25/09/2023 TOP23

Measurements of single top quark production processes with the ATLAS and CMS experiments

Laura Pintucci on behalf of Atlas and CMS collaborations

Introduction

Single Top production

Top quark produced at hadron colliders via:

- strong interaction \rightarrow top quark pair
- EW interaction → **single top** quark or antiquark, has much smaller signal wrt top pair production

Three main modes:

- *t*-channel
- s-channel
- Wassociated production (tW)

Some properties:

- → production cross-section $\sigma_t \propto V_{tb}^2$ CKM matrix element;
- Precise measurements of σ_t, as well as charge asymmetry measurement (top vs antitop), can have impact on PDF constraints;
- → top quarks produced polarized → almost 100% degree of polarization in *t*- and *s*-channel.

Overview of ATLAS and CMS Run 2 single top measurement

Differential cross sections and charge ratios at 13 TeV with 35.9 fb⁻¹

Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at $\sqrt{s} = 13$ TeV

Event Selection:

- 1 isolated e or μ
- 2/3 jets
- 0/1/2 *b*-tag jets

Signal Yield Estimation:

Fit to $m_T(W)$, BDT_{t-chan}, BDT_{tt/tW} in the 2j1b reg and $m_T(W)$ in the 3j2b region, each reg splitted by e/µ and their charge

Differential Cross-Sections

Unfolding at parton and particle level

- → good agreement with prediction of 4F scheme (with Powheg/MG5@NLO+Pythia), 5F scheme (with MG5@NLO+Pythia) does not agree as well for t and W p_T
- → differential charge ratio in agreement with prediction from all 3 PDF sets considered

Spin asymmetry from $d\sigma/d\theta_p$ distribution good agreement with SM

CKM matrix elements in t-channel at 13 TeV with 35.9 fb⁻¹

Measurement of CKM matrix elements in single top quark t-channel production in proton-proton collisions at $\sqrt{s} = 13$ TeV

Objective: Measure $|V_{tb}|$, $|V_{ts}|$ and $|V_{td}|$ with *t*-channel

Event Selection:

1 isolated e or μ +m_T(W) > 50 GeV

- 2j1b enriched in $ST_{bb} \rightarrow BDT$ train ST_{bb} vs top pair, W+jets
- 3j1b enriched in ST_{bq} , $ST_{qb} \rightarrow BDT$ train $ST_{qb} vs ST_{bb}$, top pair, W+jets
- 3j2b enriched in $ST_{bb} \rightarrow BDT$ train ST_{bb} vs top pair prod. Maximum LH fit to the three BDT discriminants

CKM element measured:

- → SM unitarity constrain, 95% CL $|V_{tb}|$ >0.970 and $|V_{ts}|^2$ + $|V_{td}|^2$ <0.057
- → 2 BSM scenarios unconstrained $|V_{tb}| = 0.988 \pm 0.024$, and $|V_{ts}|^2 + |V_{td}|^2 = 0.06 \pm 0.06$

Measurement of t-channel production of single top quarks and antiquarks in pp collisions at 13 TeV using the full ATLAS Run 2 dataset

Event Selection:

- **1** isolated *e* or *μ* (p_T>28 GeV, |η|<2.5)
- **2 jets** (p_T>30 GeV, |η|<4.5)
- **1** b-tag jet (|η|<2.5, b-tag eff 60%)
- Selection on
 - $\circ E_T^{miss}$, $m_T(W)$ and $p_T(I)$ to **reduce multijet** bkg
 - m(*lb*) to **avoid bad modelling** of *t* decays

2 SRs defined based on lepton charge

NN to separate signal \rightarrow trained on inclusive region

- 17 input kinematic variables of reconstructed object, W and t (m(jb), n(j) highest ranked)
- <u>NeuroBayes</u> package with symmetric sigmoid activation function

ATLAS-CONF-2023-026

Measurement of t-channel production of single top quarks and antiquarks in pp collisions at 13 TeV using the full ATLAS Run 2 dataset

Profile Likelihood (LH) fit extract total *t*-channel cross-section, top quark, and antiquark cross-sections, and their ratio R_t .

