J-PARCハドロンホールにおける LArTPC反粒子検出原理の検証

第29回ICEPPシンポジウム 2023年02月19日 早稲田大学 修士課程1年 清水虎冴

≻GRAMS検出器反粒子検出原理検証のための加速器ビーム試験

➤ビーム試験に向けた検出器のアップグレード ➤Anode読み出しASIC

Gammma Ray and Anti-Matter Survey
 ■ 大気球搭載液体アルゴン(LAr)TPC検出器を用いた宇宙線反粒子探索とMeV-γ線観測
 ■ 南極上空, 30日間にわたる周回軌道による実験

LArTPCによる粒子-反粒子識別方法

- 粒子の質量識別
 - 入射荷電粒子の速度 β が等しい
 ⇒ 質量に依存して, ①dE/dx ②飛跡長 が異なる
- 粒子の電荷識別(反粒子識別)
 - 入射負電荷粒子がAr原子核に捕獲
 ⇒ 脱励起後,核子と対消滅してハドロン生成

			対消滅@停止点		
			なし	あり	
			正電荷 負電荷		
質量	質 核 1 量 子		р	$\overline{\mathbf{p}}$	
数		2	d	d	

2023/2/19

29th ICEPPシンポジウム

GRAMS開発スケジュール

● 反粒子探索に向けたマイルストーン □ 粒子-反粒子識別の実機検証 加速器ビームを用いた粒子識別の定量化 気球高度での液体アルゴン安定運用技術の確立 ビームテスト @J-PARC 気球工学試験 宇宙線μ観測試験 気球観測の経験 w/ 小型気球 LAr中での反粒子捕獲事象の検証 (システム設計、通信)→Nakajima's talk → K1.8BR (ハドロンホール) → @JAXA 大樹町 2023.7~9 @ J-PARC LAr中での停止µの 赤線:一次購子ビーム軌道 青線:二次ビーム軌道 観測@早稲田 →谷口talk Sep. 2022 Sep. 2023 Mar. 2023 Mar. 2024 $30 \times 30 \times 30 \text{ cm}^3 \text{LArTPC}$ **J-PARC** Phase 1 **J-PARC** Phase 2 Cosmic Muon test Beam test Beam test

Engineering Balloon flight @ JAXA TARF

ビーム試験の目的

1. 液体アルゴン中で反陽子および反重陽子の捕獲事象を測定する(信号事象) 2. 10⁴事象以上の高統計の反陽子捕獲事象を測定する (背景事象) J-PARC K1.8BR 概要

■ J-PARC K1.8BR ビームライン

- シンクロトロンで30GeVまで陽子を加速
- T1:金の固定標的と衝突
- 2次粒子生成:K-中間子 Rate~10⁵, 反陽子も同程度
- 最高運動量:1.1GeV/c
- 磁石,静電分離機:磁場/電場による運動量と質量を選別可能
- 反粒子の供給
 - 反陽子:十分なレートあり
 - 反重陽子(<1.1GeV/c):ビームラインのレートの検証が必要
 ⇒2023年度実施予定(準備中)

粒子	GRAMS Target Rigidity	運動量	
反陽子	100~300 MeV/n	450~800 MeV/c	
反重陽子	100~300 MeV/n	900~1600MeV/c	

⇒GRAMS検出器の原理検証に最適

ハドロン実験施設内俯瞰図

29th ICEPPシンポジウム

2023/2/19

ビーム試験シミュレーション

- ビーム試験セットアップ案
 - スペース:4m×4m
 - 容器: Φ500mm
 - 検出器サイズ:30cm×30cm×30cm
 - ToFプラスチックシンチレータ:2本
- 反粒子入射のシミュレーション
 - 反陽子(左):600MeV/c(β~0.5)
 - 反重陽子(右):1.1GeV/c(β~0.5)
 - いずれの場合もLArTPC内で反応が見え, PIDの検証が可能 以下のビームを要求
 - -反陽子:600 & 700 MeV/c
 - -反重陽子:1.1GeV/c
 - TPCサイズ決定 2023/2/19

読み出しパッドのピッチサイズ検討

- GRAMS40検出器を用いた,地上での宇宙線 µ 粒子のLAr中での停止事象の観測できている
- ビーム試験に向けた検出器のアップグレード:読み出しパッドの変更
- ピッチを変えた時のシミュレーション:入射してきた反重陽子と対消滅後のハドロンの飛跡

● 読み出しエレクトロニクスの必要チャンネル数と1chあたりの信号量に対するノイズ ⇒電子読み出し基板の開発を進めていく

LTARS

- 加速器ビーム試験における検出器の電子読み出しASICにLTARSを使用
 - 電荷信号読み出しパッドに発生した電荷信号を電圧信号に変換・増幅・整形する
 - 大型液体アルゴン検出器用ASICとして高ゲイン、多チャンネル、低ノイズ、低コストを目標に開発
 - *コールドエレクトロニクス:~80Kで動作を要求,低温下だとトランジスタの閾値電圧が変化

