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Progress in improving the PS accuracy
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Disclaimer: list is not exhaustive

• Assessing the logarithmic accuracy of a shower 
      Herwig [1904.11866, 2107.04051], Deductor [2011.04777], Forshaw, Holguin, Plätzer [2003.06400]      

      PanScales [1805.09327, 2002.11114], Alaric [2110.05964], …


• Triple collinear / double soft splittings 
      Dulat, Höche, Krauss, Gellersen, Prestel [1705.00982, 1705.00742, 1805.03757, 2110.05964] 
      Li & Skands [1611.00013], Löschner, Plätzer, Simpson Dore [2112.14454], … 

• Matching to fixed-order 
      NLO; i.e. Frixione & Webber [0204244], Nason [0409146], … 
      NNLO; i.e. UNNLOPS [1407.3773], MiNNLOps [1908.06987], Vincia [2108.07133], … 
      NNNLO; Prestel [2106.03206], Bertone, Prestel [2202.01082] 

• Colour (and spin) correlations 
      Forshaw, Holguin, Plätzer, Sjödahl [1201.0260, 1808.00332, 1905.08686, 2007.09648, 2011.15087] 
      Deductor [0706.0017, 1401.6364, 1501.00778, 1902.02105], Herwig [1807.01955], Plätzer & Ruffa [2012.15215] 
      PanScales [2011.10054, 2103.16526, 2111.01161], … 

• Electroweak corrections 
      Vincia [2002.09248, 2108.10786], Pythia [1401.5238], Herwig [2108.10817], … 

see Simon’s talk

see Alexander’s talk

https://arxiv.org/abs/1401.6364
https://arxiv.org/abs/2103.16526
https://arxiv.org/abs/2111.01161
https://arxiv.org/abs/2002.09248
https://arxiv.org/abs/2108.10786


Addressing the accuracy of a parton shower
For a given observable, one may address the question of accuracy systematically

At fixed order


At all orders using analytic resummation
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σ = ∑
n

cnαn
s = c0 + c1αs + …

ΣNLL(λ ≡ αsL) = exp(
1
αs

g1(λ) + g2(λ) + …)

How to design showers that are NLL/NDL accurate for all observables?

ΣNDL(ξ ≡ αsL2) = h1(ξ) + αsh2(ξ) + …

𝒪(1/αs) 𝒪(1) in resummation regime where αsL = 𝒪(1)



Resummation 
Require single-logarithmic accuracy for suitably defined observables 
• global event shapes ( ) 
• parton distribution / fragmentation functions ( ) 
• non-global observables ( ) 
• particle/jet multiplicity ( ) 

αn
s Ln

αn
s Ln

αn
s Ln

αn
s L2n−1
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Dasgupta, Dreyer, Hamilton, Monni, Salam [1805.09327]

Test the basic underlying concept 
Require correctness of effective matrix elements generated by the shower for well-
separated emissions (only thing one can do if a resummation cannot be formulated)

PanScales NLL/NDL correctness requirements 

Probe the structure of double-log Sudakov resummation in the shower

Probe the hard-collinear region

Probe the soft wide-angle region

Probe nested emissions in the soft and collinear regions 
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η

ln kt /Q

Illustrated in the Lund Plane  
[B. Andersson, G. Gustafson, L. 
Lonnblad, U. Pettersson, 1989]

Z,h

Testing the underlying concept

• QCD amplitudes factorise in soft 
and collinear limits


• Shower has factorised  
splitting kinematics implemented


• Shower must reproduce the 
factorised amplitude when 
emissions are ‘sufficiently’ 
independent


1 → 2

This means that any 
particle emitted after 

particle 1 may not influence 
the kinematics of particle 1!
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and collinear limits


• Shower has factorised  
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This means that any 
particle emitted after 

particle 1 may not influence 
the kinematics of particle 1!
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η

2
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Here shower may fail to 
reproduce exact 

amplitude 
Would require higher-

order splitting 
kinematics 
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and collinear limits


• Shower has factorised  
splitting kinematics implemented
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Testing the underlying concept



Testing the underlying concept
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η

2

2

Here shower may fail to 
reproduce exact 

amplitude 
Would require higher-

order splitting 
kinematics 

ln kt /Q

1

1

• QCD amplitudes factorise in soft 
and collinear limits


• Shower has factorised  
splitting kinematics implemented


• Shower must reproduce the 
factorised amplitude when 
emissions are ‘sufficiently’ 
independent


1 → 2
What determines the shower accuracy?

