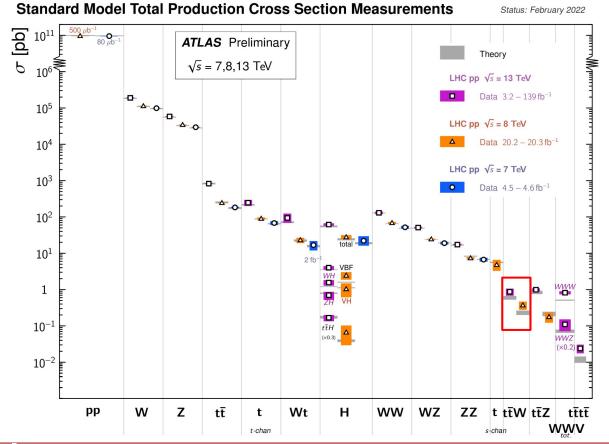
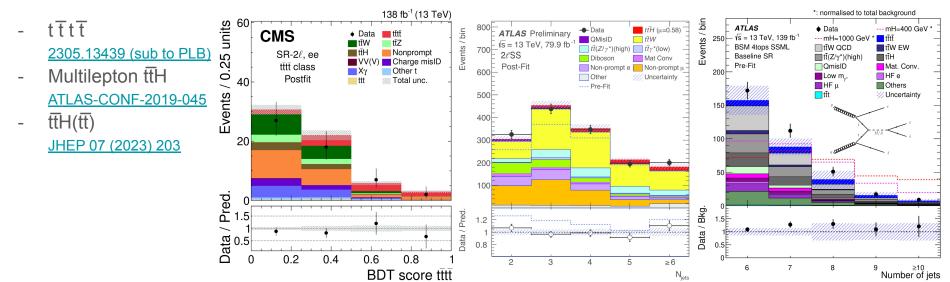
New measurements of ttW production with the ATLAS and CMS experiments

Matt Klein (Southern Methodist University) 2023 September 25



Introduction


In this talk, will discuss three ttW results from ATLAS and CMS

- ATLAS cross-section ATLAS-CONF-2023-019
- CMS, cross-section JHEP 07 (2023) 219
- ATLAS charge asymmetry JHEP 07 (2023) 033

ttW Cross-section Measurements

Rare but important process in the SM - sensitive to complex higher order corrections and a background for other SM and BSM processes that can give same-sign or multilepton signatures, e.g.:

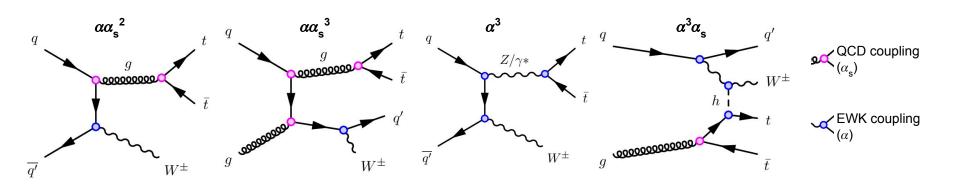
CMS and ATLAS have performed ttW measurements with the full LHC Run 2 dataset

- CMS Paper: <u>JHEP 07 (2023) 219</u>

Matt Klein

- ATLAS Note: ATLAS-CONF-2023-019

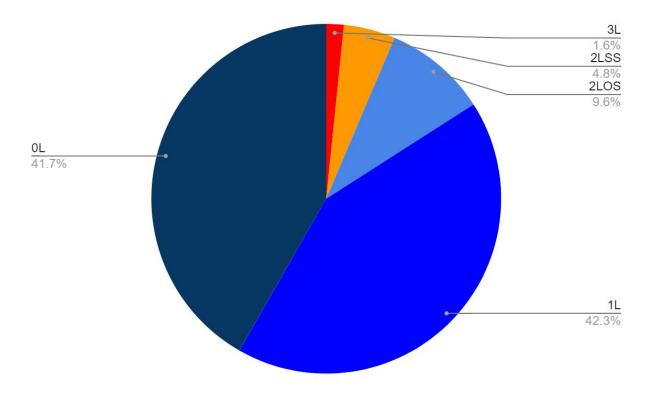
Top2023


ttW Simulation

ATLAS signal samples:

- Nominal sample produced in Sherpa2.2.10 (includes $\alpha \alpha_s^2$ and $\alpha \alpha_s^3$ contributions)
- Event-by-event corrections to account for $\alpha^2 \alpha_s^2$ and α^3
- Separate sample produced in Sherpa2.2.10 that corresponds to $\alpha^3 \alpha_s$ contributions

CMS signal samples


- Nominal samples produced in MadGraph5_aMC@NLO v2.6.0
- Take into account $\alpha \alpha_s^2$ and $\alpha \alpha_s^3$ (QCD contributions) and α^3 and $\alpha^3 \alpha_s$ (EWK contributions)

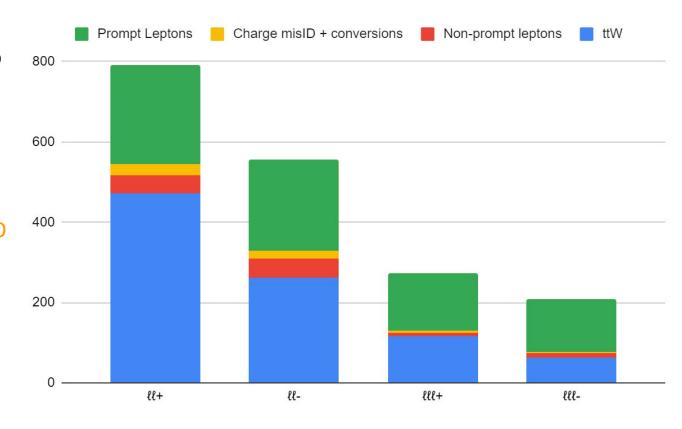
Event Categorization

Both ATLAS and CMS analyses consider events with 2 same-sign or 3 e/μ

Drops most ttW events, but SM background with ≥2 same-sign leptons is small

ATLAS Yields

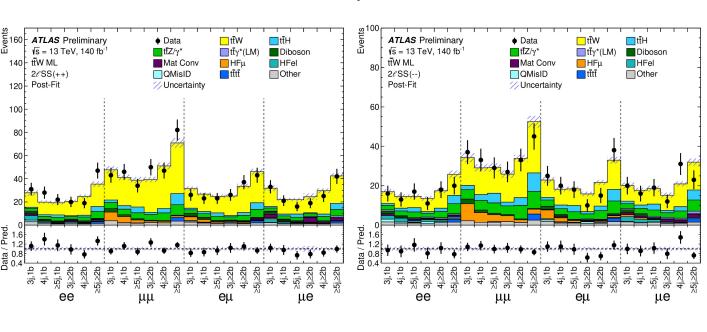
Strategy: Divide events into $\ell^{\pm}\ell^{\pm}$ and $\ell^{\pm}\ell^{\mp}$

