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Outline

I will illustrate recent progress in the study of (linear) power
suppressed corrections in collider processes, obtained in the
framework of renormalon calculus.

▶ Absence of linear power corrections in certain collider
observables involving massless partons.

▶ Implications for e+e−-annihilation shape-variables in the 3-jet
region.

▶ Fits to ALEPH data.

▶ The case of massive partons.

▶ Say something smart about parton shower generators.
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Recent progress

There have been recently new findings regarding the structure of linear
power corrections in collider observables:

▶ In ref. (JHEP 01 (2022) 093, Caola, Ferrario-Ravasio, Limatola,
Melnikov, P.N.) it was demonstrated that linear power corrections
are absent in sufficiently inclusive observables, in a variety of
processes, in the framework of renormalon calculus.

▶ The same findings opened the possibility to compute linear power
corrections to shape variables in the 3-jet configuration (JHEP 12
(2022) 062, Caola,Ferrario-Ravasio,Limatola,Melnikov, Ozcelik,P.N.)
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Renormalon calculus

Example: qγ → Z + q at large transverse momentum.
Representative graphs for: virtual, real with g , real with qq̄:

where
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It turns out that the result of the bubble sum can be linked to a
calculation with a massive gluon. For an (IR safe) observable O,
we have

⟨O⟩ = BO −
∫

dλ
dTO(λ)

dλ

1

αS

Beneke,98︷ ︸︸ ︷[
1

πb0
arctan

πb0αS

1 + b0αS log λ2/µ2
C

]
Where

TO(λ) =

result for a gluon with mass λ︷ ︸︸ ︷
VO(λ) + RO(λ) +

Seymour,P.N.1995︷ ︸︸ ︷
∆O(λ) ,

∆O(λ) =
3πλ2

αSTF

∫
dΦqq̄Rqq̄(Φqq̄)δ(m

2
qq̄ − λ2) [O(Φqq̄)− O(Φg∗)]

It turns out that a linear term in λ in the expansion of T (λ)
around zero is associated with linear renormalons.
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▶ The framework outlined above can be seen as the large
(negative!) nf limit of QCD.

▶ The full perturbative expansion is calculable in principle.

▶ The origin of renormalons is quite transparent.

▶ It has only been applied so far to processes not involving
gluons at the Born level.

Applications to QCD require further assumptions:

▶ Use the result of the large nf model as an indication of what
happens in the full QCD.

▶ Replace 4Tf nf → −11CA + 4Tf nf at the end of the
calculation to make numerical estimates.
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The new findings

▶ The new findings
( Caola,Ferrario-Ravasio,Limatola,Melnikov,P.N.) regard the
absence of linear terms in λ for collider processes involving
two external massless quarks.

▶ They reproduce old results: the absence of linear renormalons
in e+e− → qq̄, in the DY total cross section
(Beneke,Braun,1995) and rapidity distribution
(Dasgupta,1999).

▶ New results: the absence of linear renormalons in the
differential distribution of a Z boson produced in the process
qγ → qZ . (This has the structure of a Z recoiling against a
hadronic jet, so it can be taken as an indication of the
absence of linear renormalons in the differential distribution of
a Z boson produced at the LHC).
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Notice that

▶ Real and virtual corrections exhibit infrared divergences,
leading to results that scale like λ0 times logs of λ plus
constant terms.

▶ We are after terms that scale like λ1, so the leading soft
approximation is not enough to get them right.
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The new findings

We find that

▶ Virtual corrections do not generate linear terms.

▶ Real corrections do not generate linear terms, irrespective of
the structure of subleading soft term.

The cancellation of linear terms in the real corrections is better
seen if

▶ the real phase space is factorized into an underlying Born and
a radiation phase space;

▶ the factorized mapping satisfies (in the soft limit) certain
linearity conditions in the radiation variables;

Under these conditions, by integrating in the radiation variables at
fixed underlying Born momenta, no linear terms in λ are generated.

10 / 34



It can be shown that the “dangerous” soft integrals have the form∫
d3k⃗

k0

[
1

pq · k pq̄ · k
,

kµ

pq · k pq̄ · k
,

λ2

(pq · k)2 pq̄ · k

]
where pq/q̄ are the “underlying Born”, and k is the radiation
variables. By just performing the integrations we get no linear
terms in λ.

This is non-trivial, since all terms, by scaling, could in principle
lead to linear terms.