	$\sigma_t[\mathrm{pb}]$	$\sigma_{\bar{t}} \; [\mathrm{pb}]$	σ_{t-chan} [pb]	$R_t = \sigma_t / \sigma_{\bar{t}}$
Measured	137 ± 8	84^{+6}_{-5}	221 ± 13	$1.636^{+0.036}_{-0.034}$
Predicted	134.2 ± 2.2	80.0 ± 1.6	214.2 ± 3.4	$1.677\substack{+0.010\\-0.014}$

Results in good agreement with NNLO predictions

Highest impact systematic uncertainties on cross-section

- top quark modelling (matching scale, PS, FSR)
- JES and *b*-tagging

Highest impact systematic uncertainties on ratio

- W+c cross-section
- top quark parton shower (PS), PDFs

Measurement of t-channel production of single top quarks and antiquarks in pp collisions at 13 TeV using the full ATLAS Run 2 dataset

Dim-6 operators in EFT to parametrize new physics

- study of the 4 fermion operator $O_{q,Q}^{(1,3)}$
- Maximum LH scan of $C_{q,Q}^{(1,3)}$: 95% CL is -0.25< $C_{q,Q}^{(1,3)}$ <0.12

Assuming that
$$|V_{ts}|$$
, $|V_{td}| \ll |V_{tb}|$
and t always decays in Wb
 $f_{LV} \cdot V_{tb} = 1.016 \pm 0.031$
or restricting $V_{tb} \in [0,1]$ and $f_{LV} = 1$
 $|V_{tb}| > 0.95$ at 95%CL
b

EFT interpretations

Generalised CKM interpretation: no $|V_{ts}|, |V_{td}| <\!\!\!| V_{tb}|$ constrain

• Wtq vertex with $q \in \{d,s,b\}$ both in production and

ATLAS-CONF-2023-026

11

Measurement of t-channel production of single top quarks and antiquarks in pp collisions at 13 TeV using the full ATLAS Run 2 dataset

ATLAS-CONF-2023-026

1

Measurement of t-channel production at 5.02 TeV with 257 pb^{-1}

Measurement of t-channel single-top-quark production in pp collisions at $\sqrt{s} = 5.02$ TeV with the ATLAS detector

Data with low pile-up <µ>=2 2 SRs defined based on lepton charge

BDT with <u>XGBoost</u> package trained on inclusive regions

• 9 input variables and 3 fold cross-validation

Event Selection:

- **1** isolated *e* or *µ* (p₁>18 GeV)
- Exactly **2 jets** (p_T > 23 GeV, |η| < 4.0)
 - **1** *b*-tag jet ($|\eta| < 2.5$, *b*-tagging eff. 60%)
 - **1** untag jet (1.5<|η|<4.0)
 - $\Delta \eta(b,j) > 1.5$ to reduce top pair bkg
- Selection on:
 - $\circ ~m_T^{~W}, E_T^{~miss}, m_T^{~W} + E_T^{~miss}$ to reduce mis-ID bkg
 - H_T, m(*l*,*b*), m(*W*), m(*t*) to increase signal purity

ATLAS-CONF-2023-033

Measurement t-channel production at 5.02 TeV with 257 pb⁻¹

Measurement of t-channel single-top-quark production in pp collisions at $\sqrt{s} = 5.02$ TeV with the ATLAS detector

Profile **Maximum LH fit** to extract single top, and anti-top cross-sections, their ratio and the total *t*-channel cross-section.

Results:

Variable	Predicted	Measured
R_t	$2.03_{-0.07}^{+0.06}$	$2.74^{+1.44}_{-0.83}$ (stat.) $^{+1.04}_{-0.29}$ (syst.)
σ_{t-chan}	30.3 ^{+0.5} _{-0.5} pb	$26.6^{+4.3}_{-4.0}$ (stat.) $^{+4.4}_{-3.6}$ (syst.) pb
σ_t	$20.3^{+0.5}_{-0.4}$ pb	$19.5^{+3.8}_{-3.1}$ (stat.) $^{+2.9}_{-2.2}$ (syst.) pb
$\sigma_{ar{t}}$	$10.0^{+0.2}_{-0.3} \ \mathrm{pb}$	$7.1^{+3.2}_{-2.1}$ (stat.) $^{+2.8}_{-1.5}$ (syst.) pb