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter

(apart from having the correct splitting functions)
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η

ln kt /Q

ln v1

ln v2 < ln v1

ln v3 < ln v2

Transverse-momentum ordered with βPS = 0

A parton shower orders emissions

The evolution variable  tells us which 
emissions come first, and which later in the 
showering process

We use the definition 

v

v ≃ kte−β|η|

Choice for most dipole parton showers 

β = 0

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter

1. Evolution variable What determines the shower accuracy?



11

η

ln kt /Q

Introduce some angular dependence with β > 0
Angular-ordering (e.g. as implemented in Herwig)  

will not be considered here

ln v1

ln v2 < ln v1

ln v3 < ln v2

A parton shower orders emissions

The evolution variable  tells us which 
emissions come first, and which later in the 
showering process

We use the definition 

v

v ≃ kte−β|η|

β = 0.5

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter

1. Evolution variable What determines the shower accuracy?



1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter
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pi = aip̃i + bip̃j + fk⊥

pj = aj p̃i + bj p̃j + (1 − f )k⊥

pk = ak p̃i + bk p̃j + k⊥

Local kinematic map

pk , f = 0

q q̄(p̃j)

g(p̃i)

q q̄(pj)

g(pi)
pk , f = 1 Mapping coefficients depend on 

• Evolution variable  
• Rapidity  

ln v
η

Dipole: step function for  
Antenna: smooth transition for 

f
f

2. Kinematic map 
What determines the shower accuracy?
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q q̄(p̃j)

g(p̃i)

q q̄(pj)

g(pi)

pi = aip̃i

pj = bj p̃j

pk = ak p̃i + bk p̃j + k⊥

Global kinematic map

Boost (part of) event after each 
emission to restore momentum 

conservation

pk

Choice: global in some/all  and  components +/− ⊥

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter
2. Kinematic map 

What determines the shower accuracy?
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ln kt /Q

 sideq̄ sideq

1

Expected attribution of recoil

g1

 re
co

ils

q

 recoils

q̄

 recoils
g

1

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter3. Choosing the emitter

What determines the shower accuracy?
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Standard dipole showers distinguish the emitter from 
the spectator at  in the CM dipole frameη = 0

Event frame Dipole frameg(p̃i)

q̄(p̃j)

Boosting back to 
the event frame…

g(p̃i)

q̄(p̃j)

g(p̃i)

q̄(p̃j)

g(p̃′ i) q̄(p̃′ j)
Recoil to g Recoil to q̄

Leads to an incorrect 
(and quite unphysical) 
recoil picture!

Physical attribution of 
recoil

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter3. Choosing the emitter

What determines the shower accuracy?
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ln kt /Q

 sideq̄ sideq

1

g1

 re
co

ils

q

 recoils

q̄

 recoils
g

1

Wrong recoil pattern!

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter3. Choosing the emitterRecoil attribution for transverse-momentum ordered 

local shower (choosing emitter in dipole frame)

What determines the shower accuracy?
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ln kt /Q

 sideq̄ sideq

1

Recoil attribution for transverse-momentum ordered 
local shower (choosing emitter in event frame)

g1

 re
co

ils

q

 recoils

q̄

 recoils
g

1

Less wrong, but still not correct recoil pattern!