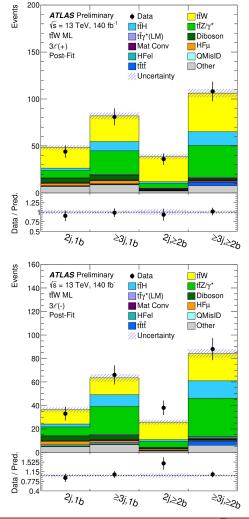

Background estimates:

Prompt leptons: from MC

Charge misID+conv.: misID from data, conv. from MC

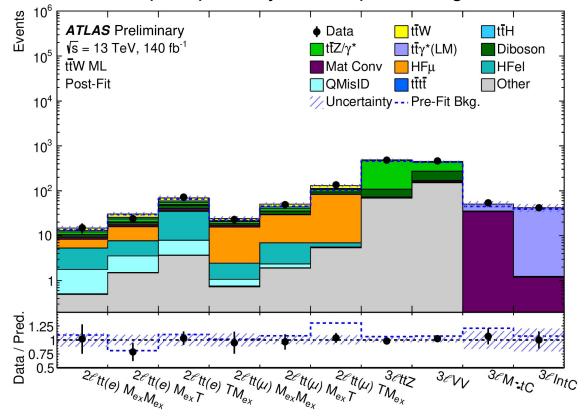
Non-prompt: from MC


ttW: Signal, from fits



ATLAS Signal Extraction

Events categorized by

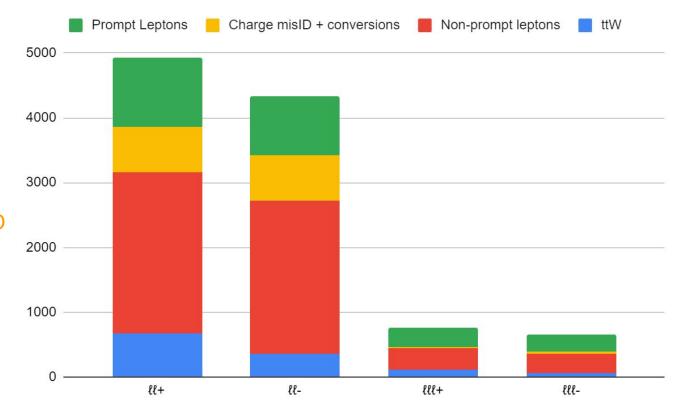

- Lepton charges and types
- Number of jets
- Number of b-jets

ATLAS Control Regions

Normalizations constrained by dedicated control regions for Diboson, ttZ, conversions, and non-prompt heavy flavor lepton background

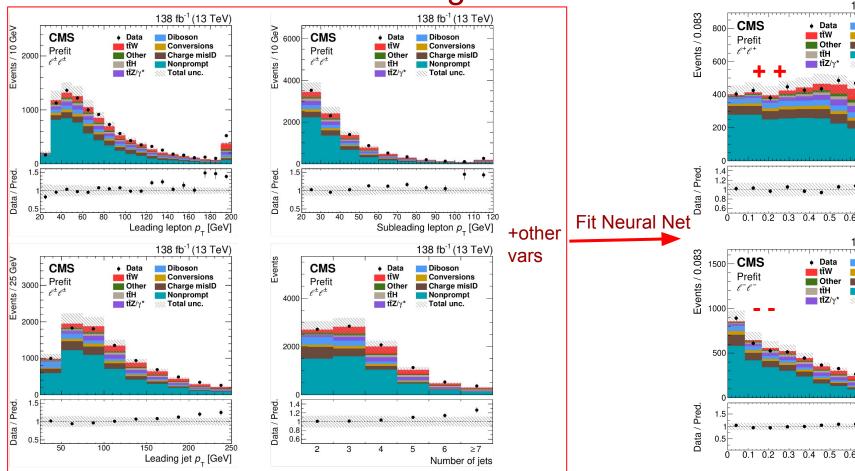
CMS Yields

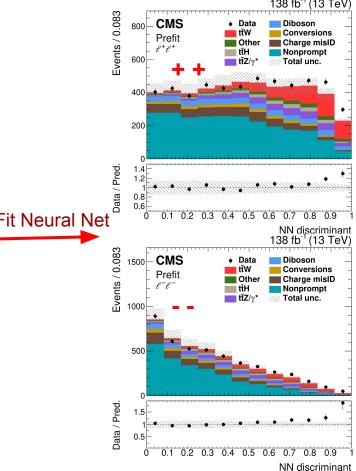
Strategy: Divide events into $\ell^{\pm}\ell^{\pm}$ and $\ell^{\pm}\ell^{\mp}$


Background estimates:

Prompt leptons: from MC

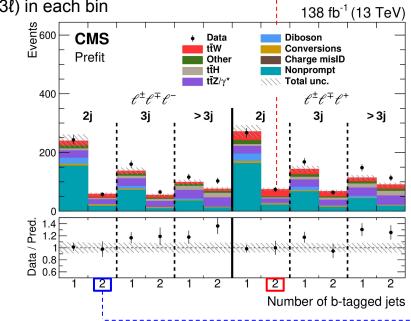
Charge misID+conv.: misID from data, conv. from MC

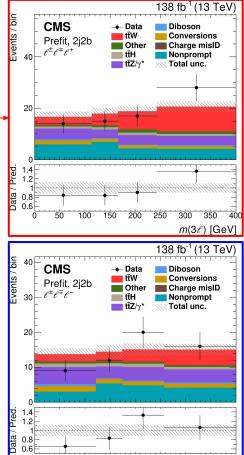

Non-prompt: from data


ttW: Signal, from fits

JHEP 07 (2023) 219

CMS: 2L Signal Extraction



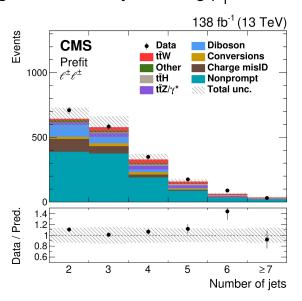

CMS 3L Signal Extraction

Categorize events based on:

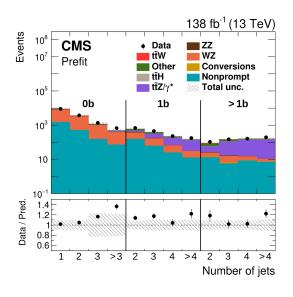
- Sum of lepton charges (+1 or -1)
- Number of b-jets
- Number of jets

Fit m(3l) in each bin

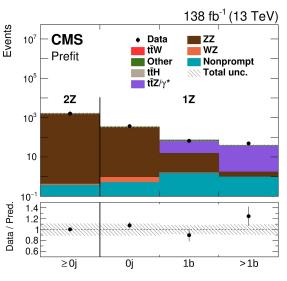
150 200 250 350


m(3ℓ) [GeV]

Top2023


CMS Control Regions

Main backgrounds: non-prompt leptons


Matrix method to estimate, validated in regions formed by inverting p_T^{miss} cut

ttZ+WZ CR: 3L with $|m(\ell\ell) - mZ| < 10 \text{ GeV}$

ttZ+ZZ CR: 4L with $|m(\ell\ell) - mZ| < 10 \text{ GeV}$

Uncertainty Breakdown

 $\frac{\Delta\sigma(t\bar{t}W)}{\sigma(t\bar{t}W)}$ [%]

ATLAS

and PS systematic included in ATLAS, defined as:

Comparison of Sherpa2.2.10 vs. MadGraph5 aMC@NLO+Pythia8 FxFx

Comparison of Powheg+Pythia8 vs.

