

Katja Krüger (DESY) for the CALICE Collaboration

BTTB11 19 April 2023

Outline

- Motivation: Highly granular calorimeters
- CALICE technologies
- Recent beam tests of technological prototypes

• Summary

Motivation

Calorimeters for Particle Flow Algorithms

Design considerations

- Goal at Higgs Factories: want to distinguish Z → jet jet from W → jet jet
- Requires jet energy resolution of $\sigma(E)/E \approx 3-4\%$
- Can be reached by particle flow algorithms (PFA)
 - For each particle within a jet: use the subdetector with optimal resolution
 - Need to avoid double counting and wrong merging
- Need an imaging calorimeter!
- Requirements for the calorimeter:
 - Highly granular
 - Reconstruction of neutral particles: good energy resolution
 - Calorimeter has to be within magnet coil: very compact

CALICE Technologies

Technologies for Particle Flow Calorimeters

Electromagnetic Calorimeter Concepts

Technology Options

1024 pixel

CALICE SIECAL

Scintillator

45mm	(center dimple)

CALICE SciECAL

Hadronic Calorimeter Concepts

Technology Options

Scintillator tiles read out by SiPMs 3*3 cm² tiles **Resistive Plate Chamber**: local gas amplification between 2 glass plates with high voltage

1*1 cm² readout pads

readout: 12 bit (analog)

readout: 1 bit (digital)

readout: 2 bit (semi-digital)

CALICE AHCAL

CALICE DHCAL

CALICE SDHCAL

CALICE calorimeter concepts beyond Higgs Factories

Highly granular calorimeter concepts (also) for other applications

EPICAL2: Digital silicon EM calorimeter

- Based on ALPIDE CMOS MAPS sensor
 - ~30x30 µm² pixels
 - Developed for ALICE ITS upgrade
- 24 layers
- 3x3 cm² cross section
- Tested with electron beam at DESY
- Studied in context of ALICE FoCal-E (Forward EM-Calo)
 - W absorber + Si-sensors
 - Low-granularity layers Si-pads (~1x1 cm²) energy measurement
 - High-granularity layers CMOS MAPS (~30x30 µm²) two-shower separation

CALICE calorimeter concepts beyond Higgs Factories

Highly granular calorimeter concepts for other applications

ADRIANO2: Highly granular dual readout tile calorimeter

- Dual Readout idea: use scintillator and Cerenkov signal to distinguish EM and HAD fractions in a shower and for particle ID
- Status: systematic study of tile materials, sizes, coating/wrapping, dimple configurations in the lab and in beam tests
- Studied in the context of REDTOP (proposed for rare eta decays)

Recent Beam Tests of Technological Prototypes

Beam Tests of highly granular calorimeters

Challenges

- Calorimeter prototypes are large
 - Need to be large enough to contain the corresponding type of shower
 - ~1m³ with a weight several tons for hadron calorimeters
 - Need to scan large areas -> wide beams and/or big moveable tables
- Need several particle species for complete characterization
 - Muons as MIPs for signal equalization/calibration
 - Electrons
 - Energy resolution, shower shapes, ... for EM showers
 - EM showers are well-known -> validation of simulation
 - Hadrons
 - Energy resolution, shower shapes, ... for HAD showers
 - Differences in between hadron species: pions, kaons, protons, ...
 - Clean beams and/or particle ID by Cerenkov detectors (or similar) are essential

CALICE Prototypes

Strategy

- 1st step: Demonstrate performance with physics prototypes
- 2nd step: Demonstrate scalability with technological prototypes: ongoing

SciW ECAL

AHCAL

SDHCAL

SDHCAL testbeam

2 weeks of beam test at CERN SPS: 14 - 28 September 2022

- Observation in previous beam tests: (slightly) different reconstructed hadron energy in two beam lines at SPS, which have different mixtures of pions and protons
- Goal for this testbeam: use Cherenkov detectors to separate pions and protons
- Expectation: pion showers have higher EM fraction and more hits
- Investigate calorimeter quantities that might allow pion/proton distinction

SDHCAL testbeam

2 weeks of beam test at CERN SPS: 14 - 28 September 2022

- Observation in previc • energy in two beam I protons
- Goal for this testbear •
- Expectation: pion she •
- Investigate calorimet

90

CALICE SDHCAL

Combined SiW ECAL + AHCAL testbeam

2 weeks of beam test in H2 at CERN SPS: 8-22 June 2022

- First common running of technological prototypes of SiW ECAL and scintillator AHCAL
 - 15-layer ECAL prototype, 5*5 mm² cells
 - 38-layer HCAL prototype, 30*30 mm² cells
- Successful synchronized data taking
- Muon data for calibration
- Energy scans for electrons and hadrons
- Analyses started
- Milestone in our program reached!
- Future beam test program to be defined
 - Tungsten stack available