The linearity condition of the mapping guarantees that expanding
the full real momenta Pq/q̄(pq/q̄, k) in powers of k we get at most
terms like the middle one in the above integrands (plus eventually
non-linear terms that vanish by azimuthal integration in the dipole
rest frame.)
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Mappings example

Dipole mappings that in the soft limit become

P1 = p1 −
p2k

2p1p2
p1 +

p1k

2p1p2
p2 −

k

2
+ f (y)k⊥

P2 = p2 −
p1k

2p1p2
p2 +

p2k

2p1p2
p1 −

k

2
− f (y)k⊥

where y and k⊥ are the rapidity and transverse momentum of the
gluon in the dipole rest frame.

▶ They satisfy P2
1/2 = 0, P1 + P2 + k = p1 + p2, and for

k = γp1/2 we have P1/2 = (1− γ)p1/2, P2/1 = p2/1.

▶ They are linear in k , except possibly for the coefficient of k⊥
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Implications for shape variables

The findings illustrated so far have profound implications for shape
variables. A cumulative cross section can be written as

Σ(v) =

∫
dσθ(v − V (P))

where V is a shape variable, and we can rewrite

Σ(v) =

∫
dσθ(v − V (p))︸ ︷︷ ︸

no linear λ terms

+

∫
dσ [θ(v − V (P))− θ(v − V (p))]︸ ︷︷ ︸

Vanishes in IR limit!

But now

▶ no linear corrections in the first term (can be integrated first
in the radiation variables at fixed underlying Born momenta);

▶ The second term has an IR suppression: we only need to use
the soft approximation for dσ to evaluate the linear λ terms.
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Since we can rely upon the soft approximation:

▶ we can apply our result to the e+e− → qq̄g process, that
controls the distribution of shape variables in the 3-jet region.

▶ We evaluate the linear correction for the three radiating
dipoles, qg , q̄g and qq̄, by writing the soft emission in the
eikonal approximation.

▶ In previous literature, non-perturbative corrections to shape
variables were obtain by extrapolating their value from the
2-jet region

▶ The only exception: Luisoni,Monni,Salam 2021 computed the
linear power correction to the C -parameter in the 3-jet
symmetric limit (c = 3/4).
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Chain of assumptions

▶ In the large nf limit, in processes without gluons at the Born level:
no linear terms in inclusive quantities. This holds, for example, for
e+e− → qq̄γ.

▶ It follows that IR-finite, non-inclusive quantities have linear power
corrections that can be computed using the soft approximation. In
the e+e− → qq̄γ example, we use the eikonal formula for the qq̄
radiating dipole.

▶ Assume that this can be generalized to cross sections involving
gluons at the Born level, like e+e− → qq̄g . It is enough to add the
contributions of the three radiating dipoles qg , q̄g and qq̄.

In the last step we assumes that linear terms cancels for inclusive

quantities also in the full theory (in some sense), so we use the large nf
model to extrapolate to properties of the full theory.
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Application to e+e− shape variables in the 3-jet region:

▶ Caola,Ferrario Ravasio,Limatola,Melnikov,Ozcelik,P.N.2022,
formulation of the general method, application to
C -parameter and thrust.

▶ Zanderighi,P.N.2023 added heavy jet mass, jet mass
difference, y3 and wide jet broadening; performed fits to
ALEPH data.
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Non-perturbative corrections can be parametrized as a shift in the
perturbative cumulant distribution:

Σ(s) −→ Σ(s + HNPζ(s)), where Σ(s) =

∫
dσ(Φ)θ(s − s(Φ))

and HNP ≈ Λ/Q is a non-perturbative parameter that must be
fitted to data.
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(G.Zanderighi,P.N.2023) In some cases ζ is negative!
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Rapid variations near v = 0

Near v = 0, the Born amplitude is dominated by the soft-collinear region.

radiation =
CA

2
Mq̄g +

CA

2
Mqg +

(
CF − CA

2

)
Mqq̄

but Mqg ≈ 0, Mq̄g ≈ Mqq̄, so the total is ≈ CFMqq̄.

Our ζ(v) functions, for v → 0 MUST approach the 2-jet limit
value; but up to single logs!, i.e. terms of relative order 1/| log(v)|.
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Insist on v → 0 (quadruple precision, log scale histogram).
Two-jet limit reached, but subleading terms are extremely
important!
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RESULTS

Simultaneous fit to C , t and y3, both for our newly computed ζ(v), and,

for comparison, with ζ(v) → ζ2J(v) = ζ(0) (traditional method for the

computation of power corrections).

(we excluded variables with “bizarre” behaviour near the 2-jet limit)
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Fit details

Take vi to span all bins of all shape variables considered; we define

χ2 =
∑
ij

∆iV
−1
ij ∆j , ∆i =

(
1

σexp

dσexp(vi )

dvi
− 1

σth

dσth(vi )

dvi

)
,

Vij = δij(R
2
i + T 2

i ) + (1− δij)CijRiRj + Cov
(Syst)
ij

▶ Ri : statistical error

▶ Ti : theoretical error (scale variation plus error estimate of
non-perturbative shift).

