

MEG II実験に向けたDLC-RPCの 放射線照射による検出器への影響

高橋 真斗 (神戸大理)

家城 佳^A, 大谷 航^A, 大矢 淳史^A, 越智 敦彦, 恩田 理奈^A, 潘 晟^A, 山本 健介^A, 李 維遠^A (神戸大学、 東京大学^A)

2023年2月19日 (日) 第29回 ICEPP シンポジウム

Outline

Introduction

- Charged lepton flavour violation
- MEG II experiment
- Radiative Decay counter for background suppression
- Resistive Plate Chamber with Diamond-Like Carbon

> Ageing of DLC-RPC

- Requirements of radiation-hardness
- Radiation irradiation facilities
- Results

Summary and prospects

Outline

Introduction

- Charged lepton flavour violation
- MEG II experiment
- Radiative Decay counter for background suppression
- Resistive Plate Chamber with Diamond-Like Carbon

> Ageing of DLC-RPC

- Requirements of radiation-hardness
- Radiation irradiation facilities
- Results

Summary and prospects

Charged Lepton Flavour Violation

- In the Standard Model, lepton flavour is conserved
- Neutrino oscillation is observed
 - Flavour in neutrino sector is violated
- Charged Lepton Flavour Violation (cLFV)
 - Practically never occurs in SM: $\mathcal{B}(\mu \to e\gamma) \sim 10^{-54}$
 - Many new physics predictions in a measurable region
 - SUSY-seasaw, SUSY-GUT etc.: $\mathcal{B}(\mu \rightarrow e\gamma) \sim \mathcal{O}(10^{-14})$
- → The discovery of cLFV is clear evidence of new physics

MEG II experiment

 $\mu^+ \rightarrow e^+ \gamma$ search using the world's most intense μ^+ beam

- Upgraded from MEG experiment (2008 2013)
 - MEG result (2016): $\mathcal{B}(\mu^+ \to e^+ \gamma) < 4.2 \times 10^{-13} (90\% \text{ C.L.})$

× 2 intensity μ^+ beam × 2 resolution everywhere × 2 efficiency

Search for $\mu^+ \rightarrow e^+ \gamma$ down to 6×10^{-14} (90% C.L. sensitivity)

Physics run started from 2021 !!

٠

$\mu^+ \rightarrow e^+ \gamma$ signal and MEG II detectors

> The $\mu^+ \rightarrow e^+ \gamma$ signal features

 $\checkmark e^+$ and γ have the same energy (52.8 MeV)

- $\checkmark e^+$ and γ emitted at the same time
- $\checkmark e^+$ and γ emitted in opposite directions

MEG II detectors

- γ detector
 - Liquid xenon calorimeter
- e⁺ detectors
 - Drift chamber
 - Timing counter

Background in MEG II

- Accidental coincidence of BG-e⁺ and BG-γ with different sources
 - e⁺ : Michel decay
 - Y : Radiative Muon Decay(RMD), Annihilation In Flight (AIF)

Radiative Decay Counter (RDC)

- > Detector for tagging $BG-\gamma$
- > When BG- γ have signal-like energy (~52.8 MeV) most of e^+ have a low energy (1 – 5 MeV)
 - RMD e^+ distributed on the μ^+ beam axis

Tagged

Requirements for upstream RDC

- US-RDC needs to detect MIP e⁺ from RMD in a low-momentum and high-intensity muon beam (28 MeV/c) (1 × 10⁸ µ/s)
 - 1. Material budget:
 - 2. Rate capability:
 - 3. Radiation hardness:
 - 4. Efficiency:
 - 5. Timing resolution:
 - 6. Detector size:

< 0.1% radiation length 4 MHz/cm² of muon beam

- > 30 weeks operation
- > 90% for MIP
- < 1 ns
- 20 cm (diameter)

 μ^+ beam

28 MeV/*c* 1 × 10⁸ μ/s

US

RDC

RMD e^+

1 - 5 MeV

DLC-RPC

DLC : high-resistance thin-film material

- Small material budget by sputtering
- Controllable resistivity by changing film thickness
- RPC : gas detector
 - Fast response (< 1 ns)
 - High detection efficiency (by multi layering)

DLC-RPC for MEG II

Requirements for US-RDC and current status of DLC-RPC

Contents	Requirements	Current status	
Material budget	< 0.1% X ₀	~ 0 . 095 %	
Rate capability	4.0 MHz/cm ²	1 MHz/cm ²	
Radiation-hardness	> 30 weeks	N/A	
Detection efficiency	> 90%	> 40% (with single-layer), $> 90%$ (calculated)	
Timing resolution	1 ns	160 ps	
Detector size	φ 20 cm	$3 \text{ cm} \times 3 \text{ cm}$ (active region)	