Process observed at 5.02 TeV with a significance of 6.1σ

 $\label{eq:cross-section} Cross-section \mbox{ measurement uncertainties} \rightarrow similar \mbox{ impact from statistical and systematic uncertainties}$

Ratio measurement uncertainty is dominated by statistical uncertainty

NF-2023-033

Measurement t-channel production at 5.02 TeV with 257 pb⁻¹

Measurement of t-channel single-top-quark production in pp collisions at $\sqrt{s} = 5.02$ TeV with the ATLAS detector

14

Profile **Maximum LH fit** to extract single top, and anti-top cross-sections, their ratio and the total *t*-channel cross-section.

Results:

Variable	Predicted	Measured
R_t	$2.03^{+0.06}_{-0.07}$	$2.74^{+1.44}_{-0.83}$ (stat.) $^{+1.04}_{-0.29}$ (syst.)
σ_{t-chan}	$30.3^{+0.5}_{-0.5}$ pb	$26.6^{+4.3}_{-4.0}$ (stat.) $^{+4.4}_{-3.6}$ (syst.) pb
σ_t	$20.3^{+0.5}_{-0.4}$ pb	$19.5^{+3.8}_{-3.1}$ (stat.) $^{+2.9}_{-2.2}$ (syst.) pb
$\sigma_{ar{t}}$	$10.0^{+0.2}_{-0.3} \mathrm{pb}$	$7.1^{+3.2}_{-2.1}$ (stat.) $^{+2.8}_{-1.5}$ (syst.) pb

Process observed at 5.02 TeV with a significance of 6.1σ

 $\label{eq:cross-section} Cross-section \mbox{ measurement uncertainties} \rightarrow similar \mbox{ impact from statistical and systematic uncertainties}$

Ratio measurement uncertainty is dominated by statistical uncertainty

AS-CONF-2023-033

Measurement of single top-quark production in the s-channel in proton–proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Event Selection: $1 e/\mu + E_T^{\text{miss}} > 35 \text{GeV}$, $m_T^W > 30 \text{GeV}$ to reduce W+jet bkg + at least 2 *b*-tag jets

• Define SR (exactly 2 *b*-tag jets) + 1 VR for W+jets + 2 VR for top pair production

Matrix Element Method to separate sig vs bkg: per-event LH calculation that final state X is of process $H_{\text{proc}} \rightarrow P(X|H_{\text{proc}})$

• use Bayes' theorem to obtain a discriminant

Highest impact **systematics**: top pair prod. normalisation and modelling, *s*-channel modelling, JER, JES, and MC statistics

Results:

IHEP 06 (2023) 191

3.3(3.9)σ observed(expected) significance

$$\frac{\sigma_{obs}[\text{pb}] \quad \sigma_{SM} \text{ [pb]}}{8.2^{+3.5}_{-2.9} \quad 10.3 \pm 0.4}$$

Inclusive and differential tW at 13 TeV with 138 fb⁻¹

IHEP 07 (2023) 046

Measurement of inclusive and differential cross sections for single top quark production in association with a W boson in proton-proton collisions at $\sqrt{s} = 13$ TeV

Differential distributions good agreement, leading $l^{\pm} p_{T}$ and $\Delta \phi(e,\mu)$ slight disagreement. All DR, DS method have similar compatibility.

Observation of tW in single-lepton channel at 13 TeV with 36 fb⁻¹

CMS

Observation of tW production in the single-lepton channel in pp collisions at $\sqrt{s} = 13$ TeV

Event Selection:

 $1 e/\mu + \ge 2 \text{ jets} + 1 b \text{-tag jet}$ Number of jets:

- SR: 3jets
- CR for W+jets and multijet • bkgs: 2 jets
- CR for top pair bkg: 4jets •

W+jet bkg normalisation and multijet bkg from data

ō

CMS

36 fb⁻¹ (13 TeV)

IHFP 2021)

36 fb⁻¹ (13 TeV)