Powheg+Herwig7

 $t\bar{t}W$ ME and PS modelling Prompt lepton bkg. norm. Lepton isolation BDT

Fakes/ $VV/t\bar{t}Z$ norm. (free-floated) Non-prompt lepton bkg. modelling Trigger MC statistics ttW PDF

Jet energy scale

Charge Mis-ID

Flavour tagging

Luminosity

ttW Scale

MET

Muon

Pile-up

Total

Total syst.

Data statistics

New results on ttW production with the ATLAS and CMS experiments

1.9 1.9 1.5 1.5 1.4 Prompt lepton bkg. modelling 1.3 1.0 0.7 Jet energy resolution 0.5

0.28 Electron/photon reco.

0.21 0.15 < 0.10 < 0.10 < 0.10 8

6.0

2.6

2.3

2.3

5 9 ttW modeling uncertainties

tīZ normalization

Source

CMS

Experimental uncertainties

b tagging efficiency

Pileup reweighting

Jet energy resolution

Background uncertainties

tīH normalization

Nonprompt leptons

WZ normalization

tZq normalization

tHq normalization

tīW color reconnection

ISR & FSR scale for ttW

Simulation statistical uncertainty Total systematic uncertainty

Modeling uncertainties

tīW scale

 $t\bar{t}\gamma$ scale

VVV scale

Conversions

tīH scale

Lepton selection efficiency

Charge misidentification

Trigger efficiency

L1 inefficiency

Jet energy scale

Integrated luminosity

VVV normalization tīVV normalization Conversions normalization $t\bar{t}\gamma$ normalization ZZ normalization Other normalizations

0.6 0.6 0.5 0.3 0.2

0.2 0.2

1.8 1.0

0.8

0.4

0.3

0.2 0.2

1.8

5.8 13

Top2023

Uncertainty [%]

1.9

1.6 1.2

1.0

0.7

0.6

0.4

0.4

2.6

1.6

1.3

1.2

1.2

0.7

Largest difference in uncertainty treatment - ME

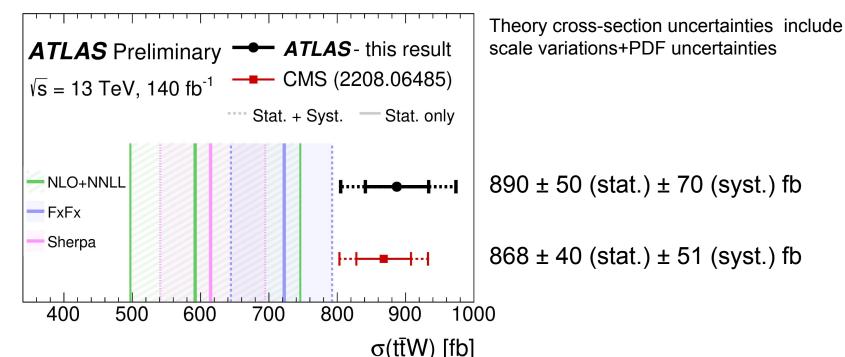
JHEP 07 (2023) 219

Matt Klein

ATLAS-CONF-2023-019

Inclusive ttW Cross-section

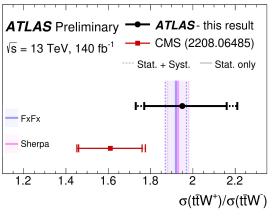
NLO+NNLL 592^{+155}_{-97} fb

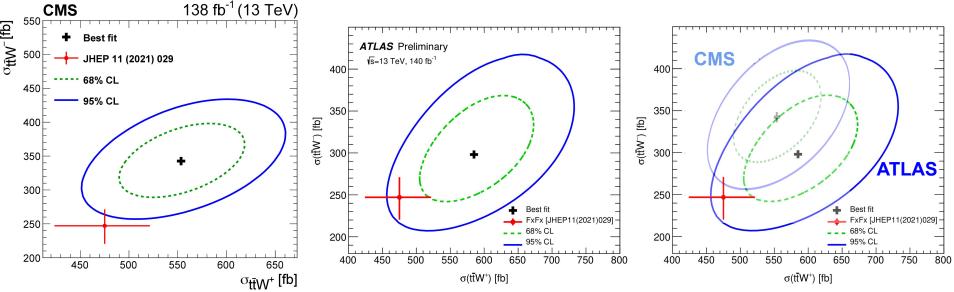

JHEP 08 (2019) 039

Eur. Phys. J. C 80 (2020) 428

FxFx

 722^{+71}_{-78} fb

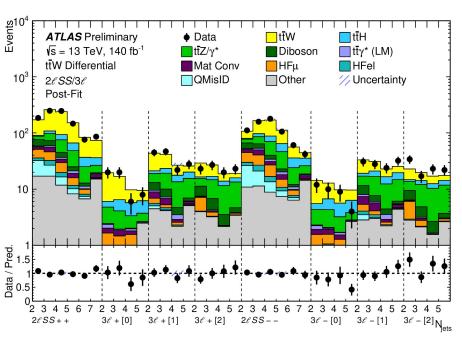

JHEP 11 (2021) 029



<u>JHEP 07 (2023) 219</u> <u>ATLAS-CONF-2023-019</u>

ttW⁺ vs. ttW⁻

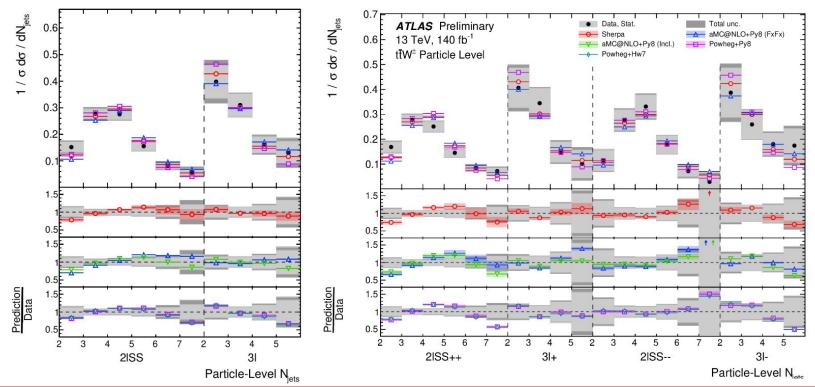
Simultaneous measurements of $\sigma(t\overline{t}W^+)$ and $\sigma(t\overline{t}W^-)$, as well as measurement of their ratio


Inclusive and Differential Fiducial Cross-sections

$$\sigma_{\text{fid}}(t\bar{t}W) = 21.7^{+1.1}_{-1.1} \text{ (stat.)} ^{+2.1}_{-1.9} \text{ (syst.)} = 21.7^{+2.4}_{-2.2} \text{ (tot.) fb}$$