Purpose of this study

Investigating radiation-hardness of DLC-RPC

- Radiation-hardness of DLC-RPC has not yet been studied
- Known ageing effects in conventional RPC
 - **Deposition on electrodes**
 - Increased dark currents correlated to fluorine deposition
- → We need to confirm in DLC-RPC as well
 - How much irradiation causes ageing?
 - Are there ageing specific to DLC-RPC?
- > Li presents operation test and problems with the new electrode

Outline

Introduction

- Charged lepton flavour violation
- MEG II experiment
- Radiative Decay counter for background suppression
- Resistive Plate Chamber with Diamond-Like Carbon

> Ageing of DLC-RPC

- Requirements of radiation-hardness
- Radiation irradiation facilities
- Results

Summary and prospects

Requirement for upstream RDC

- Requirement of radiation-hardness in MEG II experiment
 - 30 weeks operation in a low-momentum and high-rate μ^+ beam

Not easy to take out after installation

- > Evaluation of ageing of DLC-RPC performance due to irradiation
 - The integrated charge due to irradiation is compared with the irradiation doses of μ^+ beam
- > Estimation of irradiation doses in μ^+ beam
 - (Charge) = (Avalanche charge) × (Hit rate) × (Operational period)
 - Average avalanche charge : 3 pC
 - Hit rate : 4 MHz/cm^2
 - → 3 pC × 4 MHz/cm² × 30 weeks ~ $\mathcal{O}(100)$ C/cm²

> Irradiate as much as possible

 4 MHz/cm^2

Irradiation facilities and test

Fast neutron radiation facility @Kobe Univ.

- 2022/6/20 2022/7/3
- Tandem electrostatic accelerator
- ${}^{9}\text{Be} + \text{d} \rightarrow {}^{10}\text{B} + n + 4.36 \text{ MeV}$
 - + $\mathcal{O}ig(10^8ig)$ Neutron with peaks at 2.0 2.5 MeV

X-ray generator @KEK Platform-C

- 2022/8/29 2022/10/7
- Cu target
 - X-ray with 8 keV

From these test, Irradiation doses of $\mathcal{O}(100) \text{ mC/cm}^2$ were obtained

Setup of DLC-RPC

Setup of irradiation test

> The chamber as close as possible to the output point

Results of total charge

Monitor detector current for irradiation dose evaluation

- Pulse height distributions for β -ray were measured to evaluation changes in performance of DLC-RPC due to irradiation
 - In addition, pulse height distributions for X-ray was measured continuously

Changes in performance of DLC-RPC

Neutron irradiation test

- 1st and 2nd, readout strip was not in place
- Agreement at 6.4% from 3rd and 6th

X-ray irradiation test

• Agreement at 5.3% before and after irradiation

No significant ageing in performance DLC-RPC was observed at irradiation dose of $\mathcal{O}(100)\ mC/cm^2$

Electrode surface condition survey

Using X-ray Photoelectron Spectroscopy (XPS)

Ageing effect of DLC electrode

Fluorine deposition on electrode due to irradiation

- Proportional to the amount of charge generated
- Fluorine does not deposit simply by being in contact with DLC-RPC gas
- Ratio deposit to is higher for anode

Fluorine source is the operating gas of the DLC-RPC

- R134a $(C_2H_2F_4)$: However, it is stable and hard to break a bond
- SF₆: Generated during avalanche
 - $\bullet \quad SF_6 + e^- \rightarrow SF_6^{-*}, \qquad SF_6^{-*} \rightarrow SF_5^- + F$

> Reports of the effects fluorine in other experiments

- Reported on Guida, R., RPC2022 and Rigoletti, G., RPC 2022.
- Fluorine deposition and gas contamination cause dark currents
 - → Dark currents can be suppressed by quickly flowing polluted gases
 - Dark currents due to fluorine deposits on electrode are permanent

Outline

Introduction

- Charged lepton flavour violation
- MEG II experiment
- Radiative Decay counter for background suppression
- Resistive Plate Chamber with Diamond-Like Carbon

> Ageing of DLC-RPC

- Requirements of radiation-hardness
- Radiation irradiation facilities
- Results

Summary and prospects

Summary

- DLC-RPC is under development for MEG II US-RDC
 - The low-momentum and high-intensity muon beam passage
 Several stringent requirements are imposed
- First study on the ageing of DLC-RPC
 - Using fast neutron and X-ray irradiation facility
 - 165 mC/cm² integrated charge by fast neutron
 - 272 mC/cm² integrated charge by X-ray with 8 keV
 - Integrated charge was 3 orders of magnitude lower than that of MEG II ($O(100) C/cm^2$)
- > Ageing effect of DLC electrodes
 - Fluorine deposition on DLC electrodes
- → <u>No significant ageing in performance was observed at this irradiation</u>

