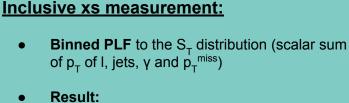
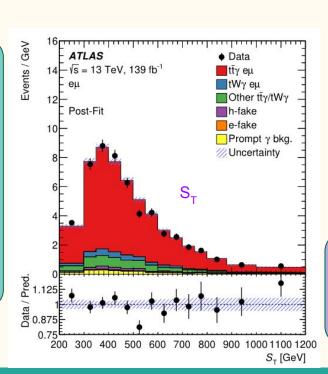

16th International Workshop on Top-Quark Physics (TOP 2023)

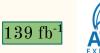
Recent results on associated $t\overline{t}Z$ and $t\overline{t}\gamma$ from the ATLAS and CMS experiments

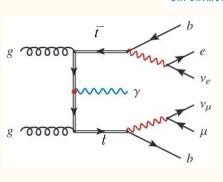
Dominik Babál (Slovak Academy of Sciences) on behalf of the ATLAS & CMS Collaborations

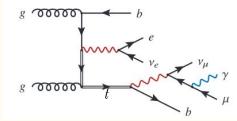



ATLAS: ttγ+tWγ inclusive + differential xs

- Probes tγ EW coupling, sensitive to the new physics through top quark anomalous dipole moments
- Only eµ channel (clean dataset, no need for MVA)




- Measured: 6.3% $\sigma_{\rm fid} = 39.6 \pm 0.8 \,({\rm stat}) {}^{+2.6}_{-2.2} \,({\rm syst}) \,{\rm fb} = 39.6 {}^{+2.7}_{-2.3} \,{\rm fb}$


- Compatible with NLO prediction within uncertainties
- syst. uncert. dominated by signal and background modelling and tWγ parton definition

JHEP 09 (2020) 049

Signal selection:

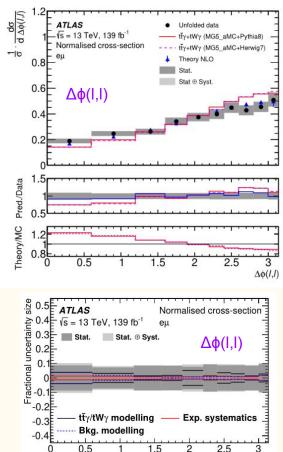
- one electron and muon with opposite charges
- > one isolated high-p_T photon
- > at least 2 jets (≥1 b-tag)

4

JHEP 09 (2020) 049

ATLAS: ttγ+tWγ inclusive + differential xs

139 fb⁻¹


Differential xs measurements:

- IBU with 2 iterations
- <u>5 observables</u> unfolded to <u>parton-level</u> (absolute and normalised)
 - $\circ \quad p_{T}(\gamma), |\eta(\gamma)|, \Delta R(\gamma,I)_{min}, \Delta \varphi(I,I), |\Delta \eta(I,I)|$
 - sensitive to ty coupling, ty separation and $t\bar{t}$ spin correlations
- <u>Binning optimised for high resolution and small migrations</u>

Results:

- <u>Compared to</u>:
 - **NLO** dedicated theory predictions
 - **LO** parton-level $t\bar{t}\gamma + tW\gamma$ (only for normalised)
- Overall good agreement (better compatibility with NLO calculations)
- Dominated by statistical uncertainty

Normalised xs	$p_{\mathrm{T}}($	(γ)	$ \eta($	$ \gamma) $	$\Delta R(\gamma$	$(\ell)_{\min}$	$\Delta \phi$ ((ℓ,ℓ)	$ \Delta\eta $	$\ell,\ell) $
Predictions	χ^2/ndf	p-value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	p-value	χ^2/ndf	<i>p</i> -value	χ^2/ndf	p-value
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+Pythia8)	6.3/10	0.79	7.3/7	0.40	20.1/9	0.02	30.8/9	< 0.01	6.5/7	0.48
$t\bar{t}\gamma + tW\gamma$ (MG5_aMC+HERWIG7)	5.3/10	0.87	7.7/7	0.36	18.9/9	0.03	31.6/9	< 0.01	6.8/7	0.45
Theory NLO	6.0/10	0.82	4.5/7	0.72	13.5/9	0.14	5.8/9	0.76	5.6/7	0.59

 $\Delta \phi(l,l)$

<u>JHEP 12 (2021) 180</u>

CMS: ttγ inclusive + differential (I+jets)

6.1%

137 fb⁻¹

Signal selection:

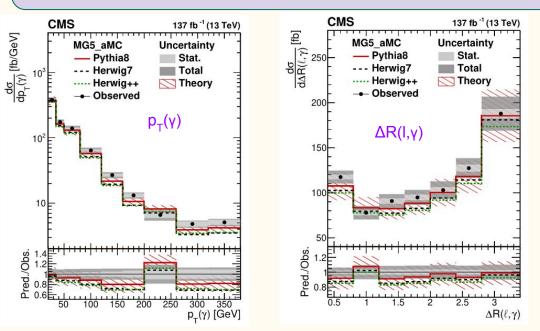
- > one electron or muon
- > one isolated high- p_T photon, $|\eta(\gamma)| < 1.44$
- ➤ two SRs based on jet multiplicity

Backgrounds:

> Non-prompt γ (23%), missID e (19%) - from data

Inclusive xs:

- Simultaneous PLF in all SRs and CRs
- Fitted M_3 distribution (invariant mass of 3-jet combination with highest p_T sum)


• <u>Measured:</u>

 $\sigma(t\bar{t}\gamma) = 798 \pm 7\,(stat) \pm 48\,(syst)\,fb$

- Good agreement with SM NLO prediciton
- Highly <u>systematically dominated</u> (Wγ normalisation, non-prompt γ bckg, lumi)
- **SMEFT** interpretation more sensitive than dilepton analysis!

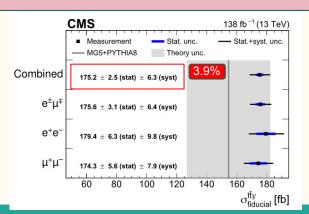
Differential xs:

- 3 observables unfolded to particle-level (absolute xs)
- Matrix inversion without regularisation (TUnfold) backgrounds constrained in CRs via ML fit
- Observables:
 - $\mathbf{p}_{T}(\mathbf{\gamma}), |\mathbf{\eta}(\mathbf{\gamma})|, \Delta \mathbf{R}(\mathbf{I}, \mathbf{\gamma})$ sensitive to t- $\mathbf{\gamma}$ coupling
- Dominated by **syst. uncertainties** -JES, γ ID efficiency, color reconnection

CMS: ttγ inclusive + differential (dilepton)

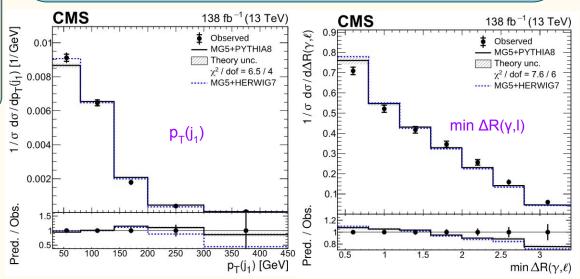
 $138 {
m ~fb^{-1}}$

Signal selection:


- tt dilepton selection ($e^{\pm}\mu^{\mp}$, $e^{+}e^{-}$, $\mu^{+}\mu^{-}$)
- one high-p_T photon in barrel region

Backgrounds:

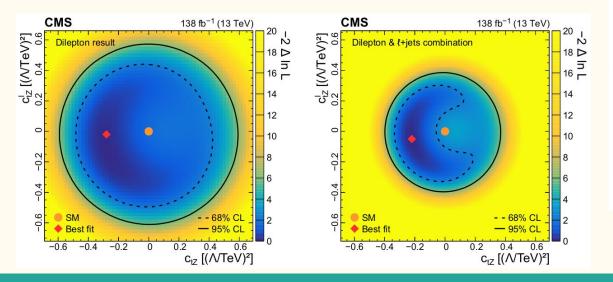
- Prompt γ bckg (13%) Zγ (from data), tγ (from MC)
- > Nonprompt γ bckg (13%) from data

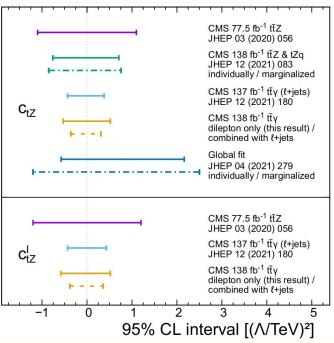

Inclusive xs:

- **PLF to reconstructed** $p_T(\gamma)$ 9 bins (separate fit for $e^{\pm}\mu^{\mp}$, $e^{+}e^{-}$, $\mu^{+}\mu^{-}$ and combined)
- **Dominated by syst. uncertainty** (Lumi, signal modelling, flavour tagging)
- <u>Agrees with the SM prediction</u> within uncertainties
- Lower prediction (12%) caused by neglecting γ radiation from t decay products in LO sample

Differential xs:

- 12 observables unfolded to particle level
- <u>Small migrations</u> → matrix inversion without regularisation (TUnfold)
- **Observables** related to photon kinematics, separation of γ from I, jets ,b-jets, and leptons p_{τ}
- Slight trends in I+γ and I+I variables hints on mismodelling of γ origin in LO simulation
- Large differences between predictions for high p_T bins, but overall good agreement


CMS: ttγ inclusive + differential (dilepton)


<u>JHEP 05 (2022) 091</u>

EFT interpretation:

- Two WCs considered c_{tz} , c_{tz}^{-1} (complementary to c_{ty} , c_{ty}^{-1})
- Using $\mathbf{p}_{\mathsf{T}}(\mathbf{\gamma})$, differential observables insensitive
- I+jets analysis more sensitive for EFT effects larger statistics at high p_T
- 1D and 2D scans in dilepton channel only and also combined with I+jets
- Results in agreement with SM most stringent limits on these WCs to date

CMS: ttZ inclusive + differential xs

Signal selection:

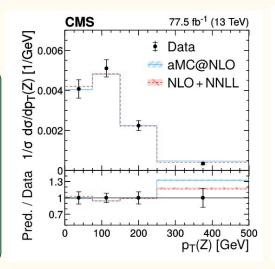
- 1 OSSF lepton pair and at least 1 jet
- 3SR <u>3l channel</u> and 2SR in <u>4l channel</u> based on b-jet multiplicity

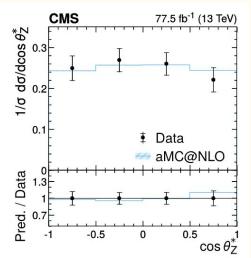
Backgrounds:

- t(t)X where X=W,Z,H from MC
- > WZ+jets (3I), ZZ+jets (4I) from data WZ/ZZ CR
- Nonprompt leptons from data CR

Inclusive xs:

- Simultaneous PLF to event yields in 5 SRs and 2 CRs
- Measured:

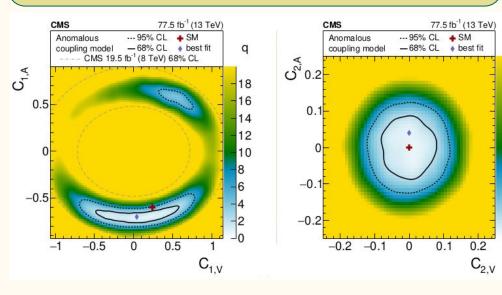

 $\sigma(\mathrm{pp}
ightarrow \mathrm{t\bar{t}} \mathrm{Z}) = 0.95 \pm 0.05\,\mathrm{(stat)} \pm 0.06\,\mathrm{(syst)}\,\mathrm{pb}$,


8.2%

- Good agreement with NLO+NNLL prediction, total unc. competitive with theory
- <u>Leading systematics</u>: lepton selection eff., PS, t(t)X and WZ modelling

Differential xs:

- Only in 3I channel $(N_i \ge 3, N_b \ge 1)$
 - 2 observables unfolded to parton level (absolute and normalised xs)
 - \mathbf{p}_{T}^{z} (t-Z coupling) and **cos** $\mathbf{\theta}_{z}^{*}$ (anomalous dipole moments)
- Small migrations → matrix inversion without regularisation <u>TUnfold</u>
- Overall good agreement


CMS: ttZ inclusive + differential xs


Search for anomalous ttZ couplings:

Testing SM predictions for C_{1,V}, C_{1,A} (non-zero in SM) and C_{2,V}, C_{2,A} (0 at LO, ~10⁻³ overall)

$$\mathcal{L} = e\overline{u}_{t} \left[\gamma^{\mu} \left(C_{1,V} + \gamma_{5} C_{1,A} \right) + \frac{\mathrm{i}\sigma^{\mu\nu} p_{\nu}}{m(Z)} \left(C_{2,V} + \mathrm{i}\gamma_{5} C_{2,A} \right) \right] v_{\overline{t}} Z_{\mu\nu}$$

- $\cos \theta_z^*$ provide high sensitivity
- Obtained results agree with SM

EFT interpretation:

- 4 dim-6 WCs constrained
- <u>12</u>SRs and CRs in **3**I
- <u>3</u>SRs and CRs in **4**
- 1D and 2D likelihood scans
- All results in agreement with SM predictions

CMS

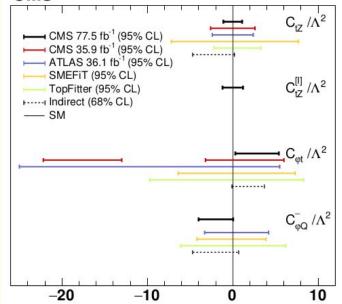
q

18

16

14

12


10

8

6

4

2

11

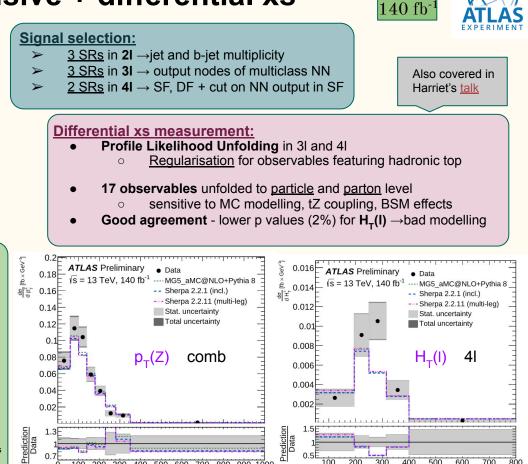
Improving previous ttZ measurement (EPJC 81 (2021) 737):