Combined SiW ECAL + AHCAL testbeam

2 weeks of beam test in H2 at CERN SPS: 8-22 June 2022

- First common running of technological prototypes of SiW ECAL and scintillator AHCAL
 - 15-layer ECAL prototype, 5*5 mm² cells
 - 38-layer HCAL prototype, 30*30 mm² cells
- Successful synchronized data taking
- Muon data for calibration
- Energy scans for electrons and hadrons
- Analyses started
- Milestone in our program reached!
- Future beam test program to be defined
 - Tungsten stack available

Scintillator Calorimeter for CEPC

2 weeks of beam test in H8 at CERN SPS: 19 October - 2 November 2022

- System of scintillator ECAL + scintillator HCAL for CEPC
- Granularity optimised for CEPC:
 - ECAL: 5*45 mm² strips -> effectively 5*5 mm²
 - HCAL: 40*40 mm²
- Readout electronics: SPIROC2E (developed for ILC)
- 30-layer scintillator-tungsten ECAL
- 38-layer scintillator-steel HCAL
- Dedicated stage to allow also rotations
- Measurement program
 - HCAL stand-alone: muons, electrons, hadrons
 - ECAL + HCAL: muons, electrons, hadrons
 - Analyses started
- 2 more weeks of beam time in 2023 in H2

Scintillator Calorimeter for CEPC

2 weeks of beam test in H8 at CERN SPS: 19 October - 2 November 2022

- System of scintillator ECAL + scintillator HCAL for CEPC
- Granularity optimised for CEPC:
 - ECAL: 5*45 mm² strips -> effectively 5*5 mm²
 - HCAL: 40*40 mm²
- Readout electronics: SPIROC2E (developed for ILC)
- 30-layer scintillator-tungsten ECAL
- 38-layer scintillator-steel HCAL
- Dedicated stage to allow also rotations
- Measurement program
 - HCAL stand-alone: muons, electrons, hadrons
 - ECAL + HCAL: muons, electrons, hadrons
 - Analyses started
- 2 more weeks of beam time in 2023 in H2

- Highly granular calorimeters are essential to reach the jet energy resolution needed for future Higgs factories
 - CALICE develops several concepts for ECAL and HCAL
- Technological Prototypes demonstrate scalability
 - Beam tests are essential for this
 - Stand-alone tests of ECAL and HCAL as well as combined tests of ECAL+HCAL
 - Important beam infrastructure for calorimeters
 - Large moveable tables
 - Clean beams and/or detectors for particle ID

Thank you!

BACKUP

SDHCAL Technological Prototype

Recent developments

SDHCAL prototype has integrated electronics already

• 48 layers with ~440.000 channels

Aspects for **scalability** to collider detector

- Layer size will increase from 1*1 m² to up to 1*2 m²
 → optimize gas flow and spacers
- Minimise size of interface electronics

Improved time resolution

- Multi-gap RPCs can reach ~100 ps
- Plan to build a timing layer and integrate it into SDHCAL prototype

DESY. Recent Results from CALICE | BTTB11 | Katja Krüger | 19 April 2023

AHCAL Technological Prototype

Recent developments

Fully integrated design

- front-end electronics, readout
- voltage supply, LED system for calibration
- no cooling within active layers \rightarrow **power pulsing**

Scalable to full collider detector (~8 million channels)

Prototype with 38 layers and ~22.000 channels operated in testbeam

- Very stable running
- Nearly noise free
- < 1 per mille dead channels

< 1 per mille dead channels

AHCAL Technological Prototype

Recent developments

Fully integrated design

- front-end electronics, readout
- voltage supply, LED system for calibration
- no cooling within active layers -> power pulsing

Scalable to full collider detector (~8 million channels)

Prototype with 38 layers and ~22.000 channels operated in testbeam

- Very stable running
- Nearly noise free

Scintillator ECAL Technological Prototype

Recent developments

Fully integrated design

Testbeam prototype with 32 layers and ~7.000 channels built

- Tested with cosmic muons
- Ready for beam tests (delayed due to Covid)

Silicon ECAL Technological Prototype

Recent developments

Space constraints for ECAL especially challenging

- Minimum thickness of integrated electronics to minimize total thickness
- Minimum size of electronics interfaces to minimize gaps in the coverage

Fully integrated design

Scalable to full detector (~100 million channels)