1. Evolution variable 
2. Kinematic map 
3. Choosing the emitter3. Choosing the emitter

Can be fixed using a different 
ordering variable, such that 
large-angle emissions come 

prior to small-angle ones (with 
same ), or a global mapkt

What determines the shower accuracy?
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The current status of possibly NLL-accurate dipole showers
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PanLocal

PanGlobal

Deductor kt

Deductor Λ

Ordering Kinematic map
Dipole-local Global

0 < β < 1

0 ≤ β < 1

β = 0

β = 0

β = 1

Manchester-Vienna β = 0

+, − , ⊥

+, − ⊥

−, ⊥

Showers also differ on the implementation of the splitting functions and how the global imbalance is redistributed

Possible NLL dipole-shower solutions for e e+ −

All have different approaches to assess NLL accuracy

(Dipole and antenna)
PanScales 
showers
[2002.11114]

Alaric
[2208.06057]

Deductor
[2011.04777]

(Also formulation with ) +, − , ⊥

[2003.06400]

+

−, ⊥+

−, ⊥+

−, ⊥+

Tests

Fixed- and all-order 
numerical tests for 

different observables 
for  and  
(colour singlet)

e+e− pp

Numerical tests for 
global event shapes

Analytical and to some 
extent numerical for 

thrust

Analytical for thrust 
and multiplicity
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Examine behaviour of higher-order shower operators  to the Laplace-space thrustI[k≥2]
n (ν)

Interesting and important to perform the all-order checks, and to see other observables…

Nagy, Soper [2011.04777]

Approaches a constant 
 no  or  term→ L3 L2

A residual  dependence L2

n.b. this shower is also 
checked analytically for 

thrust

Deductor

 may not contain  /  for an LL/NLL showerI[k≥2]
n (ν) Ln+1 Ln
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Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114]PanScales

Consider e.g. Cambridge y23

ΣNLL(λ, αs) = exp [−Lg1(λ) + g2(λ)]

Observable with standard resummation  
at NLL of the form

with λ = αs ln y23

Test lim
αs→0

ΣPS(λ, αs)
ΣNLL(λ, αs)

!= 1
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• Pythia8 deviates from NLL

• Dire looks identical to Pythia8

• PanLocal  softens the issue, 
but still wrong

• PanLocal  works

• PanGlobal  works

(β = 0)

(0 < β < 1)

(0 ≤ β < 1)

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114]

Test lim
αs→0

ΣPS(λ, αs)
ΣNLL(λ, αs)

!= 1

PanScales
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• Pythia8 deviates from NLL

• Dire looks identical to Pythia8

• PanLocal  softens the issue, 
but still wrong

• PanLocal  works

• PanGlobal  works

(β = 0)

(0 < β < 1)

(0 ≤ β < 1)

Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114]PanScales

Test lim
αs→0

ΣPS(λ, αs)
ΣNLL(λ, αs)

!= 1
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• Pythia8 deviates from NLL

• Dire looks identical to Pythia8

• PanLocal  softens the issue, 
but not NLL accurate

• PanLocal  works

• PanGlobal  works

(β = 0)
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(0 ≤ β < 1)
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• Pythia8 deviates from NLL

• Dire looks identical to Pythia8

• PanLocal  softens the issue, 
but not NLL accurate

• PanLocal  works

• PanGlobal  works
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Dasgupta, Dreyer, Hamilton, Monni, Salam, Soyez [2002.11114]PanScales
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Tests for all types of global observables performed at full colour ( , NODS) 
 with 2-loop running at 

CF = 4/3, CA = 3
α(CMW)

s λ = − 0.5

FC1−β ∼ Sβ = ∑
i∉qq̄

p⊥,i e−β|ηi|

Mβ = max
i∉qq̄

[p⊥,i e−β|ηi|]
PanScales

βobs = 0

βobs = 0.5

βobs = 1

Hamilton, Medves, Salam, Scyboz, Soyez [2011.10054]
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+Δψ12, BT, FC1, FC1/2 , MH

Thrust (βobs = 1)Cambridge y23 (βobs = 0)