- Addition of **2I channel** in inclusive xs
- MVA for SR definitions and PLF
- Improved unfolding technique

Backgrounds:

- 2I dominated by Z+jets and tt from data \succ
- 3I dominated by WZ+jets from CR \succ
- 4I dominated by ZZ+jets from CR \succ
- 3 CRs for fakes in 3I and 4I \succ

Inclusive xs:


NLO: $\sigma(pp \to t\bar{t}Z) = 0.84^{+0.09}_{-0.10} \text{ pb}$

0.7

Simultaneous PLF to NN outputs

Channel	$\sigma_{t\bar{t}Z}$
Dilepton	$0.84 \pm 0.11 \text{ pb} = 0.84 \pm 0.06 \text{ (stat.)} \pm 0.09 \text{ (syst.) pb}$
Trilepton	$0.84 \pm 0.07 \text{ pb} = 0.84 \pm 0.05 \text{ (stat.)} \pm 0.05 \text{ (syst.) pb}$
Tetralepton	$0.97 \substack{+0.13 \\ -0.12} \ pb \ = 0.97 \pm 0.11 \ (stat.) \pm 0.05 \ (syst.) \ pb$
Combination (2l, 3l&4l)	$0.86 \pm 0.06 \text{ pb} = 0.86 \pm 0.04 \text{ (stat.)} \pm 0.04 \text{ (syst.) pb}$

- Compatible with SM prediction **6%** relative precision (**10%** in previous ATLAS ttZ) Leading systematics: background normalisations, jets+E_T^{miss} and b-tagging

0.5

300 400 500 600 700 800 900 1000

Parton-level p^Z [GeV]

100

300

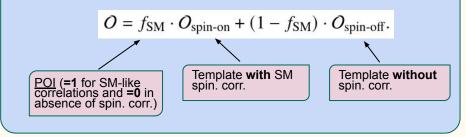
400

500 600 700

Particle-level H¹ [GeV]

ATLAS-CONF-2023-065

Spin correlations interpretation:


- First evidence of top-quark spin correlations in ttZ
- <u>6 independent observables</u> (in tt rest frame):

 $\cos \theta_k^+, \quad \cos \theta_k^-, \quad \cos \theta_n^+, \quad \cos \theta_n^-, \quad \cos \theta_r^+, \quad \cos \theta_r^-,$

• Observables defined using leptons from tt (or lepton + down-type quark from W decay)

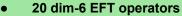
Strategy:

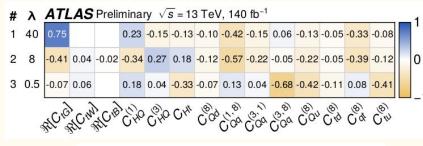
- Template fit of <u>detector-level distributions</u>
- Each observable O fitted to lin. combination of spin-on and spin-off hypotheses:

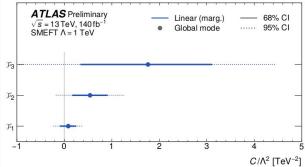
Result:

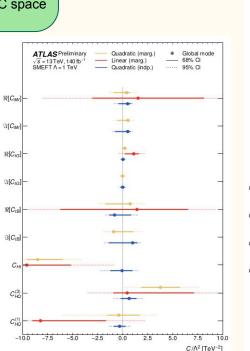
 $f_{\text{SM}}^{\text{obs.}} = 1.20 \pm 0.63 \text{ (stat.)} \pm 0.25 \text{ (syst.)} = 1.20 \pm 0.68 \text{ (tot.)}.$

- Measurement stat. dominated,
- Spin-off hypothesis rejected with 1.8σ

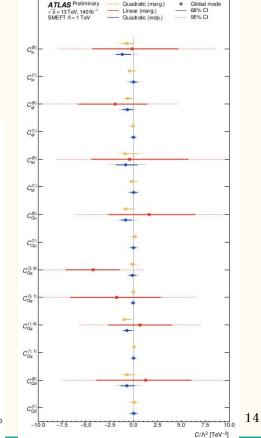

Distribution	Channel	Expected values	Observed values
$\cos \varphi$	$3\ell + 4\ell$	$1^{+1.39}_{-1.38}$	$-0.09^{+1.34}_{-1.28}$
$\cos\theta_r^+\cdot\cos\theta_r^-$	$3\ell+4\ell$	$1^{+1.83}_{-1.82}$	$1.17^{+1.80}_{-1.76}$
$\cos\theta_k^+\cdot\cos\theta_k^-$	$3\ell+4\ell$	$1^{+1.78}_{-1.78}$	$1.39^{+1.72}_{-1.73}$
$\cos \theta_n^+ \cdot \cos \theta_n^-$	$3\ell+4\ell$	$1^{+1.87}_{-1.86}$	$-1.05^{+2.06}_{-1.96}$
$\cos\theta_r^+ \cdot \cos\theta_k^- + \cos\theta_r^- \cdot \cos\theta_k^+$	$3\ell+4\ell$	$1^{+1.93}_{-1.93}$	$0.36^{+1.99}_{-1.93}$
$\cos \theta_r^+$	$3\ell+4\ell$	$1^{+1.81}_{-1.80}$	$1.56^{+1.86}_{-1.98}$
$\cos \theta_r^-$	$3\ell+4\ell$	$1^{+1.82}_{-1.78}$	$1.81^{+1.63}_{-1.68}$
$\cos \theta_k^+$	$3\ell + 4\ell$	$1^{+1.69}_{-1.67}$	$2.00^{+1.65}_{-1.70}$
$\cos \theta_k^-$	$3\ell + 4\ell$	$1^{+1.68}_{-1.68}$	$2.31^{+1.68}_{-1.68}$


140 fb⁻





- <u>Particle-level</u> diff. distributions taken as input
- Linear and quadratic fits (other WCs profiled, and fixed to 0)
- Fisher information matrix
 - inverse covariance matrix rotated into the space of the WCs
 - measure of sensitivity achieved along directions in WC space
- Results compatible with SM predictions within uncertainties



ATLAS-CONF-2023-065

<u>PRD 108 032008 (2023)</u>

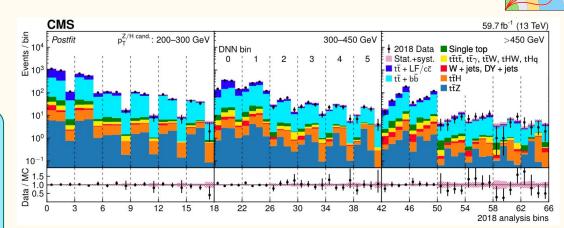
 $138 {
m ~fb^{-1}}$

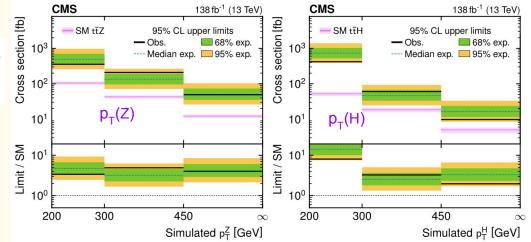
CMS

15

CMS: Boosted ttZ + ttH

- Probes t Z/H couplings
- Z/H→bb̄ and tt̄→l+jets
- one e or μ, one AK8 high-p_T jet (H/Z candidate), ≥5 AK4 jets (≥2 b-tagged)