Testbeam prototype under construction

Up to 30 layers and ~30.000 channels

Silicon wafers glued onto PCB

Pixel size 5.5x5.5 mm²

BGA-packaged ASICs

unpackaged ASICs

Performance: Energy resolution

Energy resolution for electrons CALICE ECALS

reasonable energy resolution for electromagnetic showers

PFA ECALs are optimised for granularity, not single particle energy resolution

Energy resolution for charged pions CALICE HCALS

JINST 7 (2012) P09017

σ_{reco}/E_r

NIM A939 (2019) 89

JINST 11 (2016) P04001

software compensation improves stochastic term: $58\%/\sqrt{E} \rightarrow 45\%/\sqrt{E}$

resolution doesn't improve beyond ~30 GeV

measurement with 1 or 3 thresholds

3 thresholds improve resolution at large energies

DESY. Recent Results from CALICE | BTTB11 | Katja Krüger | 19 April 2023

Energy resolution for charged pions

The power of high granularity

Software compensation (SC):

- non-compensating calorimeters show different signals for electromagnetic and hadronic showers
- hadronic showers include electromagnetic sub-showers
- in the reconstruction, use different weights for electromagnetic and hadronic sub-showers
- Significant improvement of energy resolution

JINST 7 (2012) P09017

Performance of combined scintillator calorimeter system

Energy reconstruction in a highly granular calorimeter system

in a real calorimeter system, hadrons are not measured purely in HCAL, but in ECAL + HCAL (+ tailcatcher)

ECAL and HCAL typically have different absorber, sampling ratio, active material

combined system of scintillator-tungsten ECAL + scintillator-steel AHCAL has **very similar performance** to AHCAL alone

Performance: Shower Imaging

Shower Profiles

Examples: Pion showers in tungsten calorimeters

High granularity allows determination of shower start \rightarrow measure detailed hadron shower profiles

Description by simulations typically within ~10% \rightarrow important for Particle Flow performance

JINST 10 (2015) P12006

Track Segments within hadron showers

Substructure of hadron showers

Shower Separation

Particle Flow Algorithms at work

Overlay of showers in measured and simulated events

- Charged and neutral hadron showers
- Electromagnetic and charged hadron shower

Performance of Particle Flow Algorithms well described by simulation

Highly granular calorimetry beyond Higgs Factories

CMS HGCAL

High granularity for HL-LHC

CMS calorimeter endcap will be replaced for HL-LHC by High-Granularity calorimeter

Granularity helps to suppress pile-up

Synergy with high granularity calorimeter concepts developed for electron-positron colliders

- Silicon in the CE-E and close to the beam pipe
- Scintillator tiles with SiPMs wherever radiation levels allow

CMS HGCAL

Towards construction

Moving towards fully-engineered design in 2021

Preparation for mass production of active modules

Will be the first large highly granular calorimeter in a collider detector!

Silicon module assembly

Digital Pixel Calorimeter

Ultimate granularity ECAL

ALICE FoCal-E (Forward EM-Calorimeter)

- W absorber + Si-sensors
- Low-granularity layers Si-pads (~1x1 cm²) energy measurement
- High-granularity layers CMOS MAPS (~30x30 µm²) two-shower separation

Digital Pixel Calorimeter prototype

- All layers consist of high-granularity MAPS sensors: ALPIDE
- 3x3 cm² cross section
- 24 layers
- Tested with electron beam

Deep Underground Neutrino Experiment

High granularity for neutrinos

DUNE Far Detector: Study neutrino oscillations

Large LAr TPCs

Near Detector (ND): measure beam before oscillation

- DUNE PRISM: 3 detectors of which 2 can be moved off-axis
- ND-LAr: Liquid Argon TPC
- ND-GAr: High Pressure GAr TPC, surrounded by ECAL and magnet
- SAND: plastic scintillator target

ND-GAr

- Typical energies of a few 100 MeV
- Angular resolution to distinguish π^0 and γ
- Key designs
 - Very thin absorber: 2 mm Copper
 - High granularity layers (similar to AHCAL)
 - Large strip layers in the back

Electron-Ion Collider

High granularity for Deep Inelastic Scattering

EIC: High energy collider for electrons and protons or ions

See talk by

E. Aschenauer

- Study nuclear structure
- $\sqrt{s} = 20$ to 100 GeV
- Polarized beams
- 1 or 2 interaction regions

Several detector concepts

- Generic EIC concept detector
- TOPSIDE: Time Optimized Silicon Detector for the EIC
 - All silicon tracker
 - Hermetic 5D calorimeter: high granularity & precise timing
 - Silicon tungsten ECAL with LGADs for timing
 - Scintillator tile or RPC HCAL

More High Granularity

What has not been mentioned so far

Higher granularity is being studied for many other technologies

- LAr ECAL for FCC-ee and FCC-hh
- Granular Dual Readout calorimeters

. . .

FCC-ee

Horizontal axis expanded by a factor 10

DESY. Recent Results from CALICE | BTTB11 | Katja Krüger | 19 April 2023