Absolute and normalised cross section at particle level measured as function of different kinematic variables

N_{iets} distributions in the SRs used as input for the profile-likelihood unfolding (left) and postfit distributions (right)



Differential Cross-sections: N jets (Example)

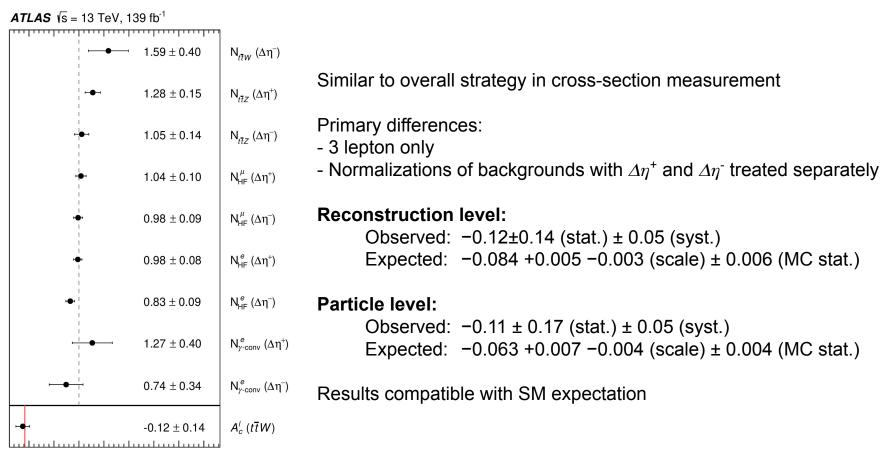
Example differential results, for absolute and normalized x-sections Results shown for N_{iets} ; analysis also measures:

 $H_{T,jets}$, $H_{T,lep}$, $\Delta R_{lead\ b,\ lead\ l}$, $|\Delta \eta_{SS\ lep}|$, $|\Delta \varphi_{SS\ lep}|$, $M_{lead\ JJ}$

Leptonic Charge Asymmetry

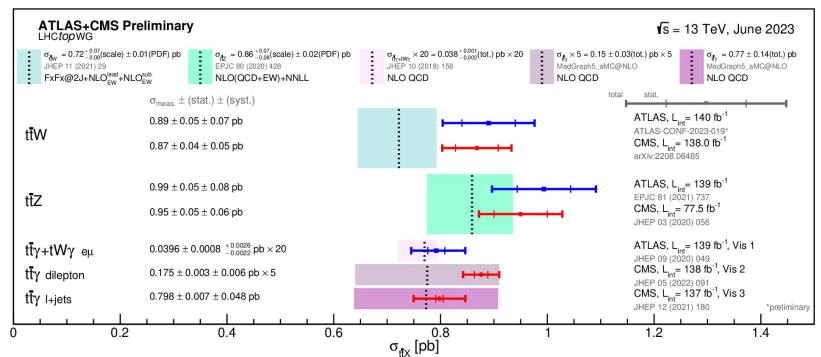
Top quarks (antiquarks) expected to be produced with more forward (central) rapidities from q q initial states

Can probe leptonic charge asymmetry in ttW:


$$A_{\rm c}^{\ell} = \frac{N\left(\Delta\eta^{\ell} > 0\right) - N\left(\Delta\eta^{\ell} < 0\right)}{N\left(\Delta\eta^{\ell} > 0\right) + N\left(\Delta\eta^{\ell} < 0\right)}$$

gg initial states dominate in tt, which complicates asymmetry measurements. In ttW, q q initial states dominate.

Additionally, the W boson in the initial state causes polarisation of the tt pair, which further leads to observable asymmetry.


 A_c^{ℓ} measurement probes both effects

Measurement and Results

Conclusion

- CMS and ATLAS have performed ttW measurements with the full LHC Run 2 dataset
- Measure larger-than-expected cross-sections, with statistically consistent results between the experiments
- Also performed leptonic charge asymmetry measurement, which, as with other charge asymmetry measurements, shows agreement with the SM

Backup

21

CMS Event Selection

		Process	$\ell^+\ell^-$	$\ell^-\ell^-$	$\ell^{\perp}\ell^{+}\ell^{+}$	$\ell^{\perp}\ell^{+}\ell^{-}$
•	Same-sign	tīW	677 ± 21	355 ± 12	119.4 ± 9.2	65.3 ± 5.4
	$\circ p_T(lead\ \ell) > 30\ (25)\ for\ \mu\ (e)$	Nonprompt	2490 ± 600	2360 ± 570	325 ± 75	298 ± 71
	 p_⊤(other ℓ) > 20 GeV m(ℓℓ) > 30 GeV 	Charge misID	520 ± 110	520 ± 111	_	_
	0.00000 0.000000	tŧH	167 ± 34	169 ± 34	56 ± 12	57 ± 12
		$t ar{t} Z/\gamma^*$	335 ± 26	333 ± 26	145 ± 13	147 ± 13
	Trilepton	Diboson	382 ± 88	285 ± 65	46.8 ± 9.1	38.0 ± 7.5
	 p_⊤(lead ℓ) > 25 GeV 	Other	178 ± 34	126 ± 27	43.4 ± 8.2	33.5 ± 7.4
	 p_T(other ℓ) > 15 GeV 	Conversions	177 ± 54	192 ± 59	22.9 ± 7.1	24.0 ± 7.4
	 m(ℓℓ) - mZ > 10 GeVm(ℓℓ) > 12 GeV	Total background	4250 ± 620	4000 ± 590	639 ± 80	600 ± 76
	o Njets≥2	Total prediction	4920 ± 620	4350 ± 590	758 ± 81	663 ± 76
	○ Nbjets≥1	Data	5143	4486	834	744

 $\rho \pm \rho \mp \rho -$

 $\rho \pm \rho \mp \rho +$

ATLAS-CONF-2023-0	119 ATL	AS Signal I	Region	Selec	tion	
Signal region preselection	$2\ell { m SS}$	3ℓ	-			
Lepton definition	TT	LTT	_			
Lepton $p_{\rm T}$ [GeV]	(20, 20)	(10, 20, 20)	-	0-0- CD	$\ell^+\ell^+$ SR	$\ell^+\ell^-\ell^-$ SR
$N_{ m jets}$		≥ 2		$\ell^-\ell^-$ SR	5000 30 0000 0000	
N	> 1 h	$b^{60\%} \text{ or } \geq 2 b^{77\%}$	$\overline{t}\overline{t}W$	261 ± 20	472 ± 30	64 ± 6
$N_{b- m jets}$	≥ 10	$0 \le 2 0$	$t ar{t} H$	66 ± 9	66 ± 9	29 ± 4
$m_{\ell^{\pm}\ell^{\pm}}^{SF}$ or $m_{\ell^{+}\ell^{-}}^{SF}$ [GeV]		> 12	$t\bar{t}Z/\gamma^*$	95 ± 9	100 ± 10	69 ± 8
$ m_{\ell^+\ell^-}^{SF} - m_Z \text{ [GeV]}$	-	> 10	$t\bar{t}\gamma^*({ m LM})$	9 ± 5	9 ± 5	2.6 ± 1.5
$ m_{\ell\ell\ell} - m_Z $ [GeV]	$ a_{\mu\rho\rho} - m_{Z} [\text{GeV}]$ \rightarrow > 10				22 ± 6	9.0 ± 2.7