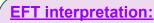

Signal strength extraction:


- Simultaneous profile likelihood fit to event yields in <u>198 analysis bins (p_T^{Z/H}, m_{sD} and DNN output)</u>
- POIs: $\mu_{t\bar{t}Z}$, $\mu_{t\bar{t}H}$
- Normalisation of tt+bb free floating
- Low correlation between $\mu_{t\bar{t}Z}$ and $\mu_{t\bar{t}H}$ (-10%)
- Results stat. dominated

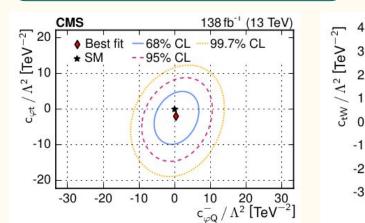
Signal strength	Observed	Stat.	MC stat.	Exp. syst.	Theo. syst.	Expected
$\mu_{t\bar{t}Z}$	$0.65{}^{+1.04}_{-0.98}$	$^{+0.80}_{-0.75}$	$^{+0.36}_{-0.38}$	$^{+0.38}_{-0.31}$	$^{+0.43}_{-0.38}$	$1.00{}^{+0.91}_{-0.84}$
$\mu_{t\overline{t}H}$	$-0.27^{+0.86}_{-0.83}$	$^{+0.72}_{-0.65}$	$^{+0.31}_{-0.33}$	$^{+0.19}_{-0.19}$	$^{+0.28}_{-0.35}$	$1.00 {}^{+0.79}_{-0.72}$

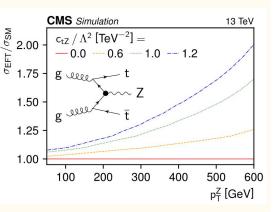
Upper limits on differential xs:

- Profile likelihood unfolding to obtain 95% CL upper limits for p_T^Z and p_T^H
- <u>Same fiducial volume</u> as for µ extraction
- Higher sensitivity on H than Z due to larger $H \rightarrow b\overline{b}$ branching fraction



PRD 108 032008 (2023)


 $138 {
m ~fb^{-1}}$


CMS

CMS: Boosted ttZ + ttH

- EFT effects more pronounced in high p_T regions
- 8 dim-6 WCs .
- Varying ttZ, ttH and tt+bb samples
- Likelihood scan for each WC while others:
 - fixed to 0 0
 - profiled (floating) 0
- **2D scans** for 3 pairs (remaining 6 fixed to 0)
- 95% CL limits in agreement with SM
- Comparable sensitivity to other results

68% CL

0

-95% CL

CMS

3

2

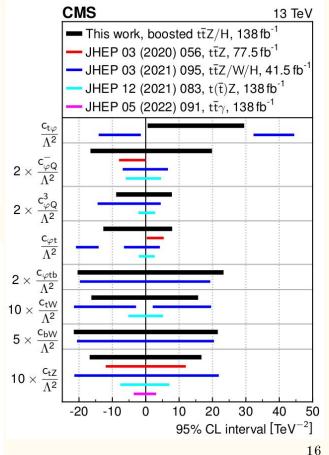
0

-2

Best fit

-2

* SM


-4

138 fb⁻¹ (13 TeV)

99.7% CL

2

 $c_{tZ} / \Lambda^2 [TeV^{-2}]$

Analysis	Inclusive xs	Differential xs	EFT	Extra
ττγ+τ₩γ	39.6 fb ± 6.3%	5 observables	no	_
tτγ (I+jets)	798 fb ± 6.1%	3 observables	yes	_
tτγ (dilepton)	175.2 fb ± 3.9%	12 observables	yes	—
ttZ	0.95 pb ± 8.2%	2 observables	yes	Limits on anomalous couplings
ttZ refined NEW!	0.86 pb ± 6.5%	15 observables	yes	ttZ spin correlations
ttZ + ttH boosted 🎽	—	2 observables (upper limits)	yes	Signal strengths for ttZ and ttH

- Latest ttZ and ttγ inclusive results now beating precision of NLO calculations
- Inclusive measurements become systematically limited, differential remain statistically limited

Thank you for your attention !

BACKUP

ATLAS: ttγ+tWγ inclusive + differential xs

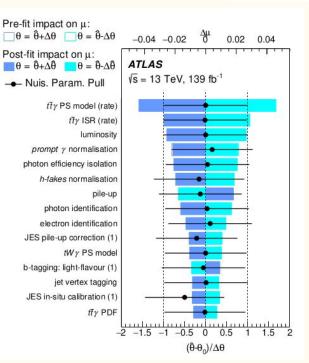
JHEP 09 (2020) 049

Signal selection:

- one electron and muon with p_T>25GeV and opposite charges
- > m_{eu}>15GeV
- > one reconstructed photon with $\Delta R(I,\gamma) > 0.4$
- ➤ at least 2 jets (≥1 b-tag)

- S_T provides good S/B separation and is less sensitive to systematics than jets N or p_T
- Measured in **fiducial phase space** emulating event selection from dedicated theory calculation (parton level)

- Predicted NLO (*JHEP 01 (2019) 188*):

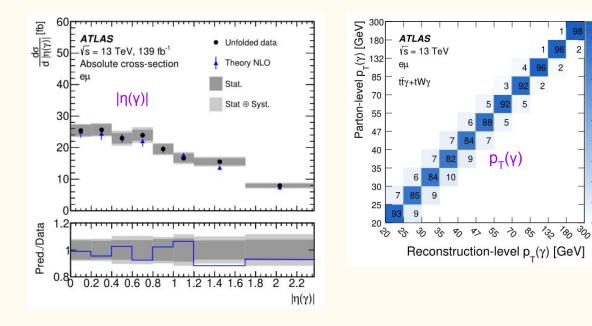

$$\sigma_{\rm fid} = 38.50 \, {}^{+0.56}_{-2.18} \, ({\rm scale}) \, {}^{+1.04}_{-1.18} \, ({\rm PDF}) \, {\rm fb}$$

Backgrounds: ➤ All estimated from MC:

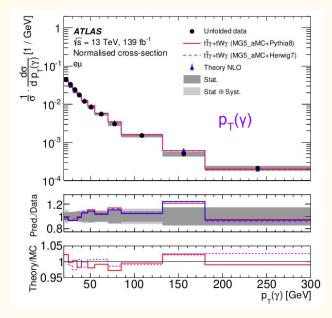
- > other $t\bar{t}\gamma/tW\gamma$ (9%)
- prompt γ bckg. (3%)
- > γ from hadron decays $\pi^0 \rightarrow \gamma \gamma$ (3%) = h-fake
- electron mimicking γ (0.8%) = e-fake