Herren, Höche, Krauss, Reichelt, Schönherr [2208.06057]Alaric

Tests performed at leading colour 
( ) 

fixed coupling, no , no  
extrapolation

2CF = CA = 3

KCMW αs → 0
Testing method similar to PanScales but
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Thrust (βobs = 1)Cambridge y23 (βobs = 0)

Tests performed at leading colour 
( ) 

fixed coupling, no , no  
extrapolation

2CF = CA = 3

KCMW αs → 0

Herren, Höche, Krauss, Reichelt, Schönherr [2208.06057]

[n.b. recoil effects were also analyzed analytically]

Test lim
αs→0

ΣPS(λ, αs)
ΣNLL(λ, αs)

Seems to converge, 
but how to be sure?

Testing method similar to PanScales but

Alaric



Non-global observables
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DGLAP evolutionMultiplicity

Fixed-order checks

[2002.11114, 2103.16526, 2011.10054, 
2111.01161, 2205.02237, 2207.09467]But there is more to test!
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Including higher-logarithmic effects



Including higher-logarithmic effects
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Discussion so far is based on the factorisation in a single unresolved limit  

What about double-unresolved configurations? 

Triple-collinear splitting functions Double-soft emissions
Catani, Grazzini [9810389, 9908523] Campbell, Glover [9710255] 

Catani, Grazzini [9908523]

These corrections need to be included to get to NNLL/NNDL accuracy



Analytic ingredients - new hard collinear terms 
One important and new ingredient for a fully differential shower is  

Consider the Sudakov for transverse-momentum resummation

B2(z)

33

S(Q, b) = exp −∫
Q2

b̄2/b2

dq2

q2 [A(αs(q2))ln
Q2

q2
+ B(αs(q2))]

Parisi, Petronzio [NPB 154 (1979) 427-440]

A(αs) =
∞

∑
n=1

( αs

2π )
n

An B(αs) =
∞

∑
n=1

( αs

2π )
n

Bn

 are observable independent  
(they only depend on the emitting particle)

A1, B1, A2

Both obey a perturbative expansion in αs

Dasgupta, El-Menoufi [2109.07496]

https://doi.org/10.1016/0550-3213(79)90040-3


Analytic ingredients - new hard collinear terms 
One important and new ingredient for a fully differential shower is  

Consider the Sudakov for transverse-momentum resummation

B2(z)
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S(Q, b) = exp −∫
Q2

b̄2/b2

dq2

q2 [A(αs(q2))ln
Q2

q2
+ B(αs(q2))]

Parisi, Petronzio [NPB 154 (1979) 427-440]

A(αs) =
∞

∑
n=1

( αs

2π )
n

An B(αs) =
∞

∑
n=1

( αs

2π )
n

Bn

Both obey a perturbative expansion in αs

 is observable-dependent, i.e. for a quark emitterB2

Bq
2 = − γ(2)

q + CFb0Xv
Catani, de Florian, Grazzini 

[0008184, 0407241]

 needs to be included in a differential manner Bq/g
2 → Bq/g

2 (z)

Dasgupta, El-Menoufi [2109.07496]

https://doi.org/10.1016/0550-3213(79)90040-3


 for quark channelsB2(z)
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+ virtual corrections

CFCA C2
F

CFTRnF CF (CF −
CA

2 )Identical quarks 
interference

2. Isolate the pure NNLL terms (subtract iterated LO splittings and  contributions)KCMW

1. Integrate the triple-collinear contributions over 2 energies and 1 angular variable ( ) θ, ρ, kT, …

Result:  differential in  for all channelsBq
2 (z) z, θ

Non-abelian Abelian  
splitting

g → q(′ )q̄(′ )

∫
1

0
dz [Bq,CFCA

2 (z) + Bq,C2
F

2 (z) + Bq,CFTRnF
2 (z) + Bq,id

2 (z)] = − γ(2)
q + CFb0Xv = B2

Observable-dependence depends on the scale of the coupling through the angular variable that is fixed

To be done: get , implement this in a shower, 
understand cross-talk with double-soft…

Bg
2 (z)

Dasgupta, El-Menoufi [2109.07496]



