

T2K実験新型前置検出器を用いた 電子ニュートリノ事象選別のための 反応点再構成手法の開発

Development of reconstruction algorithms for electron neutrino events selection using the new type near detector of T2K.

22nd FEB. 2023

Hokuto Kobayashi

29th ICEPP SYMPOSIUM

T2K EXPERIMENT > About neutrino

Far detector, Near detector

ニュートリノ反応モデル

ニュートリノは弱い相互作用のみを介して反応点

- **Charged Current(CC)**
- **Neutral Current(NC)**
- 主要なT2Kのエネルギー帯での相互作用
 - **CC** Quasi-elastic (QE)
 - **CC** Resonance scattering (RES)
 - **CC** Deep inelastic scattering (DIS)

Resonance scattering

Deep inelastic scattering

T2K EXPERIMENT

線ニュートリノ振動実験

前置検出器 ND280と後置検出器 Super-K v_{μ} から v_{e} への振動現象を観測

茨城県東海村のJ-PARCで生成したニュートリノビームを岐阜県神岡のSuperKamiokandeで観測する長基

ニュートリノ振動とT2K EXPERIMENT

> ニュートリノ振動

> ニュートリノが飛行中にそのフレーバーが変化する現象

- 証を行なっている
 - ▶ 現状2σ以上の信頼度でCP対称性の破れを示唆

系統誤差の削減が必要

T T2K実験では ν_{μ} から ν_{e} の振動を解析することで**CP**位相 δ_{cp} によりレプトンにおける**CP**対称性の破れの検

CP位相

J-PARC NEUTRINO BEAMLINE

炭素標的から約280m離れた前置検出器でneutrino 反応の測定

FAR DETECTOR ~SUPER KAMIOKANDE~

Super-Kamiokande IV Run 999999 Sub 0 Event 33 11-11-23:19:16:50 Inner: 2461 hits, 5477 pe Outer: 3 hits, 3 pe Trigger: 0x07 D_wall: 1040.4 cm Evis: 598.5 MeV e-like, p = 598.5 MeV/c Ve Charge (pe)	like		•
<pre>>>26.7 23.3-26.7 20.2-23.3 17.3-20.2 14.7-17.3 12.2-14.7 10.0-12.2 8.0-10.0 6.2-8.0 4.7-6.2 3.3-4.7 2.2-3.3 1.3-2.2 0.7-1.3 0.2-0.7 < 0.2</pre>			
			810 648 486 324 162 0

水チェレンコフ観測装置(直径39.3 m,高さ41.4 m)

> SK-Gd

- ▶ Gdを水中に溶かして中性子検出効率UP
 - Gdが中性子を捕獲し計8 MeVのγ線を放出
 - **2020年7~8月**にGd₂(SO₄)₃·8H₂O13t
 - > 2022年6月に26 t(中性子検出効率 75%)

NEAR DETECTOR HALL

と
ビームターゲットから約280mに位置するdetector

振動前のニュートリノ測定・反応断面積測定

> ニュートリノビームモニター

> ND280と異なる標的・エネルギーでのニュート リノ測定

NEAR DETECTOR

> ニュートリノビーム中心に十字で配置

> シンチレータ・鉄層で構成されビーム強度・ 方向をモニター

▶ ニュートリノビーム中心からoff-axis1.5°に配置

> ND280と異なるエネルギーでの測定

WAGASCIモジュールで水標的反応を測定可能

ND280

棒状シンチレータで構成されたFGDとその前後に配置されたTPCで荷電粒子の方向・運動量を測定

FGD1で反応したevent

T2K ||

- 3σ 以上の信頼度で**CP**対称性の破れを示唆するために
 - > ビームパワー増強(統計量の増加):→1.3 MW
 - Hyper Kamiokande(2027)までに
 - 10×10^{21} POT(Proton On Target)のデータ取得
 - 系統誤差の抑制
 - 外部実験(NA61/SHINE)によるBeam fluxの理解
 - SK-Gd
 - **Near detector upgrade(2023~)**

ND280 UPGRADE

FGDは棒状シンチレータを縦横に重ねた構造→大角度散乱粒子や短い飛跡に対して分解能が悪い

SUPERFGD

13

SUPERFGD CUBE ASSEMBLY (FINISHED)

SUPERFGD ASSEMBLY(ON GOING)

した場所をデータベース化するシステムを作成・運用

 *レ_e*反応断面積由来の系統誤差削減

こユートリノ反応等によるγ,μの除去

> Upgrade detector を利用した ν_e selectionを開発中

SELECTION STEPS

VERTEX SELECTION

正確にVertex(反応点)を選択することで

- **SuperFGD内event**の選択
- 選択したvertexを下流の再構成や物理解析に利用
- Vertexを誤選択してしまうと
 - PIDのためのcone 構築を間違うことによる影響
 - **Event topologies** (\mathbf{l})
 - **Particle identification** $(\mathbf{2})$
 - ③ エネルギー再構成

DATA SAMPLES

使用するサンプル

e+p bomb (ν_e **CCQE** と似た組み合わせ) 123000 entries

VERTEX SELECTION STATUS

SELECTED VERTEX RESULT

NEUT sample(ν_e CCのみ)