Category	Uncertainty
$t\bar{t}\gamma/tW\gamma$ modelling	3.8%
Background modelling	2.1%
Photons	1.9%
Luminosity	1.8%
Jets	1.6%
Pile-up	1.3%

Leptons	1.1%
Flavour-tagging	1.1%
MC statistics	0.4%
Soft term $E_{\rm T}^{\rm miss}$	0.2%
$tW\gamma$ parton definition	2.8%
Total syst.	6.3%


139 fb⁻

- tWy parton def. - sample produced with only one b, second b produced in PS, but sometimes missing (30% in Herwig, 50% in Pythia)

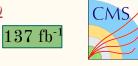

ATLAS: tty+tWy inclusive + differential xs

JHEP 09 (2020) 049

	p _T	·(y)	17	(7)	$\Delta R(\gamma$	$, \ell)_{\min}$	$\Delta \phi$		$ \Delta \eta $	
Predictions	χ^2/ndf	p-value	χ^2/ndf	p-value	χ^2/ndf	p-value	χ^2/ndf	p-value	χ^2/ndf	p-value
Theory NLO	6.1/11	0.87	4.5/8	0.81	11.7/10	0.31	5.8/10	0.83	6.2/8	0.62

Binning:

-10


- bin widths larger than twice the resolution
- stat. uncert. less than 10% in each bin
- high resolution→small migrations (on diagonal >80%)

JHEP 12 (2021) 180

CMS: tty inclusive + differential (I+jets)

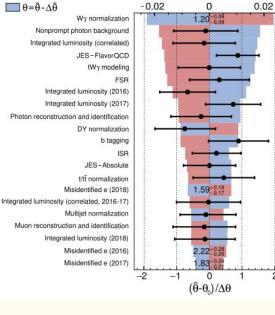
CMC

matched to b hadrons

137 fb⁻¹ (13 TeV)

Δr

Backgrounds:


- Non-prompt y (23%): \succ
 - dominant, estimated from data in 0 sideband CR
 - signal and other bckgs. subtracted from 0 data
- Misidentified e (19%): $\mathbf{\Sigma}$
 - from data, dedicated CRs ($N_{\rm b} = 0$) 0
 - high mass (Wy), low mass (Wy, Zy) and Z 0 mass ($|m(I,\gamma)-m_{z}| \le 10$ GeV, Z \rightarrow ee)
 - Wy normalisation → free parameter of 0 the fit
- Multijet (< 0.5%): $\mathbf{\Sigma}$

isolated

- from data in sideband region 0
- CRs with loosened isol. criteria (pass 0 loose, fail tight), N_b=0
- template fit of $m_{\tau}(\tilde{W})$ 0

	CINI	5								137 f	b ⁻ ' (13	3 TeV)
Events		tīγ Multij		Misid Ζγ		Nonp Obse			Othe		nty	Wγ
10 ⁵	M ₃ < 280 GeV	280 ≤ M ₃ < 420 GeV	M ₃ ≥ 420 GeV	 M₃<280 GeV	280 ≤ M ₃ < 420 GeV	M ₃ ≥ 420 GeV	M ₃ < 280 GeV	280 ≤ M ₃ < 420 GeV	M ₃ ≥ 420 GeV	M ₃ < 280 GeV	280 ≤ M ₃ < 420 GeV	M ₃ ≥ 420 GeV
10 ⁴		280 ≤			• 280 ≤		•	280 ≤			• 280 ≤I	-
10 ³												
10 ²												
.05 1.05 1 0.95	***	**	**		~~ } ~~	**		*	*	xx	•	
	SR3, e	SR3, e	SR3, e	SR3, μ	SR3, µ	SR3, μ	SR4p, e	SR4p, e	SR4p, e	SR4p, μ	SR4p, μ	SR4p, μ

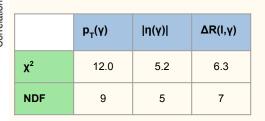
			SR3, e SR3, e SR3, e SR3, e	SR3, μ	SB3.
Photon	e (µ)	Jet	b jet		
$p_{ m T}>20~{ m GeV}$ $ \eta <1.4442$	$p_{ m T} > 35 (30) { m GeV}$ $ \eta < 2.4$	$p_{ m T} > 30{ m GeV}$ $ \eta < 2.4$	$p_{\mathrm{T}} > 30 \mathrm{GeV}$ $ \eta < 2.4$	-	
no hadronic origin $\Delta R(\ell, \gamma) > 0.4$	no hadronic origin	$\Delta R(\text{jet}, \ell) > 0.4$ $\Delta R(\text{jet}, \gamma) > 0.1$	$\Delta R(\text{b jet}, \ell) > 0.4$ $\Delta R(\text{b jet}, \gamma) > 0.1$		

Predicted NLO: •

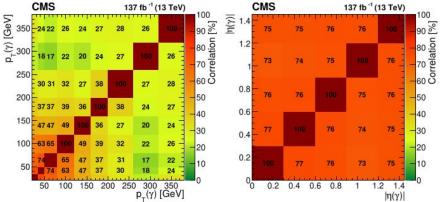
107 4-1 (10 T-V)

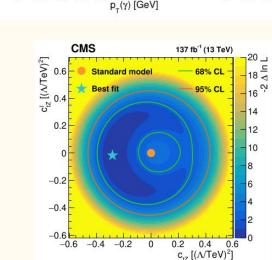
CMS

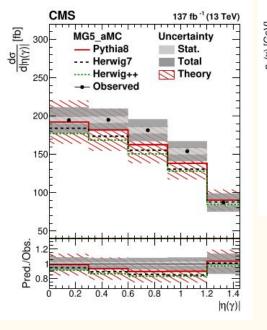
 $\theta = \hat{\theta} + \Delta \hat{\theta}$

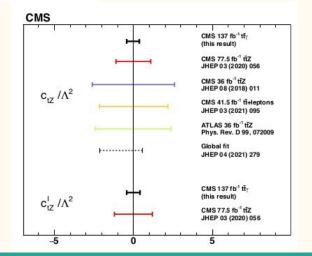

HI Nuisance parameter pull

 $\sigma^{\rm NLO}(t\bar{t}\gamma) = 773 \pm 135\,{\rm fb}.$


2


<u>JHEP 12 (2021) 180</u>


CMS: ttγ inclusive + differential (I+jets)


 137 fb^{-1}

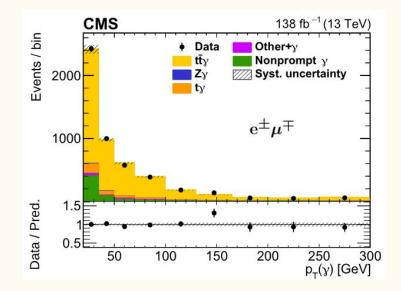
$$\begin{split} c_{tZ} &= \operatorname{Re}\left(-\sin\theta_{W}C_{uB}^{(33)} + \cos\theta_{W}C_{uW}^{(33)}\right),\\ c_{tZ}^{I} &= \operatorname{Im}\left(-\sin\theta_{W}C_{uB}^{(33)} + \cos\theta_{W}C_{uW}^{(33)}\right),\\ c_{t\gamma} &= \operatorname{Re}\left(\cos\theta_{W}C_{uB}^{(33)} + \sin\theta_{W}C_{uW}^{(33)}\right),\\ c_{t\gamma}^{I} &= \operatorname{Im}\left(\cos\theta_{W}C_{uB}^{(33)} + \sin\theta_{W}C_{uW}^{(33)}\right), \end{split}$$

