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University of Wuppertal:
• Established in 1972
• Covering all disciplines
• 23000 students (mainly from Germany)
• 260 Professors
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Research Area “Novel Electronics and Photonics”
Chair of Smart Sensor Systems– Prof. Daniel Neumaier

Integrated Circuits

• Sensor Read-out
• Sensor Control

Flexible Electronics

• Wearables
• Health-Care

3D Integration on CMOS

• New Sensor Functionalities in Silicon

2D Materials

• Graphene
• MoS2

• hBN
Energy Harvesting

• Thermo-Electric
• RF-THz
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Two dimensional Materials

Diamond Graphite Fullerene / C60

Carbon 
Nanotubes

1996
2010

Graphene
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Graphene device production

0.03mm
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Graphene

➢High performance active components (transistors, diodes)

➢Compatible with Thin-Film-Technology.

• Conducting

• High carrier mobility

• Ultimately thin

• Solution processable

• Optical transparent

• Linear dispersion relation

• Flexible and strong

• Chemically inert

• Bio compatible
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TMDC= Transition Metal DichalCogenide

Crystal lattice:

• Atoms: Transition metal (Mo, W..) plus Chalcogen (S, Se..).

• Generally MX2: M is in the middle, X is on-top and below.

• Three atoms per unit cell.

• Top-view: hexagonal lattice.

• Van der Waals interaction between the different layers.

• k-space is also hexagonal (similar to graphene).

• Density pretty high (heavy metal). Typ. 5 g/cm².
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Introduction

D. Neumaier, Stephan Pindl and Max Lemme Nature Materials 2019
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Quantum Hall Resistance Standard

Oxford Instruments
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Graphene based photodetectors

➢ IR imaging with graphene enhanced CMOS technology.

➢Commercialized by different companies.
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TMDC based FETs for ultra-scaled logic

IMEC
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TMDC based FETs for ultra-scaled logic

13

Berkley team, published in Science 2016

• Metallic CNT used as 1nm long gate for a MoS2 FET.
• ZrO2 (high k) used as dielectric.
➢ Still very good FET behaviour.
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TMDC based FETs for ultra-scaled logic

14

Berkley team, published in Science 2016

• Metallic CNT used as 1nm long gate for a MoS2 FET.
• ZrO2 (high k) used as dielectric.
➢ Still very good FET behaviour.

➢Clear dependence on the layer number!
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TMDC based NMOS FETs

Target: Reliable nMOS FETs based on MoS2

Problem to be solved:
Strong n-type doping after encapsulation; large hysteresis

Reason:
Charge transfer from Al2O3 to MoS2; defect bands in Al2O3

Solution:
Introduction of hBN monolayer at the interface.

A. Piacentini et al. Advanced Electronic Materials (2022)
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TMDC based NMOS FETs

All 2D-Materials are (MO)-CVD grown

Layers stacked by subsequent wet-
transfer: Not optimal (contaminations) 
but good enough.

Back gated FETs fabricated by optical 
lithography and standard processing 

A. Piacentini et al. Advanced Electronic Materials (2022)
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TMDC based NMOS FETs

FETs with hBN show:
• No shift of threshold voltage after 

encapsulation with Al2O3.
• No difference between vacuum and 

ambient conditions.
• Little hysteresis.
• Lower subthreshold swing.

A. Piacentini et al. Advanced Electronic Materials (2022)
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TMDC based PMOS FETs

AMO/BUW (unpublished 2023)
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TMDC based CMOS circuits

𝑠𝑡𝑟𝑎𝑖𝑛 =
2𝑡

𝑟

Controllable strains were induced by placing the PI substrate on rigid cylinders of different radii 

𝑡= substrate thickness (~7 µm)
𝑟= cylinder radius (25.4, 12.7, and 6.4 mm)

AMO/BUW (unpublished 2023)
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TMDC based CMOS circuits
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h-BN+MoS2+h-BN transfer Edge contact formation and channel patterning