Jeus	_					
$N_{b- m jets}$	$\geq 1 \ b^{60\%} \ { m or} \geq 2 \ b^{77\%}$					
$m_{\ell^{\pm}\ell^{\pm}}^{SF}$ or $m_{\ell^{+}\ell^{-}}^{SF}$ [GeV]		> 12				
$ m_{\ell^+\ell^-}^{SF} - m_Z \text{ [GeV]}$	_	> 10				
$ m_{\ell\ell\ell} - m_Z $ [GeV]	_	> 10				
	Inclusive cross section measurement					
Lepton charge split	$(\ell^+\ell^+,\ell^-\ell^-)$	$(\ell^+\ell^-\ell^-,\ell^-\ell^+\ell^+)$				
Lepton flavour split	$(\mu\mu,e\mu,\mu e,ee)$	1-1				
Jet multiplicity split	$(3, 4, \geq 5)$	$(2, \ge 3)$				
b-jet multiplicity split	$(1,\geq 2)$					
Total inclusive SRs	48	8				
	Differential cross section measurement					

 $(\ell^+\ell^+,\ell^-\ell^-)$

2

	8
	$-t\bar{t}W$
	$t ar{t} H$
	$tar{t}Z_{j}$
	$tar{t}\gamma^*$
	Dib
	Mat
t 	HF,
	HFe
	QM
	$t \bar{t} t \bar{t}$
	Oth
_	Tot
_	Dat
nt	10

- 8
4

t Conv 19 ± 5 30 ± 10 μ el 15 ± 6 IisID 8.2 ± 2.7 9 ± 7 42 ± 6 ner al 790 ± 24 803 ta $(\ell^{+}\ell^{-}\ell^{-}, \ell^{-}\ell^{+}\ell^{+})$ (0, 1, 2)

 $\ell^-\ell^+\ell^+$ SR

 116 ± 10

 28 ± 4

 72 ± 8

 2.6 ± 1.5

 12 ± 4

 3.9 ± 1.1

 6.6 ± 2.6

 2.0 ± 0.8

 0.66 ± 0.13

 4.2 ± 3.3

 25.0 ± 3.3

 273 ± 9

269

 2.5 ± 0.8

 6.2 ± 2.6

 2.9 ± 1.3

 0.69 ± 0.15

 4.0 ± 3.2

 18.6 ± 3.1

 208 ± 7

225

Number of OS-SF pairs split

Lepton charge split

Total differential SRs

ATLAS Object Selection

			Electron		Muon				
Lepton definition	L	M	$M_{ m ex}$	T	L	M	$M_{ m ex}$	T	
Isolation			Yes		Yes				
Non-prompt lepton WP	No	No Tight Tight-not- VeryTight		No	Tight	Tight-not-	VeryTight		
- 100 HW	$oxed{VeryTight}$						VeryTight	R0000 40940	
Identification	Loose Tight			Loose Medium					
Electron charge-misassignment veto	No		Yes		N/A				
Electron conversion candidate veto	No		Yes (except	e^*)	N/A				
Transverse impact parameter			< 5		< 3				
significance $ d_0 /\sigma_{d_0}$									
Longitudinal impact parameter				< 0.5	.5 mm				
$ z_0\sin\theta $									

ATLAS-CONF-2023-019 **ATLAS Control Region Selection**

 $(T, M_{\rm ex})$

HF non-prompt

 ≥ 2

 $1 b^{77\%}$

 $2\ell SS$

 $(M_{\rm ex}, M_{\rm ex})$

 $(M_{\rm ex}, T)$

Conversions

 ≥ 0

 $0 b^{77\%}$

 $\mu\mu e^*$

					Annual Annual			0.000 ± 0.02	20 0.00 ± 0.20	00 11	
Lepton $p_{\rm T}$ [GeV]		(10, 20,	20)		(20, 20)		Mat Con	v 1.2 ± 0.9	34 ± 9	0.48 ± 0.3	
$m_{\ell^+\ell^-}^{SF}$ [GeV]		> 12	> 12		_		$\mathrm{HF}\mu$	_	_	1.20 ± 0.35	
$ m_{\ell^+\ell^-}^{SF} - m_Z \text{ [GeV]}$		< 10	> 10		-		HFel	_	_	0.40 ± 0.22	
$ m_{\ell\ell\ell} - m_Z $ [GeV]		_	< 10		-		QMisID		_	0.19 ± 0.13	
$m_T(\ell_0, E_{ m T}^{ m miss}) \ [{ m GeV}]$		_	J	< 25	< 250 for $TM_{\rm ex}$ and $M_{\rm ex}T$ pai		$t ar{t} t ar{t}$	_	_	1 ± 1	
							Other	_	_	68 ± 19	
Region split		-	internal / ma 3ℓIntC		$g e/\mu \times (TM_{\rm ex}, M_{\rm ex}T)$		Total	42 ± 9	50 ± 8	487 ± 21	
Region naming	$3\ell VV$	$3\ell VV$ $3\ell ttZ$			M_{ex} , 2ℓ tt(e) $M_{\mathrm{ex}}T$, 2ℓ tt(Data	42	54	482	
			3ℓMatC	$2\ell \mathrm{tt}(\mu)_{TM}$	$I_{\rm ex}$, $2\ell { m tt}(\mu)_{M_{\rm ex}T}$, $2\ell { m tt}(\mu)_{M_{\rm ex}T}$	$(\mu)_{M_{\mathrm{ex}}M_{\mathrm{ex}}}$			'		
					200						
			$2\ell { m tt}(\mu)_{TM_{ m ex}}$	$2\ell { m tt}(\mu)_{M_{ m ex}T}$	$2\ell { m tt(e)}_{TM_{ m ex}}$	2 ℓtt(e)	$M_{ m ex}T \mid 2\ell$	$\operatorname{\mathcal{C}tt}(\mu)_{M_{\mathrm{ex}}M_{\mathrm{ex}}}$	$2\ell { m tt}({ m e})_{M_{ m ex}M_{ m ex}}$	_	
		$t\bar{t}W$	18.0 ± 2.5	7.3 ± 1.2	10.4 ± 1.4	5.1 ± 0.5		2.4 ± 0.7	1.8 ± 0.5	_	
		$t ar{t} H$	5.8 ± 1.0	2.8 ± 0.5	3.5 ± 0.6	$1.72 \pm$	0.32	1.11 ± 0.21	0.79 ± 0.19		
		$t\bar{t}Z/\gamma^*$	11.5 ± 1.4	5.3 ± 0.6	± 0.6 6.8 ± 0.7 3.2 \pm		: 0.4	2.08 ± 0.29	1.5 ± 0.19		
		$t\bar{t}\gamma^*(\mathrm{LM})$	0.27 ± 0.16	0.54 ± 0.33	1.6 ± 0.9	$0.9 \pm$	0.5	0.11 ± 0.07	0.19 ± 0.12		
1		Diboson	10.6 ± 2.2	5 ± 1	6.7 ± 1.4	$2.3 \pm$: 0.6	1.4 ± 0.4	1.16 ± 0.3		
		Mat Conv	1.3 ± 0.8	1.0 ± 0.4	1.0 ± 0.4 3.6 ± 1.7		1.3	1.5 ± 0.5	0.95 ± 0.31		
		${ m HF}\mu$	75 ± 11	22 ± 4	2.0 ± 0.9	$8.1 \pm$	1.6	13.1 ± 2.5	3.0 ± 0.8		
		$_{ m HFel}$	1.3 ± 0.9	4.5 ± 1.5	27 ± 9	$4.1 \pm$		1.4 ± 0.5	3.5 ± 1.0		