JHEP 05 (2022) 091

138 fb⁻¹

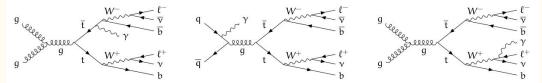
CMS

CMS: tty inclusive + differential (dilepton)


Signal selection:

Leptons	Photons	Jets	b jets	Events
$p_{\rm T} > 25~(15){\rm GeV}$	$p_{\rm T}>20{\rm GeV}$	$p_{\rm T} > 30{\rm GeV}$	$p_{\rm T} > 30{\rm GeV}$	$N_\ell = 2 \ (\mathrm{OC})$
$ \eta < 2.4$	$ \eta < 1.44$	$ \eta < 2.4$	$ \eta < 2.4$	$N_{\gamma} = 1$
	$\Delta R(\mathbf{y}, \ell) > 0.4$	$\Delta R(\text{jet}, \ell) > 0.4$	$\Delta R(\text{jet}, \ell) > 0.4$	$N_{ m b} \geq 1$
	isolated	$\Delta R({ m jet},\gamma) > 0.1$	$\Delta R({ m jet},\gamma)>0.1$	$m(\ell\ell) > 20 \mathrm{GeV}$
			matched to b hadron	

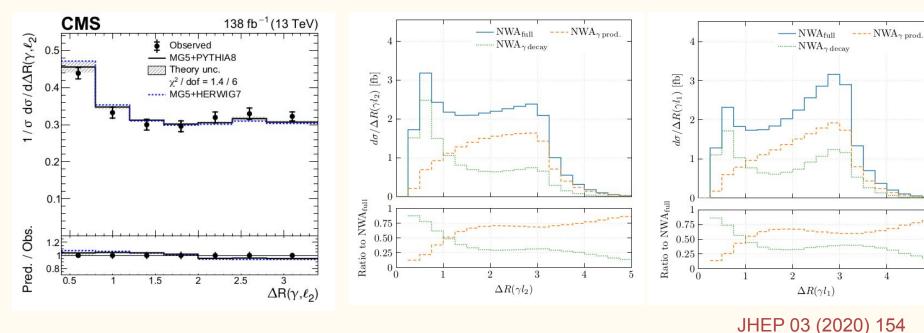
+ |m_{II}-m_z|>15GeV and |m_{IIv}-m_z|>15GeV for SF leptons


Backgrounds:

- > Prompt γ bckg (13%):
 - dominated by Zy, ty
 - Zγ from data, others from MC
 - <u>Zy CR:</u>
 - |m_{llv}-m_z|<15GeV; only SF leptons
- Nonprompt γ bckg (13%):
 - estimated from data in sideband region (99.5% purity)
 - "tight-to-loose ratio" method applied to tt
 - corr. factor as ratio of events passing and failing ID criteria for γ

• <u>Predicted</u> (NLO MG5_aMC@NLO):

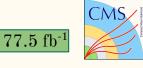
 $\sigma_{\rm SM}({\rm pp} \to {\rm t\bar{t}}\gamma) = 155 \pm 27\,{\rm fb}$



CMS: ttγ inclusive + differential (dilepton)

JHEP 05 (2022) 091

138 fb⁻¹



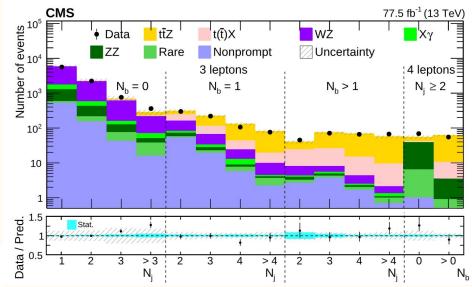
- $\Delta R < 1 80\% \gamma$ from top decay
- $\Delta R > 1$ only 20-40% γ from top decay, majority from production

CMS: ttZ inclusive + differential xs

JHEP 03 (2020) 056

Signal selection:

- 3I channel: ≻
 - **3 leptons** with $p_{\tau} > 40, 20, 10 \text{ GeV}$ 0
 - **1 OSSF lepton pair** with $|m_{\mu}-m_{\tau}| < 10 \text{ GeV}$ 0
 - N.≥1 0
 - **3**SR based on N_b = 0, 1, ≥2 0
- 4l channel:
 - **4 leptons** with $p_{\tau} > 40$, 10, 10, 10 GeV 0
 - **1 OSSF lepton pair** with $|m_{\mu}-m_{\tau}| < 20 \text{ GeV}$ 0
 - 0 N.≥1
- **2SR** based on $N_b = 0$, ≥1 For <u>differential xs</u> only <u>3I channel</u> with $N_j \ge 3$, $N_b \ge 1$ ≻


Backgrounds:

- Main contribution from t(t)X where X=W,Z,H \succ
 - estimated from MC 0
- WZ+jets (3I), ZZ+jets (4I) \succ
 - from data WZ/ZZ CR 0
- Nonprompt leptons subdominant ≻
 - from data CR (3I events without Z candidate) 0
- Minor contribution from $\dot{V}VV$ ("Rare") and $Z\gamma^*$, $t\bar{t}\gamma$ (Xy) \succ
 - from MC 0

Lepton requirement	Measured cross section
3ℓ	$0.97\pm0.06~(\text{stat})\pm0.06~(\text{syst})\text{pb}$
4ℓ	0.91 ± 0.14 (stat) \pm 0.08 (syst) pb
Total	0.95 ± 0.05 (stat) \pm 0.06 (syst) pb

- Based on the previous CMS ttZ analysis (JHEP 08 (2018) 011) at 36 fb⁻¹
- Improved trigger and lepton (MVA) selection
- Fiducial phase space defined by $70 \le m_{\parallel} \le 110$ GeV
- Predicted (NLO+NNLL):