Top contact formation and channel patterningh-BN+WSe2+h-BN transfer

Second gate lift-off and encapsulation

NiNi

PdPd
h-BN+WSe2+h-BN

30 nm Al2O3

Pd

Ni

h-BN+ MoS2 +h-BN

7 µm PI
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Final structure

Gate Fabrication (lift-off) Dielectric deposition (ALD) and vias

AMO/BUW (unpublished 2023)
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TMDC based CMOS circuits

VIN VOUT

1 0

0 1

1 = logic high
0 = logic low Almost perfect behaviour of the voltage transfer characteristic:

- High VOUT (equal to VDD) for low VIN, 
- Low VOUT (equal to 0 V) for high VIN

AMO/BUW (unpublished 2023)
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TMDC based flexible electronics

Metal-
Oxide

Organic a-Si Poly-Si TMDC 
(CVD)

TMDC (Chemically 
Exfoliated)

CNTs
(from 

solution)

Mobility
(cm2V-1s-1)

Up to 100 0.1-20 0.1-1 Up to 100 Up to 100 Up to 10 10-80

IOn/IOff High High High Medium-
High

High Medium Medium

CMOS operation Poor
PMOS

Poor
NMOS

Poor
PMOS

Yes Yes Yes Medium 
NMOS

RF performance
(max. operation 

frequency)

~10 GHz ~40 MHz poor ~60 GHz ~10 GHz ~40 MHz ~10 GHz

Production efforts Medium Low Medium High Medium Medium-Low Medium

Temperature (°C) Low*  Low*  ~300 ~300 Low*  Low* Low*  

A. Piacentini et al. Advanced Electronic Materials (2023)
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Graphene RF ICs

4 Metal layers:

• M1: 100nm Al (gate 

electrode, passives)

• M2: 20 nm Nickel (graphene 

contacts)

• M3: 30 nm NiCr (resistors)

• M4: 2 µm Al (passives, 

interconnects)

3 Dielectric layers:

• D1: 5 nm TiO2 (diodes)

or 5-10 nm Al2O3 (FET)

• D2: 90nm Al203 

(encapsulation, capacitors)

• D3 500 nm SU8 (inductors)

Graphene / MoS2 is between D1 and M2, and can 

be used in diodes, varactors or/and transistors.
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Graphene RF ICs

QAM receiver on foil (2.4 GHz)Up-conversion mixer 10 GHz

Power detector (60 GHz)
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Graphene RF ICs

▪ Fully integrated mixer for 6-12 GHz

▪ Ring mixer core: 4x MIG diodes, 

▪ MMIC process: Reactive matching, LO & RF 

balun

A. Hamed, et al., “6–12 GHz MMIC Double-Balanced Upconversion Mixer based on Graphene Diode,” IMS 2018, pp.

674–677. DOI: 10.1109/MWSYM.2018.8439211
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Graphene RF ICs

▪ Fully integrated mixer

▪ Ring mixer core: 4x MIG diodes

▪ MMIC process: Reactive matching, LO & RF balun

A. Hamed, et al., “6–12 GHz MMIC Double-Balanced Upconversion Mixer based on Graphene Diode,” IMS 2018, pp.

674–677. DOI: 10.1109/MWSYM.2018.8439211
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Graphene device production

Possible integration scheme (e.g. on CMOS)

D. Neumaier et al. Nature Materials 2019
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Graphene device production

1. Growth on a separate substrate

2. Prepare target substrate

3. Transfer to target substrate

4. Encapsulation

5. Pattering 

6. Contact metallization

Required process steps
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Graphene device production

0.03mm
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Graphene device production
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Graphene device production

Monolayer Graphene by CVD on copper surface

On Foil using Roll-To-Roll Process

On Wafers

Transferable to nearly any surface!
S. Bae et al. Nature Nano. 5, 571 (2010)

Courtesy of Aixtron
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Graphene device production
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Graphene device production

200 mm wafer
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Summary

TMDC:
• Excellent material for ultra-scaled logic devices; but 

there are many challenges left.
• Also an ideal materials for flexible circuits; but there are 

many competitors out.

Graphene:
• Most production ready 2D material.
• Possible applications are sensors and flexible RF 

electronics.

Production:
• Key process steps are already at sufficient scale (8 inch)
• Pilot Line Process available through MPW runs
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