, 1992

W = C-1

𝜒2 = ∑k ΔqkT CK-1 Δqk

Δqk = qk - f(V,pk)

• Billoir approach is based on least-squares technique
like we saw for fitting tracks
• Add explicit dependence on the vertex position

(V) and the track momenta at the vertex (pk) to
the track parameters
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Vertex Fitting
Billoir Vs Kalman

from “Fast vertex fitting with a local parametrization of tracks”,
Billoir, Qian, 1992

W = C-1
• Kalman approach uses our familiar formalism from

earlier
• State updates q → qk+1 now represent re-

evaluation of parameters after addition of new
track to the vertex

• “Smoother” step corresponds to re-calculating
momenta with final vertex position Vn

• For the “Finding”, tracks contributing too much to the vertex 𝝌2 can be dealt with by...
• ...simply removing them from the pool of tracks to consider (potentially freed up for

use by later vertices)
• ... applying a weight to all tracks in the fit dependent on e.g. their 𝝌2 contribution

(can be associated to more than one vertex potentially)
• Latter approach lends itself to “Adaptive” procedure with e.g. Simulated Annealing



From Theory to Reality
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Detector Alignment
Finding where your sensors really are...
Knowledge of precise location of sensitive elements can be important for
achieving necessary track reconstruction performance
• Even very high placement accuracy can lead to displacements with respect to

nominal sensor positions which track reconstruction is sensitive to
• Can degrade resolution on parameters, or even lead to biases
• Surveys, optical alignment systems can help to understand these “misalignments”
• Can also use the tracks themselves to understand this

Before After
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Track-based Alignment
Back to fitting and residual minimization...

Can use an extension of our least-squares track fit to understand
misalignments
• Each alignable object typically has 6 alignment parameters; 3 rotational (Ri)

and 3 translational (Ti) corresponding to physical degrees of freedom
• Minimize a 𝝌2 that depends not only on track parameters p, but also alignment

parameters 𝛼 (global𝝌2 alignment)
• E.g. include a dependence on 𝛼 in residual definition

• Solving using methods discussed previously now potentially involves very
large matrices and a number of iterations
• Computationally expensive; most efficient method may depend on the details of your

detector
• Possible to trade off time in matrix inversion against more iterations by removing

dependence on p in d/d𝛼 (local 𝝌2 alignment)

After S. Marti

https://idpasc.lip.pt/uploads/talk/file/71/Tracking-Vertexing-Slides.pdf


Page 50

Constrained Alignment
Using external knowledge to improve our alignment further

Some classes of misalignments may not be resolved by the methods on the
previous slide, e.g. so-called “Weak Modes”
• Consider a correlated misalignment between detector layers

• Can give a good fit 𝝌2 for a wrong trajectory by preserving helical track model
• Need to include external constraints to identify such effects

• Constraints can be added to function 𝝌2 e.g. by considering it as a “pseudo-
measurement”

• Various types of constraints possible
• From independent detector system

measurements (e.g. calorimeter energy)
• From physics (e.g. mass constraints on

resonance decay systems like J/Ѱ or Z)

After S. Marti

From S. Marti

https://idpasc.lip.pt/uploads/talk/file/71/Tracking-Vertexing-Slides.pdf
https://idpasc.lip.pt/uploads/talk/file/71/Tracking-Vertexing-Slides.pdf
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Understanding Detector Material
Representing the detector material
Describing detector material with appropriate accuracy important for good
performance (both track precision and technical aspects)
• A highly detailed Geant4 (or similar) simulation with full best-knowledge

material description is normally available for producing Monte Carlo samples
• Using this for providing material in track propagation typically impractical
• Simplified material description needed per surface known to track reconstruction
• E.g. “observed” x/X0 distribution binned in η/𝜙 per layer

ATL-SOFT-PUB-2007-004

https://cds.cern.ch/record/1038098?ln=en
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Understanding Detector Material
“Weighing” the detector with tracks
Typically don’t know how much material is
really in a detector once it is built...
• Initial detailed simulation typically based on

best engineering estimates
• This will often underestimate the true picture,

from small effects like extra cable lengths curling
up, to larger contributions simply forgotten...

• Reconstructing secondary vertices from
photon conversion and hadronic interactions
allows this to be studied in detail
• Compare number and position between data and

Monte Carlo
• Can use these comparisons to feed back into

simulation model and improve the description
JINST 11 (2016) P11020

https://iopscience.iop.org/article/10.1088/1748-0221/11/11/P11020/
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Coping with Pile-up
Mo’ Data Mo’ Problems...
Intensity frontier pushing towards ever-higher instantaneous luminosities
• More particles in the detector at one time makes track reconstruction trickier

and more time-consuming
• More genuine tracks to process, plus combinatorial challenge in pattern recognition

results in super-linear scaling in both number of reconstructed tracks and CPU time
• Keeping excellent performance while sticking within CPU, memory, and disk

space budgets is a big challenge for future collider experiments
• New and fresh ideas very welcome! Maybe you have some?

ATLAS IDTR-2017-007 ATL-PHYS-PUB-2019-041

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PLOTS/IDTR-2017-007/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2019-041/


Thank you for your
attention!
Any questions?
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Links

• Lecture By Salva Marti-Garcia
• Lecture by Pippa Wells
• Lecture by Markus Elsing
• Lecture Series by Wouter Hulsbergen
• Document by Are Strandlie and Rudolph Frühwirth
• (last two in particular are excellent references for all of the full mathematical

treatments)
• ACTS: A Common Tracking Software

• “An experiment-independent toolkit for (charged) particle track reconstruction in
(high energy) physics experiments implemented in modern C++”

• Available on GitHub

Reference material used in producing these slides

http://ific.uv.es/~nebot/IDPASC/Material/Tracking-Vertexing/Tracking-Vertexing-Slides.pdf
https://indico.cern.ch/event/96989/contributions/2124495/attachments/1114189/1589705/WellsTracking.pdf
https://indico.cern.ch/event/847626/contributions/3585799/attachments/1926286/3192537/PascalLecture.pdf
https://www.nikhef.nl/~wouterh/topicallectures/TrackingAndVertexing/
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.82.1419
https://github.com/acts-project/acts