Prospects

Further long-term irradiation

- Investigate whether detector performance deteriorates
- Effects of dark currents due to fluorine deposition
- Additional, long-term stable operation of the detector will be confirmed

> To reduce ageing due to fluorine

- Increased dark currents due to gas pollution reported by other experiments
 - Quick flowing polluted gas reduces dark currents

Backup

Charged lepton flavour violation

- > In the Standard Model, lepton flavour is conserved
 - There is no explicit gauge symmetry
- Neutrino oscillation have been observed
 - Lepton flavour breaks between neutral leptons
 - Neutrinos have mass

ニュートリノ振動と $\mu \rightarrow e\gamma$ 崩壊

$$\mathcal{B}(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=2,3} U^*_{\mu i} U_{ei} \frac{\Delta m^2_{i1}}{M^2_W} \right|^2 \sim 10^{-54}$$

 α : 微細構造定数、 U_{ij} : レプトン混合行列、 Δm_{ij}^2 : ニュートリノ質量の二乗差、 M_W : ウィークボソンの質量

SUSYとμ → eγ崩壊

> <u>MSSM</u>

- ・ レプトンの質量行列を対角化した時、sleptonの質量行列の非対角成分は0でない
- ・ $\Delta m_{\tilde{u}\tilde{e}}$ によってsleptonのフレーバー混合によって $\mu \rightarrow e\gamma$ 崩壊が起こる
- ・ この時の $\mu
 ightarrow e\gamma$ 崩壊分岐比は大きすぎる値が予想されている
- LFVとFCNCの実験の制限から、SUSYの破れにはsleptonのフレーバー混合が抑制されなければならない
 → 超対称フレーバー問題

SU(5) SUSY-GUT

- ・ 右巻きsleptonの質量行列の非対角成分によって $\mu \rightarrow e\gamma$ 崩壊が起こる
- ・ 右巻きsleptonのみが $\mu \rightarrow e\gamma$ 崩壊に寄与するため、生成される陽電子のヘリシティは左巻きが支配的 $\rightarrow \mu^+ \rightarrow e_L^+ \gamma$ 崩壊が支配的
- ・ sleptonの質量が数百 GeV/ c^2 の時、崩壊分岐比 $O(10^{-14})$ となる
- ・ 二つのヒッグスの真空期待値の比であるtan β が大きい場合はさらに大きな崩壊分岐比が予想されている

SO(10) SUSY-GUT

- 左巻きsleptonと右巻きsleptonの両方がµ → eγ崩壊に寄与
- ・ 崩壊分岐比は片方のヘリシティのみが寄与する場合と比べ $\left(m_{ au}/m_{\mu}
 ight)^2$ で増大される

SUSY-seesaw

- ・ 重い右巻きニュートリノをMSSMに導入
- ・ ニュートリノ混合が新たな湯川結合定数に起因すると仮定すると、 ニュートリノ混合パラメータがsleptonの混合に影響し、μ → eγ崩壊分岐比を予想できる
- ・ 重い右巻きニュートリノの質量を 10^{10} 10^{14} GeV/ c^2 と仮定すると、SUSY-GUTと同程度の分岐比を予言する

MSSMとμ → eγ崩壊

sleptonのフレーバ混合による $\mu \rightarrow e\gamma$ 崩壊

SU(5) SUSY-GUTと $\mu \rightarrow e\gamma$ 崩壊

SO(10) SUSY-GUTと $\mu \rightarrow e\gamma$ 崩壊

19-Feb-23

29th ICEPP Symposium - Masato Takahashi

SUSY-seesawと $\mu \rightarrow e\gamma$ 崩壊

19-Feb-23

cLFVを伴うミューオンの崩壊探索最新結果

[3] Baldini, A. M., "Search for the lepton flavour violating decay $\mu^+ \rightarrow e^+ \gamma$ with the full dataset of the MEG experiment", The European Physical Journal C 76 (2016)

- [23] Bellgardt, U. et al., "Search for the decay $\mu^+ \rightarrow e^+ \gamma$ ", Nuclear Physics B 618 (2001)
- [24] Bolton, R. D. et al., "Search for rare muon decays with the Crystal Box detector", Phys. Rev. D 38 (1988)
- [25] Grosnick, D. et al., "Search for the rare decay $\mu^+ \rightarrow e^+ \gamma \gamma$ ", Phys. Rev. Lett. 57 (1986)
- [26] Freedman, S. J. et al., "Limits on neutrino oscillations from \overline{v}_e appearance", Phys. Rev. D 47 (1993)
- [27] The SINDRUM II Collaboration, "A search for μe conversion in muonic gold", Eur. Phys. J. C.
- [28] Willmann, L. et al., "New Bounds from a Search for Muonium to Antimuonium Conversion", Phys. Rev. Lett 82 (1999)