Implementing higher-order splitting kernels
Consider quark-pair emissions in the triple-collinear (tc) and double-soft (ds) limits 

36

Need to remove overlapping singularities and contributions obtained by LO iteration 
Complete MEs in the tc and ds limits 

(latter with a minus sign to remove the double counting)

Diagrams obtained iterating LO splittings

Result is fully finite through introduction of integrated subtraction terms and factorization counter terms 
Generate emissions using the  branching kernels in a  ‘tripole’1 → 3 2 → 4

Note that this is not an NNLL shower, i.e. the 
kinematic map has the issues pointed out before

Dulat, Gellersen, Höche, Prestel [1705.00742, 1805.03757, 2110.05964]



Implementing higher-order splitting kernels
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• Dire with soft-subtracted triple-
collinear  splittings 

•  included in the coupling (not 
in differential form) 

q → qqq̄

KCMW

tc corrections shift the 
 distribution wrt the 

LO shower
y23

• Dire with only double-soft 
corrections (all channels) 

[2110.05964]

ds corrections have a 
similar effect as the 

soft-subtracted tc terms 
on the  distributiony23

[1805.03757]

Dulat, Gellersen, Höche, Prestel [1705.00742, 1805.03757, 2110.05964]
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Towards phenomenology



α(CMW)
s = αs(xrμr,0)(1 +

KCMWαs(xrμr,0)
2π

+ 2αs(xrμr,0)b0(1 − z)ln xr)

Towards LEP phenomenology

39

• PanLocal  dipole shower 

• Heavy quarks (  GeV,  GeV)

• Matching to NLO

• Renormalisation-scale uncertainties included

• Enhanced coupling - 

• Hadronisation from Pythia8 with the Vincia tune

(β = 0.5)

mc = 1.5 mb = 4.8

αs = α(CMW)
s + A3α3

s

Hadronisation region  
(tuning of the shower is needed)

PanScales [preliminary]
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Poor description in the 4-jet region - need for 2-jet at NNLO?

Towards LEP phenomenology
PanScales [preliminary]

α(CMW)
s = αs(xrμr,0)(1 +

KCMWαs(xrμr,0)
2π

+ 2αs(xrμr,0)b0(1 − z)ln xr)

• PanLocal  dipole shower 

• Heavy quarks (  GeV,  GeV)

• Matching to NLO

• Renormalisation-scale uncertainties included

• Enhanced coupling - 

• Hadronisation from Pythia8 with the Vincia tune

(β = 0.5)

mc = 1.5 mb = 4.8

αs = α(CMW)
s + A3α3

s
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• No NLO matching, no masses

• CMW scheme with flavour thresholds

• Thresholds at  GeV,  GeV

• Hadronisation from Pythia8 with default parameters except
Alaric: PARJ(21) = 0.3, PARJ(41) = 0.4, PARJ(42) = 0.36
Dire: PARJ(21) = 0.3, PARJ(41) = 0.4, PARJ(42) = 0.45

mc = 1.42 mb = 4.92

Qualitatively similar features observed as for the PanLocal shower

Herren, Höche, Krauss, Reichelt, Schönherr [2208.06057]

Towards LEP phenomenology



Conclusions
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• Parton showers will continue to play an indispensable role in any (future) particle physics 
experiment

• NLL showers for massless partons in  collisions from several groups are now available
• Including massive partons is a natural next step

• But what about the step to NNLL?
• We need to understand the logarithmic structure 
• We need to have reference calculations, e.g.