▶ Cij statistical correlation (from Monte Carlo simulation)

▶ Cov
(Syst)
ij : systematics covariance matrix
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Variation αs (MZ ) α0 χ2 χ2

Ndeg

Default setup 0.1174 0.64 6.8 0.15
Ren. sc. Q/4 0.1180 0.60 6.1 0.14
Ren. sc. Q 0.1182 0.68 7.9 0.18
NP sch. (b) 0.1186 0.79 6.4 0.15
NP sch. (c) 0.1194 0.84 4.7 0.11
NP sch. (d) 0.1184 0.66 5.2 0.12
P-scheme 0.1150 0.63 9.5 0.22
D-scheme 0.1188 0.79 5.1 0.12

Std. scheme 0.1168 0.58 8.1 0.18
No hq corr. 0.1176 0.68 6.2 0.14
Herwig 6 0.1174 0.60 14.7 0.33
Herwig 7 0.1174 0.60 10.9 0.25
Ranges (2) 0.1166 0.62 12.3 0.22
Ranges (3) 0.1178 0.69 2.4 0.07
Alt. correl. 0.1180 0.62 5.8 0.13
y3 clustered 0.1166 0.67 7.6 0.17

C 0.1252 0.47 0.9 0.06
τ 0.1188 0.64 0.7 0.03
y3 0.1196 1.90 0.0 0.00

C , τ 0.1230 0.51 2.0 0.05

Several variations of setup param-
eters/methods lead to variations
of the central value of order 1%.
Among them

▶ Central ren. scale

▶ Ambiguity in
implementation of NP
corrections

▶ Treatment of correlation in
systematic errors

▶ Treatment of hadron masses
(P, D and std. schemes)
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Quality of the fit for C , τ and y3, using the new calculation of the
non-perturbative effect (i.e. the full ζ(v) dependence.)
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Prediction for M2
H , M

2
D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Prediction for M2
H , M

2
D and BW using the values of αS and α0

obtained by fitting C , τ and y3.
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Quality of the fit for C , τ and y3, obtained setting ζ(v) = ζ(0).
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Prediction for M2
H , M

2
D and BW using the fitted values of αS and

α0 obtained by fitting C , τ and y3.
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Prediction for M2
H , M

2
D and BW using the fitted values of αS and

α0 obtained by fitting C , τ and y3.
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At the moment, including higher energy does not help (too poor
statistics). However, for future e+e− colliders:

I estimate the following Z/γ∗ hadronic cross sections:

ECM σ (nb) Num. had. events

91.2 33.1 5.0× 1012

160 0.026 0.31× 109

240 0.009 0.45× 108

350 0.0039 0.58× 107

Even at the highest energy the number of events is not distant
from what was collected at LEP1 (16× 106 events).
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Massive quarks

Makarov,Melnikov,Ozcelik,P.N.2023 and ongoing work.

▶ Unlike the case of massless quarks, when heavy quarks are
present terms linear in λ arise both in the virtual and real
corrections.

▶ linear terms cancel in the total.

▶ The cancellation can be shown to takes place for generic
processes by using the Low-Burnett-Kroll theorem, that allows
one to relate the subleading soft terms to derivatives of the
cross section with no soft emissions.

▶ As in the massless case, there are factorized form of the phase
space in terms of an underlying Born and a radiation phase
space such that the cancellation takes place at fixed
underlying Born momenta.

▶ However, this does not happen for “generic” mappings, that
are linear in the radiation momentum in the soft limit.
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Relevance to parton showers

▶ It seems that parton shower concepts, like the factorization of
phase space into an “underlying Born” and “radiation” factors
play a very relevant role in the discussion of power corrections.

▶ The requirements on the mappings are satisfied by several
recoil schemes: Catani-Seymour dipoles, PanLocal and
PanGlobal mappings, for example.

▶ Are there advantages in using these recoil schemes in parton
showers?
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Relevance to parton showers

The hard question is: what is the interplay of multiple soft
radiation and power corrections?

Dipole structure for radiating the gluer
deeply modified by further soft radi-
ation; are there corrections of order
αS(Qsoft) to the power corrections that
we compute?
Do these corrections provide a realistic
picture of leading power corrections in
a shower framework?

The main obstacle in answering these questions is that the large nf
approach does not get along with soft gluon resummation ...
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Conclusions

▶ Some new, intriguing results regarding linear power
corrections in collider observables have been obtained.

▶ Some implications for shape variables in e+e− → hadrons
have been discussed

▶ These results involve suggestively parton shower concepts,
although, at the moment, it is not clear whether they can lead
to progress in this framework.
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