MEG II実験における偶発的背景事象のエネルギー分布

- ➢ Michel陽電子
 - 100%偏極したµ⁺
 - ・ 微分崩壊分岐比は

 $\frac{d^2 \Gamma(\mu^{\pm} \to e^{\pm} \nu \bar{\nu})}{dx d \cos \theta_e} = \frac{m_{\mu}^5 G_F^2}{192 \pi^3} x^2 \left[(3 - 2x) \pm P_{\mu} \cos \theta_e (2x - 1) \right]$

▶ 背景ガンマ線

COBRA電磁石

COBRA電磁石の形成する勾配磁場の概念 検出器模式図はMEG実験時のもの

➤ 勾配磁場を持つ COnstant Bending RAdius 電磁石

- A) 信号領域付近のエネルギーを持つ陽電子が放出角に依らず、 一定の回転半径を持って運動
- B) μ^+ ビーム軸に垂直に放出された陽電子が検出層から素早く排出

- ▶ 前方に時間測定用のプラスチックシンチレータ
- ≻ 後方にエネルギー測定用のLYSO結晶

29th ICEPP Symposium - Masato Takahashi

~22 cm

	MEG 実験	MEG II design	MEG II updated
e^+ の運動量分解能 $\sigma_{p_{e^+}}$ (keV/c)	380	130	100
e^+ の角度分解能 $\sigma_{\theta_{e^+}}$ (mrad)	9.4	5.3	6.7
γ のエネルギー分解能 $\sigma_{E_{\gamma}}$ (%) ($w < 2 \text{ cm}$)/($w > 2 \text{ cm}$)	2.4 / 1.7	1.1 / 1.0	1.7 / 1.7
γ の位置分解能 $\sigma_{x_{\gamma}}$ (mm)	5	2.4	2.4
e^+ と γ の時間分解能 $\sigma_{t_{e^+\gamma}}$ (ps)	122	84	70
e^+ の検出効率 ϵ_{e^+} (%)	30	70	65
γ の検出効率 ϵ_{γ} (%)	63	69	69

> Baldini, A. M. et al., "The Search for $\mu^+ \rightarrow e^+ \gamma$ with 10¹⁴ Sensitivity: The Upgrade of the MEG II Experiment", Symmetry 13 (2021)

19-Feb-23

MEG II実験で予想される探索感度

▶ 上流側RDCの寄与は含んでいない

Onda, R., "Suppression of γ -ray background for the highest sensitivity of $\mu^+ \rightarrow e^+\gamma$ search in MEG II experiment", Ph. D. dissertation, The University of Tokyo (2021) により計算

•

μ⁺ビームとRMD *e*⁺ の分布

➤ MCより、どちらも中心付近に多い分布 → 検出器中心に孔を空けることはできない

従来型のResistive Plate Chamber

▶ 高抵抗電極にはガラスが用いられることが多い

- ガラスの体積抵抗率は一般的には 10¹³ Ωcm
 - ・酸化物の添加により 10⁸ 10⁹ Ωcm
 - この場合のレート耐性は 100 kHz/cm² まで報告されている (Liu, Z. et al., NIM A 959 (2020))

空間電荷効果

▶ 10⁷ – 10⁸ 程度の増幅率で増幅が飽和する

DLCスパッタリング

▶ スパッタリング法

- 1. 真空中で不活性ガス(主にAr)を添加する
- 2. 蒸着材料に負の電荷を与える
 → グロー放電を起こし、ガス原子をイオン化
- 3. ガスイオンを高速でターゲットに衝突させる
- 4. 叩き出されたターゲット構成粒子が 基板表面に付着・堆積
 → 薄膜を形成

フォトレジストの取付

3. ピラーが完成する

MEG II実験 DLC-RPCのデザイン

先行研究における検出効率

先行研究における時間分解能

使用した増幅器

> 38 dB (80倍)の増幅器

中性子照射中の検出器の状態

中性子照射中のビームカレント

X線照射位置

Incidence angle : ~ 4-5 degrees

X線照射中のDLC-RPCの状態

X線に対する波高分布

X線照射中の電流値変化

19-Feb-23

各電極サンプルの元素組成割合

電極サンプル	C1s(%)	N1s(%)	O1s(%)	F1s(%)	Si2p(%)
Non-irradiation	79.03	3.19	17.78	_	_
Neutron irradiation (active region)	76.06	_	15.22	7.37	1.35
Neutron irradiation (inactive region)	72.82	3.02	19.72	1.53	2.91
X-ray irradiation (anode discharge point)	67.63	_	15.52	14.51	2.35
Cathode active region	74.82	_	17.22	5.89	3.68
Cathode inactive region	81.20	_	15.72	_	2.37