• Next-to-leading non-global logarithms Banfi, Dreyer and Monni [2104.06416] 
• NNDL multiplicity Medves, Soto-Ontoso, Soyez [2205.0286] 
• NNLL groomed jet observables Anderle, Dasgupta, El-Menoufi, Helliwell, Guzzi [2007.10355, 2211.03820] 

• And what about QED/EW radiation?

e+e−



Back up
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J
H
E
P
0
3
(
2
0
2
1
)
0
4
1

Q [GeV] αs(Q) pt,min [GeV] ξ = αsL2 λ = αsL τ

91.2 0.1181 1.0 2.4 −0.53 0.27
91.2 0.1181 3.0 1.4 −0.40 0.18
91.2 0.1181 5.0 1.0 −0.34 0.14
1000 0.0886 1.0 4.2 −0.61 0.36
1000 0.0886 3.0 3.0 −0.51 0.26
1000 0.0886 5.0 2.5 −0.47 0.22
4000 0.0777 1.0 5.3 −0.64 0.40
4000 0.0777 3.0 4.0 −0.56 0.30
4000 0.0777 5.0 3.5 −0.52 0.26
20000 0.0680 1.0 6.7 −0.67 0.45
20000 0.0680 3.0 5.3 −0.60 0.34
20000 0.0680 5.0 4.7 −0.56 0.30

Table 1. Values of ξ = αsL2, λ = αsL and τ (defined in eq. (7.10)) for various upper (Q) and lower
(pt,min) momentum scales. The coupling itself is in a 5-loop variable flavour number scheme [45–48],
while τ is evaluated for 1-loop evolution with nf = 5.

use λ = αsL = −0.5. This corresponds to a slightly narrower range of logarithm than
our choice for ξ, in part to help mitigate some of the technical difficulties of the αs → 0
limit. We perform such studies for event shapes (section 7.2.2) and non-global logarithms
(section 7.3).

Generation with very small αs and fixed ξ or λ is often difficult. Many of the techniques
that we use were outlined in the supplemental material to ref. [12]. For the work presented
here we added three main new advances:

1. We implemented a weighted generation technique that is equivalent to evolving multi-
ple replicas of an event, discarding a replica when it emits into a region of phase-space
that we wish to veto, and then adjusting the number of replicas and their weights so
as to continue generating with the original effective number of replicas (cf. section 3
of ref. [49]). For the combinations of αs, shower and event-shape that were most
challenging in ref. [12], this enabled us to save about an order of magnitude in com-
puting time, associated with accessing regions with very strong Sudakov suppression.
It also enabled us to reach small αs values that were simply not feasible in ref. [12],
facilitating the extrapolation to αs = 0.

2. We adjusted the shower implementation so that it can track differences in directions
between neighbouring particles in the dipole chain. This works around issues that
arise in normal shower implementations where it becomes difficult to determine an-
gles between particles (and dot products, etc.) when those angles go below machine
precision ε. This, together with the next point, was especially useful in allowing for
smaller αs and larger values of the (absolute) logarithm in double-logarithmic tests,
though it also facilitated cutoff dependence tests in the NLL event-shape studies. It
has a small ∼ 30% speed penalty, and some implementation overhead, but avoids

– 28 –

Mapping between  and physical quantitiesλ
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Z,h

kt1 ≡ kt1(ln v1, η1 < 0)

Choice of evolution variable (1) + kinematic map (2)  
determine phase-space contours in the Lund plane

Fixed-order checks also give powerful information
van Beekveld, Ferrario Ravasio, Salam, Soto-Ontoso, Soyez, Verheyen [2205.02237]

van Beekveld, Ferrario Ravasio, Salam, Soto-Ontoso, Soyez, Verheyen [2205.02237]
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Region not 
relevant for 
NLL

Z,h

kt2, η2 ≪ η1

kt2, η2 ≫ η1
k̃t1 → kt1

How does a second emission affect 
the first emission’s momentum?

Amplitudes factorise in the soft and collinear limits

van Beekveld, Ferrario Ravasio, Salam, Soto-Ontoso, Soyez, Verheyen [2205.02237]
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Z,h

kt2, η2 ≪ η1

kt2, η2 ≫ η1
k̃t1 → kt1

How does a second emission affect 
the first emission’s momentum?