 0.43 ± 0.35

 0.029 ± 0.024

 1.88 ± 0.17

 50 ± 4

49

25

Control regions for:

Lepton requirement

Lepton definition

 $N_{\rm jets}$

 $N_{b-\mathrm{jets}}$

Diboson

2 or 3

 $1 b^{60\%}$

 $t\bar{t}Z$

 ≥ 4

 $> 1 b^{60\%}$ or $> 2 b^{77\%}$

QMisID

 $t\bar{t}t\bar{t}$

Other

Total

Data

 0.21 ± 0.09

 0.06 ± 0.05

 5.3 ± 0.8

 129 ± 11

135

(L, M, M)

 3ℓ

 4.2 ± 2.1

 0.030 ± 0.026

 3.6 ± 0.4

 69 ± 7

72

 2.0 ± 1.4

 0.018 ± 0.016

 1.49 ± 0.17

 30.4 ± 2.8

24

3ℓIntC

 41 ± 9

 0.035 ± 0.020

 0.31 ± 0.2

 0.032 ± 0.026

 0.72 ± 0.09

 24.0 ± 2.8

23

 $t\bar{t}W$

 $t \bar{t} H$

 $t\bar{t}Z/\gamma^*$

 $t\bar{t}\gamma^*(LM)$

Diboson

3ℓMatC

 15 ± 4

 0.88 ± 0.20

 1.3 ± 0.8

 0.013 ± 0.011

 0.49 ± 0.07

 14.6 ± 1.8

15

 $3\ell ttZ$

 7.3 ± 0.7

 10.0 ± 1.5

 360 ± 40

 0.056 ± 0.032

 35 ± 11

 $3\ell VV$

 13.0 ± 0.9

 4.3 ± 0.6

 160 ± 23

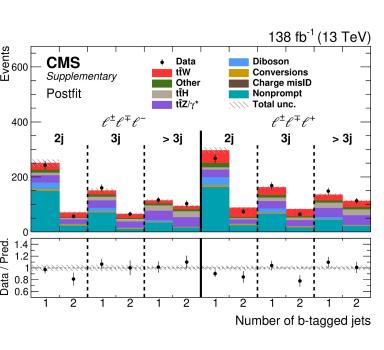
 0.41 ± 0.25

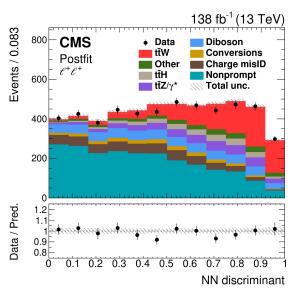
 99 ± 28

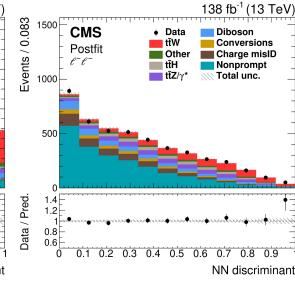
 2.1 ± 0.7

 8.4 ± 2.7

 7.1 ± 2.4 0.8 ± 0.4

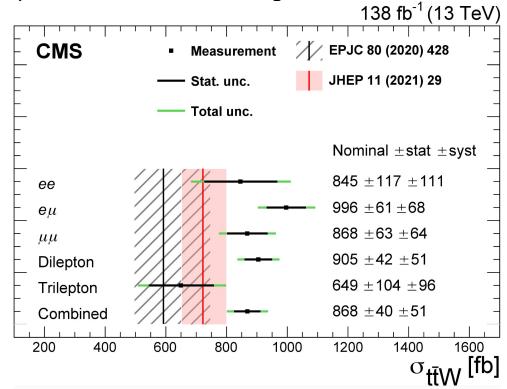

 0.022 ± 0.018


 151 ± 20


 446 ± 20

460

CMS Post-fit Plots



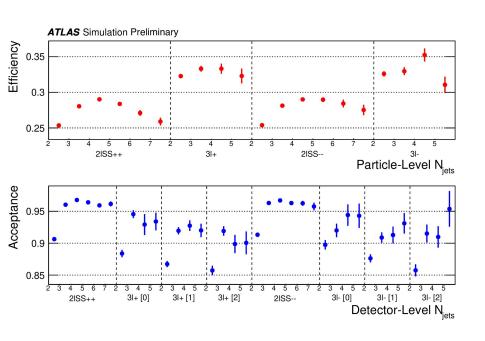
26

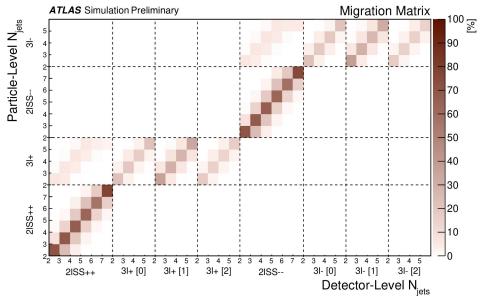
CMS Results

Sensitivity mostly comes from dilepton channels

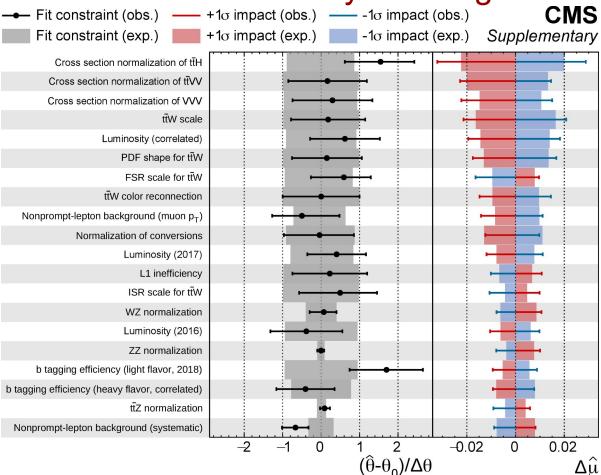
Compatible results across regions

Fiducial Cross-section


	Objects								
Electrons	$ p_{\rm T} \ge 10 \; { m GeV} \; { m and} \; \eta < 2.47 \; ({ m excluding the LAr crack region with} \; 1.37 < \eta < 1.52)$								
Muons	$p_{\rm T} \geq 10~{ m GeV}$ and $ \eta < 2.5$								
Jets	Anti- k_t $R=0.4$ jets with $p_{\rm T}\geq 25$ GeV and $ \eta <2.5$								
b-jets	Tagged if jet contains a ghost-matched b-hadron with $p_{\rm T} > 5~{\rm GeV}$								
$E_{ m T}^{ m miss}$	Vector sum of $p_{\rm T}(\nu)$ for all neutrinos in the event not from hadron decays								
	Overlap removal								
Electron-jet	If $\Delta R(e, \text{jet}) < 0.2$ (excluding b-jets with $p_T < 200$ GeV) remove jet								
Jet-lepton	Jet-lepton If $\Delta R(\ell, \text{jet}) < \min(0.4, 0.04 + 10 \text{GeV}/p_{T,\ell})$ remove lepton								
	Selections								
-2ℓ	Exactly two leptons with the same charge								
	Both leptons have $p_{\rm T} \geq 20~{\rm GeV}$								
	$N_{\text{jets}} \geq 3 \ (N_{\text{jets}} \geq 2)$ with at least one b-jet for inclusive (differential) fit								
	$m_{\ell\ell} > 12 \; { m GeV}$ for same-flavour pairs								
-3ℓ	Exactly three leptons with a total charge of $\pm 1e$								
	Both leptons from the same-sign lepton pair are required to have $p_{\rm T} \geq 20~{ m GeV}$								
	$N_{\rm jets} \geq 1$ with at least one b-jet								