Signal Extraction: 2 BDTs (with e or μ) trained with tW vs top pair production \rightarrow distributions used for Maximum LH fit

Results:

 $\sigma_{tW} = 89 \pm 4(\mathrm{stat}) \pm 12(\mathrm{syst})\mathrm{pb}$ compatible with SM prediction at NNLO and N³LO

Overview of single top results

- Relative uncertainties on inclusive measurements:
 - σ_{t-chan}→5.9%, R_t→2.2% (<u>ATLAS-CONF-2023-026</u>)
 σ_{s-chan}→+42% -35% (<u>IHEP 06, (2023), 191</u>),
 σ_{s-chan}→30% (<u>IHEP 05, (2019), 88</u>)
 σ_{tw}→10% (<u>IHEP 07 (2023) 046</u>)
- ATLAS+CMS Preliminary t-channel ATLAS PRD90 (2014)112006, EPJC 77 (2017) 531, ATLAS-CONF-2023-026 **LHCtopWG** CMS JHEP12(2012)035, JHEP06(2014)090, PLB800 (2019)135042 I HC comb. JHEP05/2019)088 Single top-quark production June 2023 tW ATI AS PLB716 (2012)142, JHEP01(2016)064, JHEP01(2018)063 t-channel 10^{2} CMS PRL110 (2013) 022003, PRL 112 (2014) 231802, arXiv:2208.00924 111 LHC comb. JHEP05(2019)088 s-channel ATLAS PLB756 (2016)228, arXiv:2209.08990 CMS JHEP09(2016)027 LHC comb. JHEP05(2019)088 †W --- NNLO MCFM, JHEP 02 (2021) 040 PDF4LHC (CT18, MSHT20, NNPDF3.1) scale \oplus PDF $\oplus \alpha_{e}$ uncertainty --- aNNLO+aN³LL JHEP05(2021)278 PDF4LHC (CT18, MSHT20, NNPDF3.1) tW: tt contribution removed 10 scale \oplus PDF $\oplus \alpha_{a}$ uncertainty - - - NLO NPPS205(2010) 10, CPC191(2015) 74 CT10nlo, MSTW2008nlo, NNPDF2.3nlo s-channel $\mu_{p} = \mu_{c} = m_{top}$ scale \oplus PDF $\oplus \alpha_s$ uncertainty *Preliminary 7 8 13 √s [TeV]

- Leading Uncertainties:
 - \circ signal modelling, jet (JES, JER), bkg modelling \rightarrow *t*-channel
 - \circ top pair modelling, signal modelling and jet (JER, JES) \rightarrow s-channel
 - bkg normalization (multijet, W+jet), jet (JES), signal modelling \rightarrow tW mode

nclusive cross-section [pb]

Overview of Run2 results on single top production cross-section

- t-channel
 - New *t*-channel results from ATLAS at 13 TeV and 5 TeV
 - Inclusive and differential cross-section measurements
- s-channel
 - ATLAS measurement with full Run2 data with evidence of the process
- tW mode
 - CMS observation and measurement in dileptonic and semi-leptonic channels

Good agreement is found with SM predictions

BACKUP

Overview of single top results

- Relative uncertainties on inclusive measurements:
 - σ_{t-chan}→5.9%, R_t→2.2% (<u>ATLAS-CONF-2023-026</u>)
 σ_{s-chan}→+42% -35% (<u>IHEP 06, (2023), 191</u>),
 σ_{s-chan}→30% (<u>IHEP 05, (2019), 88</u>)
 σ_{tw}→10% (<u>IHEP 07 (2023) 046</u>)
- Leading Uncertainties:
 - \circ signal modelling, jet (JES, JER), bkg modelling \rightarrow t-channel
 - \circ top pair modelling, signal modelling and jet (JER, JES) \rightarrow s-channel
 - bkg normalization (multijet, W+jet), jet (JES), singal modelling $\rightarrow tW$ mode

ATLAS and CMS Run 1 single top measurements combination

ATLAS+CMS combination of single top with Run 1 data

Combinations of single-top-quark production cross-section measurements and

 $|f_{IV}V_{tb}|$ determinations at $\sqrt{s} = 7$ and 8 TeV with the ATLAS and CMS experiments