設計値	LTARS2014	LTARS2018A		
		HG	LG	
チップサイズ	5.0mm × 5.0mm 2.5mm × 5.0mm		< 5.0mm	
ch数/chip	32ch	16ch		
時定数	3us	7us	3us	
動作温度	室温	室	温	
ダイナミックレンジ	$\pm 90 fC$	±120fC	±1600fC	
ゲイン	9.7mV/fC	10mV/fC	0.5mV/fC	
ENC(Cdet=300pF)	14000e-	4000e-	6000e-	
使用	地上宇宙線μ観測	ビーム試験	使用しない	

■ LTARS2014で64chの電荷信号を取得
 ■ 地上セットアップでのDAQ構築

容器の外にLTARS2014 FPGAのファームウェア

- ✓ サンプリング数:1000
- ✓ NIM_IN:PMTからの光信号をトリ ガーとして入力
- ✓ NIM_OUT:取得データのEvent Numberを32bitで出力

- 複数枚のボードを使用するとき は、NIMの入出力から内部クロック で同期をとる

LTARS2014 ノイズ解析

- Anodeパッド配置
 - Xch:1~30ch / Ych:33ch~62ch
 - Ch5, 62付近にHV線あり(←ノイズ源)

■ 解析手法

- 1. HV起因: ch62をtriple cos fitして差し引く
- 2. トリガー起因: 一様にのっているため信号のない波形の平均を差し引く
- 3. 低周波ノイズ: cos fitして差し引く

LTARS2014 設計值比較

- 解析的なノイズ処理
 - 特徴的なノイズを解析的に落とす
 - ペデスタルのRMSを評価

•

■ ノイズ解析(ENC)

● ノイズはおよそ12ADCCounts程度

検出器容量:110pF

ENC ~

新規ボード開発

■ 開発方針

- KEK坂下氏, KEK岸本氏, 神戸大, 早稲田大の共同での開発
- Open-itでプロジェクトの立ち上げ
- 検出器の原理検証のためのビーム試験に向けた読み出しエレクトロニクス開発

Readout electronics for LTARS2018_K06A ASIC

乍者: New Project Proposer — 最終変更 2022年11月15日 17時24分 — 履歴

机要	反(重)陽子ビームを用いた粒子識別試験		
ガスTPCや液体アルゴンTPCの多チャンネル読み出し用のプロトエンドボードおよび読み出しシステムの開発を行う。これまでに開発された LTARS2018_K06A ASICを搭載し、低ノイズでワイドダイナミックな電荷読み出しボードを開発する。1枚のボードで、32chの検出器からの信号を	□検出器からの要求		
ASICで信号増幅し、アナログデジタル変換とFPGAによるデータ収集、ネットワーク読み出し機能を搭載したコンパクトなボードの開発を目指す。 メンバー アログア バット・バット (人来) 日報四大学 教授)	ノイズ(ENC)	< 3000e- : SN比 10 荷電粒子から得る信号のみ考えればよい	
 ・ 奇田活平, Konel Yonla(1\3; 宇相田大子・教授) ・ 田中雅士, Masashi Tanaka(早稲田大学、准教授) ・ 身内賢太郎, Kentaro Miuchi(神戸大学、准教授) 	ゲイン	10mV/fC	
 岸本祐二, Yuji Kishimoto(KEK, 准教授) 坂下健, Ken Sakashita(KEK, 准教授) 本多良太郎, Honda Ryotaro (KEK) 岸下微一, Totoulabi Kishishita (KEK) 	チャンネル数	~数100ch 30cm(X)×30cm(Y):5mmピッチ	
 庄子正剛, Shoji Masayoshi (KEK) 東野聡, Satoshi Higashino (神戸大学、研究員) 窪田雅弓, Kubota Masami (総研大、修士1年) 清水虎冴, Tiga Shimizu (早稲田大学、修士1年) 	ダイナミックレンジ	数fC~数10fC ビームの方向は一定	

• 石川皓貴, Koki Ishikawa (早稲田大学、学部4年)

LTARS2018A搭載ボード

■ LTARS2018A×2 ⇒ 32ch処理可能
 ■ LTARS2018A:~1000個パッケージ済

29th ICEPPシンポジウム

NIM信号でトリガー/同期

EthernetでPCにデータ送信

基板レイアウト案

■ 仕様

- 従来のLTARS2018_K06Aチップが搭載されたボード(REBOLT)とデジタルボード(DELTA)の統合型
- 各機関の要求をまとめ最適解として設計 ⇒ 32ch/board の信号処理が可能