	$ m_{\ell\ell}>12~{ m GeV}~\&~ m_{\ell\ell}-m_Z >10~{ m GeV}~({ m for~OS\text{-}SF}~\ell\ell)$								
	$ m_{\ell\ell\ell} - m_Z > 10 \text{ GeV}$								

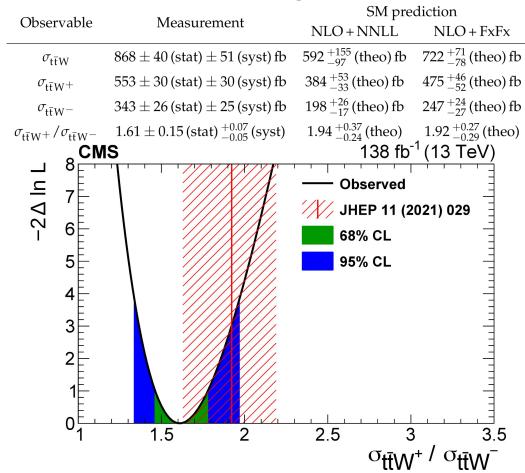

$$\sigma_{\text{fid}}(t\bar{t}W) = 21.7^{+1.1}_{-1.1} \text{ (stat.)} ^{+2.1}_{-1.9} \text{ (syst.)} = 21.7^{+2.4}_{-2.2} \text{ (tot.) fb}$$

Top2023


Differential Measurements

Efficiency/acceptance correction and normalised migration matrix and for $N_{\rm jets}$ calculated in Sherpa 2.2.10 with EWK corrections.

CMS Uncertainty Ranking



30

ATLAS Uncertainty Breakdown

	$rac{\Delta\sigma(tar{t}W)}{\sigma(tar{t}W)}[\%]$	$rac{\Delta \sigma_{ m fid}(tar{t}W)}{\sigma_{ m fid}} [\%]$	$rac{\Delta R(tar{t}W)}{R(tar{t}W)}[\%]$	$rac{\Delta A_{ m C}^{ m rel}}{A_{ m C}^{ m rel}}[\%]$
$t\bar{t}W$ ME and PS modelling	6.0	7.0	6.0	8.0
Prompt lepton bkg. norm.	2.6	2.5	1.6	2.2
Lepton isolation BDT	2.3	2.3	1.0	1.2
Fakes/ $VV/t\bar{t}Z$ norm. (free-floated)	2.3	2.7	1.8	2.5
Non-prompt lepton bkg. modelling	1.9	1.7	2.3	3.1
Trigger	1.9	1.8	0.5	0.7
MC statistics	1.5	1.6	1.9	2.5
$tar{t}W$ PDF	1.5	1.4	2.1	2.8
Jet energy scale	1.4	1.9	0.8	1.1
Prompt lepton bkg. modelling	1.3	1.3	1.3	1.9
Luminosity	1.0	1.0	0.08	0.13
Charge Mis-ID	0.7	0.7	0.4	0.5
Jet energy resolution	0.5	0.6	0.7	0.31
Flavour tagging	0.28	0.33	0.5	1.0
$tar{t}W$ Scale	0.21	0.9	1.4	1.9
Electron/photon reco.	0.15	0.2	0.12	0.3
MET	< 0.10	< 0.10	0.17	0.4
Muon	< 0.10	< 0.10	< 0.10	0.4
Pile-up	< 0.10	0.25	< 0.10	0.3
Total syst.	8	10	8	10
Data statistics	5	5	10	16
Total	9	11	13	19

CMS Charge Split

Leptonic Charge Asymmetry

Other results that include charge-asymmetry measurements:

- ATLAS+CMS Run 1 combination: <u>JHEP 04 (2018) 033</u>
- CMS Run 2 boosted top-antiquark: <u>2208.02751 (accepted by PLB)</u>
- CMS Run 2 top-antiquark (partial dataset): <u>JHEP 02 (2019) 149</u>
- ATLAS, top-antiquark: <u>JHEP 08 (2023) 077</u>
- ATLAS, ttγ: Phys. Lett. B 843 (2023) 137848

Matt Klein

Differential Cross-section Variables

Variable	Definition
$\overline{N_{ m jets}}$	Number of selected jets with $p_{\rm T} > 25$ GeV and $ \eta < 2.5$
$H_{ m T, jets}$	Scalar sum of the transverse momenta of selected jets with $p_{\rm T}>25$ GeV and $ \eta <2.5$
$H_{ m T,lep}$	Scalar sum of the transverse momenta of selected leptons
$\Delta R_{ m lb, lead}$	Angular distance between the leading lepton and the leading b -tagged jet
$ \Delta\phi_{ m ll,~SS} $	Absolute azimuthal separation between the two leptons of the same-sign pair
$ \Delta \eta_{ m ll,~SS} $	Absolute pseudo-rapidity separation between the two leptons of the same-sign pair
$M_{\rm jj,\ lead}$	Invariant mass of the two leading jets with $p_{\rm T} > 25~{\rm GeV}$ and $ \eta < 2.5$