NLL expectation:  
should not change as 
an effect of the  
recoil

kt,1

kt,2

Amplitudes factorise in the soft and collinear limits

van Beekveld, Ferrario Ravasio, Salam, Soto-Ontoso, Soyez, Verheyen [2205.02237]
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Dipole-  fails to meet the 
fixed-order criterion!

kt

Direct consequence of CM 
dipole separation

Z,h

kt2, η2 ≪ η1

kt2, η2 ≫ η1
k̃t1 → kt1

How does a second emission affect 
the first emission’s momentum?

q̄(p̃j)

g(p̃i)
NOT OK

OK OK

1
2 (η1 + ln

kt1

Q ) < η2 <
1
2 (η1 − ln

kt1

Q )
Wrong in rapidity region

Amplitudes factorise in the soft and collinear limits

van Beekveld, Ferrario Ravasio, Salam, Soto-Ontoso, Soyez, Verheyen [2205.02237]
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Such showers may introduce spurious 
logarithms at higher orders, which 
could get masked/come with a tiny 
coefficient for some observables NOT OK

OK OK

van Beekveld, Ferrario Ravasio, Salam, Soto-Ontoso, Soyez, Verheyen [2205.02237]



Deductor
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 contains a sum of powers of Laplace-space splitting operators  for a first-order parton showerI(ν) S

In general, the action of  on a partonic state is complicated (includes e.g. the map) S

i.e. in the soft-
collinear 

approximation 
(no change in the 

kinematics)

Consider the showered thrust variable in Laplace space, written as g̃(ν) = (1 | I(ν) |ρH)

Nagy, Soper [2011.04777]

I(ν) =
∞

∑
k=1

I[k](ν)



Deductor
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I[k](ν) =
∞

∑
n=k [ αs(Q2/ν)

2π ]
n

I[k]
n (ν)

where  may contain at most  I[k]
n Ln+1

 may not contain  nor → I[k≥2]
n (ν) Ln+1 Ln

expanding the coupling gives usI(ν) =
∞

∑
k=1

I[k](ν)

Relating this to an analytic calculation, LL and NLL contributions 
should be fully generated by the exponentiation of the first-order operator ( )

(αn
s Ln+1, αn

s Ln)
I[1](ν)

Higher-order expansions may not spoil this picture

Nagy, Soper [2011.04777]

 contains a sum of powers of Laplace-space splitting operators  for a first-order parton showerI(ν) S

Consider the showered thrust variable in Laplace space, written as g̃(ν) = (1 | I(ν) |ρH)
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LL tests for CFFE
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Global event shapes for pp
Sp/j,β = ∑

i∈f/jets

p⊥,i e−β|ηi| Mj,β = max
i∈jets

[p⊥,i e−β|ηi|]



Global event shapes for yZ ≠ 0

54



Parton distribution functions
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DGLAP expectation



Non-global observable
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Δη



Particle multiplicity

57
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• Consider  production at the LHC

• Toy setup (fixed underlying born) 

• Toy PDFs

• Uncertainty estimated from ,  variations

Z

μR μF

van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen [2207.09467]

Towards LHC phenomenology - ptZ

only included for NLL showers 
to compensate scale uncertainty for soft emissions

α(CMW)
s = αs(xrμr,0)(1 +

KCMWαs(xrμr,0)
2π

+ 2αs(xrμr,0)b0(1 − z)ln xr)
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• Consider  production at the LHC

• Toy setup (fixed underlying born) 

• Toy PDFs

• Uncertainty estimated from ,  variations

Z

μR μF

van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen [2207.09467]

Towards LHC phenomenology - ptZ

Differences are relatively small except at very small   
(related to the absence of azimuthal cancelations)

ptZ



60 Spread of NLL showers

(Dipole-kt global (LL) is contained)

DY production,  GeVMZ = 91.1876

• Consider  production at the LHC

• Toy setup (fixed underlying born) 

• Toy PDFs

• Jets clustered with anti-  ( )

• Set 

Z

kt R = 0.4

|Δy12 | > 1

van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen [2207.09467]

Towards LHC phenomenology - Δψ12



61 Dipole-kt global now falls

outside the spread

DY production,  GeVMZ = 500

• Consider  production at the LHC

• Toy setup (fixed underlying born) 