まとめ/今後の展望

■ まとめ

✓ GRAMS実験はLArTPCを用いて反粒子探索を行う

- ✓ 反(重)陽子のLAr中での原子核捕獲事象についての原理検証
 ⇒ J-PARC K1.8BRビームラインでの検証を予定
 ⇒ プロポーザル承認
- ✓ シミュレーションによるセットアップ検討
 - 検出器の読み出しパッドのサイズ
 - LTARS搭載の新規基板の設計,製作
- ✓ 地上試験におけるLTARS2014の使用

■ 今後の展望

- ▶ J-PARC K1.8BRでの反重陽子のレート検証(Phase1:2023年度)
- ▶ LArTPCによる反(重)陽子の測定(Phase2:2023~2024年度)

Back Up

宇宙線反粒子フラックス

Anti-Matter Stopping point

P98: Details of the Request (Proposal document)

21/24

• Phase-1 (Ready)

Antideuteron Beam Study Request

Objective:	Establishment of antideuteron beam at K1.8BR beam line
Beam Line:	K1.8BR in J-PARC Hadron Hall
Beam Particle:	Antideuteron 1100 MeV/c
Detectors:	Present beam counters at K1.8BR beam line (+ ToF counters if necessary)
Beam Time:	8 hours (anytime prior to the LArTPC Beam Request)
Beam Rate:	TBC (e.g. 1 antideuteron per spill [1]) $>10 \text{ kW}$

• Phase-2 (2023 Fall – End of JFY 2024)

Summary of Beam Request (LArTPC beam exposure)

Objective:	Measurement of antimatter reaction in LArTPC
Beam Line:	K1.8BR in J-PARC Hadron Hall
Beam Particle:	Antiproton 600 MeV/c and 700 MeV/c
	Antideuteron 1100 MeV/c (in case of successful beam study)
Detectors:	One LArTPC and scintillation counters
Beam Time:	6-hour each (2-hour beam tuning + 4-hour data taking with commissioning)
Beam Rate:	Less than 1 KHz (including background particles)

信号読み出しエレクトロニクスへの要求

	GRAMS本検出器	反(重)陽子ビームを用いた粒子識別試験
・検出器からの要求		
ノイズ(ENC)	< 200e- MeV-γ線観測による制限	< 3000e- : SN比 10 荷電粒子から得る信号のみ考えればよい
ゲイン	10mV/fC	10mV/fC
チャンネル数	数1000ch 150cm(X)×150cm(Y): 数mmピッチ	~数100ch 30cm(X)×30cm(Y):3mmピッチ
ダイナミックレンジ	TPCに入射する荷電粒子の方向によ る	数fC~数10fC ビームの方向は一定
・工学的な要求	気球実験特有の課題	
消費電力	低	またる実际のため必要な
耐衝撃	あり	地上での試験のため必安なし

LTARS2018_K06A 概要

- LAr検出器用ASIC+陰イオンガスTPC用に開発された, 汎用ASIC
- 陰イオンガスTPC特有の二つのピークに対応
- 基礎特性

項目	值		
チップサイズ	2.5mm×5mm		
Ch数	16ch		
時定数	7μs	3µs	
動作温度	室温		
検出器容量	300pF		
ダイナミックレンジ	\pm 120fC / \pm 1600fC		
ゲイン	10mV/fC(High) / 0.5mV/fC(Low)		
ENC	4000e-/6000e-		

- LTARS2018_K06A回路構成(1ch)
 > プリアンプ, PZC回路, シェイパー
 - ➢ HG amp / LG amp
 - ・一つの入力信号に対して,二つの出力

■ ただし、液体アルゴン温度での動作はしない

LTARS2014搭載ボード

● アナログボード
 ■ LTARS2014×2 ⇒ 64ch処理可能

- デジタルボード(DELTA)
 - ADC, FPGA搭載
 - NIM信号でトリガー/同期

■ EthernetでPCにデータ送信

■ 検出器容量の測定

● 読み出しボードからTPCまでにのる静電容量
 > と:接続

エレキ変換基 盤	FT	ケーブル	TPC変換基 盤	TP C	静電容量
0	\bigcirc	×	×	×	20[pF]
\bigcirc	\bigcirc	\bigcirc	×	×	45[pF]
0	\bigcirc	\bigcirc	\bigcirc	×	55[pF]
0	\bigcirc	0	\bigcirc	\bigcirc	110[pF]
0	. —				

検出器 ■ Anodeパッドの容量

- Anodeパッドは5mmピッチで配置
- パッドとパッドの間に静電容量がのっている

1. Anodeパッドのデザイン検討
 2. LTARS2018の使用