Differential Measurement, p-values

2LSS,	normalized
x-sec	

100														
	Observable	NDF	Sher	pa 2.2.10	MG:	MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+Pythia8		Powheg+Herwig7		
-			χ^2	<i>p</i> -value	χ^2	p-value	χ^2	$p ext{-value}$	χ^2	$p ext{-value}$	χ^2	$p ext{-value}$		
-	$N_{ m jets}$	5	2.4	0.79	4.2	0.52	2.8	0.73	2.9	0.72	2.6	0.76		
	$H_{\mathrm{T,jets}}$	5	0.7	0.98	1.1	0.95	0.8	0.98	1.5	0.91	2.0	0.85		
	$H_{ m T,lep}$	7	3.6	0.82	3.8	0.80	3.4	0.84	3.4	0.85	3.5	0.84		
	$\Delta R_{\rm lb, lead}$	7	2.0	0.96	2.4	0.93	2.6	0.92	2.6	0.92	2.5	0.93		
	$ \Delta\phi_{\mathrm{ll, SS}} $	7	0.6	1.00	0.7	1.00	0.9	1.00	0.8	1.00	0.9	1.00		
	$ \Delta\eta_{ m ll,~SS} $	6	6.5	0.37	7.3	0.29	11.4	0.08	9.5	0.15	9.4	0.15		
	$M_{ m jj,\ lead}$	6	4.9	0.56	2.7	0.84	7.2	0.30	9.0	0.17	10.9	0.09		

3L, normalized x-sec

33, 1000													
Observable	NDF	Sherpa 2.2.10		Off-Shell		MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+Py8		Powheg+H7	
		χ^2	<i>p</i> -value	χ^2	p-value	χ^2	<i>p</i> -value	χ^2	p-value	χ^2	p-value	χ^2	p-value
$N_{ m jets}$	3	0.2	0.98	-	12	0.2	0.98	0.3	0.97	1.0	0.80	1.1	0.79
$H_{ m T, jets}$	4	1.4	0.84	-	-	0.9	0.92	1.9	0.75	2.4	0.66	3.3	0.51
$H_{ m T,lep}$	5	1.0	0.96	3.4	0.64	1.3	0.94	1.7	0.88	1.5	0.91	1.4	0.93
$\Delta R_{ m lb, lead}$	5	4.0	0.55	3.5	0.63	5.0	0.42	3.7	0.59	3.7	0.60	3.8	0.58
$ \Delta\phi_{\rm ll,~SS} $	5	2.7	0.75	2.2	0.81	2.6	0.76	2.2	0.82	2.4	0.79	2.3	0.80
$ \Delta \eta_{ m ll, \ SS} $	5	2.6	0.77	5.6	0.35	2.9	0.72	2.3	0.80	2.0	0.84	2.1	0.83
$M_{\rm jj,\ lead}$	5	0.1	1.00	1-	-	0.2	1.00	0.4	0.99	0.7	0.98	1.0	0.96

2LSS, asymmetry


Observable	NDF	Sherpa 2.2.10		MG5	5aMC+Py8 FxFx	MG5	5aMC+Py8 Incl.	Pow	heg+P8	Powheg+H7		
	2	χ^2	p-value	χ^2	p-value	χ^2	$p ext{-value}$	χ^2	<i>p</i> -value	χ^2	p-value	
$N_{ m jets}$	6	3.1	0.79	3.2	0.79	2.7	0.84	2.3	0.89	2.6	0.86	
$H_{\mathrm{T,jets}}$	6	2.7	0.84	2.9	0.82	1.6	0.95	0.9	0.99	1.4	0.96	
$H_{\mathrm{T,lep}}$	8	5.3	0.72	5.2	0.74	2.5	0.96	1.9	0.98	2.8	0.94	
$\Delta R_{ m lb, lead}$	8	4.1	0.85	4.5	0.81	3.3	0.91	2.9	0.94	3.4	0.91	
$ \Delta\phi_{ m ll,~SS} $	8	6.7	0.56	7.5	0.49	6.0	0.65	5.8	0.67	6.1	0.64	
$ \Delta\eta_{ m ll,~SS} $	7	4.5	0.72	4.5	0.72	3.3	0.86	3.2	0.86	3.6	0.82	
$M_{\rm jj,\ lead}$	7	5.3	0.62	5.7	0.58	4.4	0.74	3.5	0.84	4.0	0.78	
	$N_{ m jets} \ H_{ m T, jets} \ H_{ m T, lep} \ \Delta R_{ m lb, lead} \ \Delta \phi_{ m ll, SS} \ \Delta \eta_{ m ll, SS} $	$egin{array}{c cccc} N_{ m jets} & 6 \ H_{ m T, jets} & 6 \ H_{ m T, lep} & 8 \ \Delta R_{ m lb, lead} & 8 \ \Delta \phi_{ m ll, SS} & 8 \ \Delta \eta_{ m ll, SS} & 7 \ \end{array}$	$\begin{array}{c cccc} & & & \chi^2 \\ \hline N_{\rm jets} & 6 & 3.1 \\ H_{\rm T,jets} & 6 & 2.7 \\ H_{\rm T,lep} & 8 & 5.3 \\ \Delta R_{\rm lb, \ lead} & 8 & 4.1 \\ \Delta \phi_{\rm ll, \ SS} & 8 & 6.7 \\ \Delta \eta_{\rm ll, \ SS} & 7 & 4.5 \\ \hline \end{array}$	$\begin{array}{c ccccc} N_{\rm jets} & 6 & 3.1 & 0.79 \\ H_{\rm T,jets} & 6 & 2.7 & 0.84 \\ H_{\rm T,lep} & 8 & 5.3 & 0.72 \\ \Delta R_{\rm lb, \ lead} & 8 & 4.1 & 0.85 \\ \Delta \phi_{\rm ll, \ SS} & 8 & 6.7 & 0.56 \\ \Delta \eta_{\rm ll, \ SS} & 7 & 4.5 & 0.72 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	

3L, asymmetry

Observable	bservable NDF		Sherpa 2.2.10		Off-Shell		MG5aMC+Py8 FxFx		MG5aMC+Py8 Incl.		Powheg+Py8		Powheg+H7	
		χ^2	p-value	χ^2	p-value	χ^2	$p ext{-value}$	χ^2	$p ext{-value}$	χ^2	p-value	χ^2	p-value	
$N_{ m jets}$	4	1.5	0.83	- 1	-	1.9	0.76	1.7	0.78	2.5	0.65	1.8	0.77	
$H_{ m T,jets}$	5	2.4	0.80	-	-	2.6	0.76	2.7	0.74	3.6	0.61	2.8	0.73	
$H_{ m T,lep}$	6	1.5	0.96	3.1	0.79	1.6	0.96	1.5	0.96	2.0	0.92	1.5	0.96	
$\Delta R_{lb, lead}$	6	1.6	0.95	2.2	0.90	2.6	0.86	2.5	0.87	3.0	0.81	2.3	0.89	
$ \Delta\phi_{\rm ll,~SS} $	6	4.8	0.57	5.0	0.55	5.4	0.49	5.3	0.50	6.1	0.41	5.4	0.50	
$ \Delta \eta_{\rm ll, \ SS} $	6	2.5	0.86	3.6	0.73	3.1	0.79	3.0	0.80	3.5	0.75	3.0	0.81	
$M_{\rm jj,\ lead}$	6	1.3	0.97	2.2	0.90	1.5	0.96	1.6	0.95	2.3	0.89	1.6	0.95	

Top2023

Differential Measurement, Full Example