Similar approaches for Atlas and CMS measurements:

- select $\geq 1 e/\mu$ and $\geq 1 jet$
- use MVA to separate sig vs bkg (BDT, NN, MEM)

ection [pb]

nclusive cros

10

• binned Maximum Likelihood (LH) fit to measure cross-section

ATLAS+CMS

s-channel

7

Considered value of m_t = 172.5 GeV for all measurements

o mea	sure cross-section		ATLAS+CMS LHC <i>top</i> WG			
ŧ₽.	t-channel ATLAS PRD90(2014) 112006, EPJC 77 (2017) 531 CMS JHEP 12 (2012) 035, JHEP 06 (2014) 090 ATLAS+CMSLHC <i>top</i> WG tW ATLAS PLB 716 (2012) 142, JHEP 01 (2016) 064 CMS BPL 110 (2012) 02002, BPL 112 (2014) 231902		$\begin{split} f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo.}}} \text{ from single-top-quark } \mathfrak{p} \\ \sigma_{theo.} \colon \text{NLO (t- and s-channel), NLO+NNLL (tW } \\ \delta\sigma_{theo.} \colon \text{scale} \oplus \text{PDF} \oplus \alpha_s \oplus m_t \oplus \text{E}_{beam} \\ m_t = 172.5 \text{ GeV} \end{split}$	oroduction v)	total theo. $ f_{LV}V_{tb} \pm (meas.) \pm (theological descent for the second descent descent for the second descent for the second descent $	90.)
Į.	Comparing the comparison of the comparison	-	ATLAS+CMS LHCtopWG t-channel, 15 = 7, 8 TeV	-	$1.02 \pm 0.04 \pm 0.0$	2
***	NLO PLB 736 (2014) 58 scale uncertainty Contribution removed scale Θ PDF Θ α ₄ uncertainty		ATLAS+CMS LHCtopWG s-channel, √S = 8 TeV	+1 1	$1.02 \pm 0.09 \pm 0.0$ $0.97 \pm 0.15 \pm 0.0$	14
	$\label{eq:constraint} \begin{split} &\!$		ATLAS+CMS LHCtopWG t-channel, tW, s-channel, \s = 7, 8 TeV	-	1.02 ± 0.04 ± 0.0	2
8	√s [Te	V]	0.6 0.8 1 f _{LV} V _{tb}	1	1.2 1.4	6

Combination strategy: <u>BLUE</u> method

All combined measurements are **consistent** with their **SM predictions**

IHEP05, 2019, 88

s-channel and tW

s-channel SM prediction at NLO

 $\sigma_{s-channel} = 10.32 \, {}^{+0.29}_{-0.24}(\text{scale}) \pm 0.27(\text{PDF} + \alpha_s) \, {}^{+0.23}_{-0.22}(\text{m}_{top}) \text{ pb}$

tW NNLO prediction $\sigma_{tW}^{SM} = 71.7 \pm 1.8 \text{ (scale)} \pm 3.4 \text{ (PDF) pb}$ tW N³LO prediction $\sigma_{tW}^{SM} = 79.5 \pm \substack{1.9\\1.8} \text{ (scale)} \pm \substack{2.0\\1.4} \text{ (PDF) pb}$

t-channel

CMS analyses:

- Measurement of differential cross sections and charge ratios for t-channel single top quark production in proton–proton collisions at $\sqrt{s} = 13$ TeV (Eur. Phys. J. C 80, 370 (2020))
- Measurement of CKM matrix elements in single top quark t-channel production in proton-proton collisions at $\sqrt{s} = 13$ TeV (Phys. Lett. B 808 (2020) 135609)

ATLAS analyses:

- Measurement of t-channel production of single top quarks and antiquarks in pp collisions at 13 TeV using the full ATLAS Run 2 dataset (ATLAS-CONF-2023-026)
- Measurement of t-channel single-top-quark production in pp collisions at $\sqrt{s} = 5.02 \text{ TeV}$ with the ATLAS detector (ATLAS-CONF-2023-033)