• Toy PDFs

• Jets clustered with anti-  ( )

• Set 

Z

kt R = 0.4

|Δy12 | > 1.5

van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen [2207.09467]

Towards LHC phenomenology - Δψ12



A standard dipole shower: dipole-kt
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1. Evolution variable: transverse momentum ( ) 

2. Kinematic map:  
    a) Local 

    b) Global 

3. Attribution of recoil: dipole CM frame

kt

Dates back to Gustafson, Petterson [Nucl. Phys. B 306 (1988)], Catani, Seymour [hep-ph/9605323], many variations available

For every emission the momentum is locally conserved
This means that the e.g. the Z-boson  almost never gets rescaled 

 not in line with the NLL prediction
pt

→

The Z-boson absorbs the  imbalance induced by the global map through a boost
Claimed to fix the Z-  distribution

kt
pt

Plätzer, Gieseke [0909.5593], Höche, Prestel [1506.05057]

Plätzer, Gieseke [0909.5593], Nagy, Soper [0912.4534]

[Pythia8 & Deductor have different solutions]
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PanLocalPanGlobal

These showers meet the 
fixed-order criterion

OKOK OK OK



PanGlobal
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Issue for βPS = 1
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•With                                and 

•For  this equates to                and becomes 
independent of 

β = 1
η̄

•For IF dipoles, momentum of first emission is 
rescaled by  in mapbj = 1 − βk

1 −
s̃i

s̃ij

v
Q

•Consider change in first emitted parton:

pk,1 = p̃j → bjpk,1 = (1 −
s̃i

s̃ij

v2

Q ) pk,1

s̃i

s̃ij
=

2p̃i ⋅ Q
2p̃i ⋅ p̃j

=
1

bk,1
bk,1 = βk,1 =

v1

Q

k⊥,1

k⊥,1 after 2
= (1 −

v2

v1 )



PanLocal issue for βPS = 0
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•Separation of dipole in event CM frame is not 
enough to cure dipole-showers with local maps 
from locality issue, the transverse momentum 
ordering is problematic here

•Only when emissions are ordered in angle 
( ) we solve thisβPS > 0

•Recoil is taken from the first gluon even when 
emissions are separated in rapidity

•Then commensurate  emissions are ordered in 
angle, so they take their recoil from the hard 
system (after boost)

kt



Colour tests

Test of the differential matrix element 

Here primary  Lund plane and the new  
Lund leaf 

LC = leading colour (standard) 
FC = full colour 

CFFE = standard colour treatment 

Segment and NODS two ways to improve 
the colour handling in the PanScales 
showers

q̄q g
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Colour tests

68

Test of the 
integrated rate 
of emissions



Spin tests
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Two collinear emissions



Spin tests
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One collinear, one soft emission



Spin tests
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Three collinear emissions



Super-leading logarithms
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• Consider , max  of emissions in the right 
hemisphere (sensitive to super-leading logs at )

MR,0 p⊥
𝒪(α3

s )

• Take toy-model approach with only soft primary emissions 
and fixed coupling

• Clearly a discrepancy at fixed-order for standard dipole 
showers

• Take difference between CEASAR result and toy shower 
, n = order in , where  has terms 

of  with 

δFn(L) αs F = ∑ αn
s Fn

αn
s Lm m ≤ n

• Vanishes at all orders because it is numerically 
comparable to the NNLL terms -> orange points

2002.11114



Super-leading logarithms
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• Discrepancy not there 
for PanScales family of 
showers

2002.11114



Transverse momentum of the Z boson
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Scaling at small pt

The Sudakov suppression is compensated by 
azimuthal cancellations at small 

Leads to a power-law fall-off
pt

Parisi, Petronzio [NPB 154 (1979) 427-440]
dΣ
dp2

tZ
= ∫

∞

0

db
2

b J0(bptZ) ΣV(b0/b)

https://doi.org/10.1016/0550-3213(79)90040-3