85%のvertexは正確に選択されている

- 15%程度の誤選択の原因
 - **Miss-reconstruction**
 - Vertex候補が正しく再構成されていない
 - **Miss-selection**
 - > Vertex候補から正しく選択できていない
 - e + p Bomb sampleで再構成されたトラックを調べると
- 全イベントのうち5~10%が
- 正しく再構成されていない
 - 再構成アルゴリズムの 改善が必要

	e+p
Success	80 to 85
misreconstruction	10%
misselection	5 to 10 9
Total	100%

Vertex selection failure

MISS RECONSTRUCTION EVENT

electron, proton track同士が分割されていない→1粒子のtrackとして認識されている

KINK STEPS

Trackの分割アルゴリズム→kink finding

- つながっている全てのhitの集合から分割点を探索するアルゴリズム

 - deviation > 2 cmの点で分割される→2 track間の角度が大きいものへの感度が低い

 $(\text{deviation}) = |(\overrightarrow{hit} - \overrightarrow{front}) - (\overrightarrow{hit} - \overrightarrow{front}) * \overrightarrow{direction}|$

● 8点ずつの単位でスキャンを繰り返し、最初と最後の点を結ぶ直線から各点の距離(deviation)を計算する

VERTEX RECONSTRUCTION USING EDEPOSIT INFORMATION

Truth Vertex is x=0 (For simplicity)

EDEPOSIT FIT

VERTEX IDENTIFICATION

27

COMPARING FIT RESULT

vertexが再構成されているevent

> 1つのtrackには1粒子のみが含まれる(one particle event)

> vertexが再構成されていないevent

> 1つのtrackに2粒子が混ざっている(two particles event)

Energy Deposit を利用したVertex再構成精度の確認のため、2種類のeventにfittingを適用した

FIT RESULT

fitting失敗パターン

Fitted vertexもO付近にないので不適

VERTEX IDENTIFICATION RESULT

	Identified as one particle	Two particles
One particle events	30.5%	66.3%
Two particles events	38.2%	48.6%

Result of the two particles

	Distance < 50 mm
One particle events	33.8%
Two particles events	45.2%

> Vertexが再構成されていないeventに対して Energy depositを利用すると約20~25%の割合で vertexを再構成することができる

> 全eventのうち再構成できていないeventは約10%

> 2~3%程度vertex再構成率の上昇が見込める

誤認識率が大きいため,fitting方法などの見直しが必 要

SUMMARY

> Near detector upgradeによるニュートリノ反応の理解

 ν_o selection では約15%のeventにおいてvertexが誤選択されている

> 10%程度がvertexが正しく再構成されていないことが原因だと思われる

Energy deposit fitting

Electron&proton のEnergy depositの違いを利用してvertexの探索を試みた

Fittingによってvertexの再構成率が現状で2~3%向上することができる

> 誤認識率が高いためfitting方法などの改善が必要

J-PARC NEUTRINO BEAMLINE, BEAM ENERGY

SENSITIVITY-POT WITH SYSTEMATIC

NUE REACTION

true lepton momentum (MeV/c)

VERTEX SELECTION STEPS

- **2.** Select vertices not intersecting any connected tracks at the middle point.
- **3.** Select vertices that is consistent with the directions of tracks whose length is > 30 cm.
- 4. Select vertices within 2 nsec from the earliest vertex timing.
- **5.** Select a vertex connected to the longest track.

DISTANCE BETWEEN TRUTH AND SELECTED

NEUT sample(using only ν_e signal)

	Nue CC	Nue Non CC
Success Selection	402 entries (85.7%)	617 entries (70.3%)
Failure	67 entries	217 entries
	469 entries	834 entries

	e+p
Success	101263 entries (83.6%)
Failure	19862 entries
Total	121125 entries

MIS RECONSTRUCTION EVENTS

At first I checked failure event(look event display of reconstructed objects)

SUPERFGD RECONSTRUCTION(SFGRECON) STEPS

Sfgrecon algorithm flow

GROW TRACKS

- After fitting tracks, combining pairs of tracks has good match.
 - **Goodness match**
 - distance of the end points of two tracks < 15.0 mm
 - direction change of the end points < 15.0°
 - Maybe insensitive to large angle tracks same as kink steps.
 - I want to devise a large angle too.
 - χ^2 of the linear fit between the end states < 16.0
 - As long as the straight edges match, it will be misidentified.
 - Insensitive to curving tracks at edges of tracks.

TRUE VERTEX RECONSTRUCTED EVENTS

MISS RECONSTRUCTED EVENTS

Energy Step EDepRangeMissSFG Entries 211.5 Mean Std Dev 135.6 160-0 100 200 300 400 500 600 700 800 900 1000 EDeposit Range(a)

Smooth of step

2SUCCESS FIT - FIT RESULT IN MISS RECONSTRUCTED(EVENT4)

SUCCESS FIT - FIT RESULT IN MISS RECONSTRUCTED(EVENT228)

-300 L

FAILURE PATTERN - FIT RESULT IN MISS RECONSTRUCTED (EVENT523)

-300 L