$$\sigma(pp \to t\bar{t}Z) = 0.84^{+0.09}_{-0.10} \,\mathrm{pb}$$

JHEP 03 (2020) 056

2

-0

2

CMS: ttZ inclusive + differential xs

N_ℓ	$N_{\rm b}$	$N_{\rm j}$	$N_{\rm Z}$		$-1 \le \cos \theta_Z^* < -0.6$			CMS 77.5 fb ⁻¹ (13 TeV) CMS	77.5 fb ⁻¹ (13 TeV)
3	≥ 1	≥3	1	0-100 100-200 200-400 \geq 400	SR1 SR4 SR7 SR10	SR2 SR5 SR8 SR11	SR3 SR6 SR9 SR12	qq/qcosp 200 100 100 100 100 100 100 100	‡ Data ↓ mman aMC@NLO mman aMC@NLO mman amount amo
4	≥ 1	≥ 1	1	0−100 100−200 ≥200		SR13 SR14 SR15			
3	0	≥1	1	0-100 100-200 200-400 \geq 400	CR1 CR4 CR7 CR10	CR2 CR5 CR8 CR11	CR3 CR6 CR9 CR12	tion	
4	≥0	≥1	2	0−100 100−200 ≥200		CR13 CR14 CR15			100 200 300 400 500 p _T (Z) [GeV]
$C_{1,V}^{SN}$	1 / = ·			$\frac{\sin^2 \theta_{\rm W}}{\cos \theta_{\rm W}} = 0.2$	2448 (52),		MS SMEFT9 — 6	COS θ [*] _Z 77.5 fb ⁻¹ (13 TeV) % CL → SM % CL → best fit q	
$C_{1,4}^{SN}$		2 sin	$-I_{3,q}^{f}$ $\theta_{W} co$	$\frac{1}{\cos \theta_{\rm W}} = -0.6$	6012 (14),	c _{ợt} /Λ ² [1/TeV ²] o 0	P	-18 -16 -14 -12 10	
C _{t7}	=	Re ($-\sin$	$n \theta_W C_{uB}^{(33)} +$	$\cos \theta_{\rm W} C_{\rm uW}^{(33)}$	c _{φt} /Λ ²		$\begin{bmatrix} 14 \\ 12 \\ 10 \\ 10 \\ \end{bmatrix} \begin{bmatrix} N \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	

6

0

-2-2

-1

0

1

 $c_{tZ}^2 / \Lambda^2 [1/TeV^2]$

10 20 30 $c_{\phi Q}^{-} / \Lambda^{2} [1/TeV^{2}]$

-10

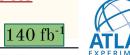
-20

-10

0

$$\begin{split} c_{tZ} &= \operatorname{Re} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right) \\ c_{tZ}^{[I]} &= \operatorname{Im} \left(-\sin \theta_{W} C_{uB}^{(33)} + \cos \theta_{W} C_{uW}^{(33)} \right) \\ c_{\phi t} &= C_{\phi t} = C_{\phi u}^{(33)} \\ c_{\phi q}^{-} &= C_{\phi Q} = C_{\phi q}^{1(33)} - C_{\phi q}^{3(33)}, \end{split}$$

27


CMS

77.5 fb⁻¹

Process	Generator	Parton Shower	PDF	Reference Cross Section (fb)
tīZ	MADGRAPH5_AMC@NLO 2.8.1	Рутніа 8.244	NNPDF3.0NLO	876.4 [19, 54]
tīH	MADGRAPH5_AMC@NLO 2.6.0	Рутніа 8.230	NNPDF3.0NLO	507.4 [19]
tīW/tīW j	Sherpa 2.2.10	Sherpa 2.2.10	NNPDF3.0NNLO	722.4 [68]
tZq	MADGRAPH5_AMC@NLO 2.9.5	Рутніа 8.245	NNPDF3.0NLO	38.72
tWZ	MADGRAPH5_AMC@NLO 2.2.2	Рутніа 8.212	NNPDF2.3LO	16.08
tī	Powheg Box 2	Рутніа 8.230	NNPDF3.0NLO	87,710 [69]
WZ+jet/ZZ+jets	SHERPA 2.2.2	Sherpa 2.2.2	NNPDF3.0NNLO	7,334
V+jets	SHERPA 2.2.1	Sherpa 2.2.1	NNPDF3.0NNLO	6,255×10 ³ [67]
tīttī	MADGRAPH5_AMC@NLO 2.3.3	Рутніа 8.230	NNPDF3.1NLO	11.97 [70]
ttī	MADGRAPH 2.2.2	Рутніа 8.186	NNPDF2.3LO	1.64
VH	Рутніа 8.186	Рутніа 8.186	NNPDF2.3LO	2,250 [71–77]
VVV	Sherpa 2.2.2	Sherpa 2.2.2	NNPDF3.0NLO	13.74

Variable Preselection							
$N_{\ell} \ (\ell = e, \mu)$		= 2					
	= 1 OSSF lep	oton pair with m	$\ell\ell - m_Z \mid < 10 \text{ GeV}$				
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2}\right)$		> 30, 15 Ge	V				
	SR-2ℓ-5j2b	SR-2 <i>l-</i> 6j1b	SR-2 <i>l</i> -6j2b				
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	= 5	≥ 6	≥ 6				
Nb-tagged jets@77%	> 2	= 1	> 2				

<u>ATLAS-CONF-2023-065</u>

Variable	Preselection						
$N_{\ell} \ (\ell = e, \mu)$		= 3					
	$\geq 1 \text{ OSSF } l$	epton pair with	$m_{\ell\ell} - m_Z < 10 \text{ GeV}$				
	for all OSSF combinations: $m_{OSSF} > 10$ GeV						
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2},\ell_{3}\right)$		> 27, 20, 15	GeV				
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$		≥ 3					
Nb-tagged jets		≥ 1@85	%				
	SR-3 <i>l</i> -ttZ	SR-3 <i>l</i> -tZq	SR-3 <i>l</i> -WZ				
DNN-tZq output	< 0.40	≥ 0.40	<u>10-10</u>				
DNN-WZ output	< 0.22	< 0.22	≥ 0.22				
Nb-tagged jets	<u> </u>		$\geq 1@60\%$				

Variable	Preselection				
$N_{\ell} \ (\ell = e, \mu)$		= 4			
	\geq 1 OSSF lepton pair	$r \text{ with } m_{\ell\ell} - m_Z < 20 \text{ GeV}$			
	for all OSSF comb	binations: $m_{OSSF} > 10 \text{ GeV}$			
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2},\ell_{3},\ell_{4}\right)$	> 27, 7, 7, 7 GeV				
The sum of lepton charges	= 0				
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$		≥ 2			
Nb-tagged jets		≥ 1@85%			
	SR-4 <i>l</i> -SF	SR-4 <i>l</i> -DF			
$\ell\ell^{non-Z}$	e^+e^- or $\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$			
DNN output	≥ 0.4				

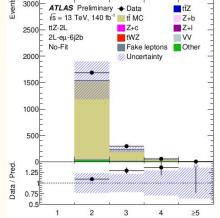
28

DD tt selection

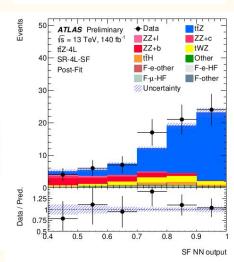
2l-eµ-5j2b

= 5

 ≥ 2


ATLAS-CONF-2023-065

 $140 {
m ~fb^{-1}}$


2l-eµ-6j2b

≥ 6

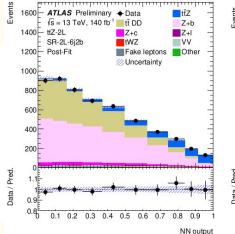
 ≥ 2

Number of b-jets (at 77% WP)

Backgrounds:

21 channel:

- Dominated by **Z+jets** and $t\overline{t}$
- \circ Z+I from MC, Z+b/c from data
- \circ tt from data 3 regions (OSSF \rightarrow OSDF)

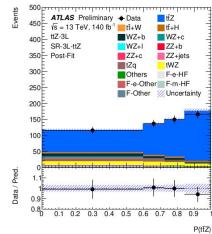

> 3I channel:

- Dominated by WZ+jets and tZq
- WZ+b from data, all other from MC

> 4l channel:

- Main bckg. is **ZZ+jets** dedicated CR
- 3 CRs for fakes (F-e-HF, F-e-other, F-µ-HF) in 3I and 4I (in 2I from MC)

Variable	Preselection
$N_\ell \ (\ell=e,\mu)$	= 4
	≥ 1 OSSF lepton pair with $ m_{\ell\ell} - m_Z < 20$ GeV
	for all OSSF combinations: $m_{OSSF} > 10 \text{ GeV}$
$p_{\mathrm{T}}\left(\ell_{1},\ell_{2},\ell_{3},\ell_{4}\right)$	> 27, 7, 7, 7 GeV
The sum of lepton charges	= 0
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	≥ 2
Nb-tagged jets	$\geq 1@85\%$
	CR-4ℓ-ZZ
$\ell \ell^{\text{non-}Z}$	e^+e^- or $\mu^+\mu^-$
DNN-SF output	< 0.4


Variable

 N_{ℓ} ($\ell = e, \mu$)

 $N_{\text{iets}} (p_{\text{T}} > 25 \text{ GeV})$

Nb-tagged jets@77%

 $p_{\rm T}(\ell_1, \ell_2)$

Preselection

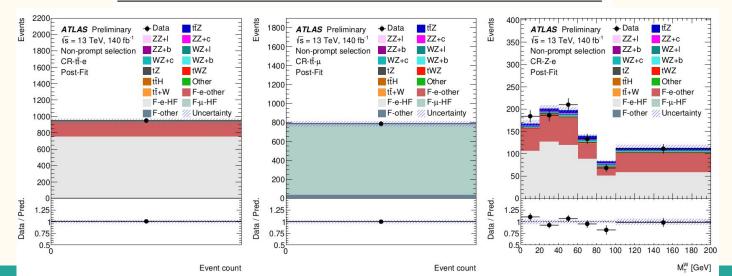
= 2

= 1 OSDF lepton pair with $|m_{\ell\ell} - m_Z| < 10 \text{ GeV}$

> 30, 15 GeV

2l-eµ-6j1b

> 6


= 1

ATLAS-CONF-2023-065

140 fb⁻¹

Variable	Preselection						
$N_{\ell} \ (\ell = e, \mu)$	= 3 (of which $= 1$ loose non-tight)						
$p_{\mathrm{T}}(\ell_1,\ell_2,\ell_3)$		> 27, 20, 15 GeV					
Sum of lepton charges		± 1					
$N_{\text{jets}} (p_{\text{T}} > 25 \text{ GeV})$	≥ 3						
N _{b-tagged jets}	$\geq 1@85\%$						
	CR- <i>tī</i> -e	CR-tī-µ	CR-Z-e				
Lepton flavours	no OSSF pair	no OSSF pair	OSSF pair				
	(loose lepton is an electron)	(loose lepton is a muon)	(exactly 3 electrons)				
$E_{\rm T}^{\rm miss}$			< 80 GeV				

30

ATLAS-CONF-2023-065 ATLAS: Refined ttZ inclusive + differential xs

Observables:

 $\frac{d\sigma}{d \, |\Delta \, y(Z, \underbrace{ t_{op}}_{top})/\pi} [fb]$

Prediction

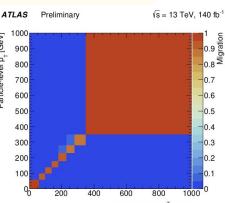
1.3

Binning:

Uncertainty Category	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z} $ [%]
Background normalisations	2.0
Jets and $E_{\rm T}^{\rm miss}$	1.9
<i>b</i> -tagging	1.7
$t\bar{t}Z \ \mu_F$ and μ_R scales	1.6
Leptons	1.6
Z +jets modelling	1.5
tWZ modelling	1.1
$t\bar{t}Z$ showering	1.0
$t\bar{t}Z$ A14	1.0
Luminosity	1.0
Diboson modelling	0.8
tZq modelling	0.7
PDF (signal & backgrounds)	0.6
MC statistical	0.5
Other backgrounds	0.5
Fake leptons	0.4
Pile-up	0.3
Data-driven $t\bar{t}$	0.1

<u>3I channel</u>: N_{iets} , $p_T^{I,non-Z}$, $|\Delta \phi(Z,t_{iep})|$, $|\Delta y(Z,t_{ien})|$, H_T^{I} 0 **<u>4I channel</u>:** N_{iets} , $|\Delta \varphi(I_t^+, I_t^-)|$, H_T^{-1} 0 **<u>combination</u>**: p_{τ}^{Z} , $|y^{Z}|$, $\cos\theta_{z}^{*}$, p_{τ}^{t} , $p_{\tau}^{t\overline{t}}$, $|\Delta\phi(t\overline{t},Z)|$, $m^{t\overline{t}Z}$, $m^{t\overline{t}}$, $|y^{t\overline{t}Z}|$ 0 optimised with IBU (stat. only) 0 low stat. uncertainty (<35%) 0 low migrations between reco. and truth bins 0 Uncertainties between 15-40% (dominated by stat. uncert.) Parton level more precise (more diagonal mig. matrices) ATLAS Preliminary Data =√s = 13 TeV. 140 fb⁻¹ ---- MG5 aMC@NLO+Pythia 8 10 -- Sherpa 2.2.1 (incl.) Acceptar 0.98 --- Sherpa 2.2.11 (multi-leg) Stat. uncertainty Total uncertainty

2.5 3 3.5


4.5

Particle-level $|\Delta y(Z, t_{-})|/\pi$

1.5 2


Detector-level p_[GeV] ATLAS Preliminary SR-3L-ttZ s = 13 TeV. 140 fb 0.94 0.92 0.9 0.88 0.86 0.84 0.82 ويتبا وبيرا وتبا وتبا وتبا وتبار وتبا وتبا 800 1000 Detector-level p2 [GeV]

Particle-level p_T^Z [GeV]

140 fb⁻

ATLAS-CONF-2023-065

_	Variable	Regularisation	τ^{particle}	$\tau^{\rm parton}$	Definition			AMC@N	LO +Pythia 8	SHERPA	2.2.1 (incl.)	Sherpa 2.	2.11 (multi-leg)
	p_{T}^{Z} $ y^{Z} $	No No	-	-	Transverse momentum of the Z boson Absolute rapidity of the Z boson		Variable	parton	particle	parton	particle	parton	particle
3ℓ + 4ℓ	$\cos \theta_Z^*$	No	-	-	Angle between the direction of the Z boson in the detector reference frame and the direction of the negatively charged lepton in the rest frame of the Z boson		$ \Delta \phi(Z, t^l) /\pi$ $ \Delta y(Z, t^l) $	0.07 0.03	0.05 0.03	0.04	0.02	0.07 0.03	0.06 0.02
3	p_{T}^{t}	Yes	1.5	1.4	Transverse momentum of the top quark	3ℓ	H_T^l	0.02	0.02	0.02	0.04	0.05	0.07
	$p_{\mathrm{T}}^{t \overline{t}}$	Yes	1.6	1.5	Transverse momentum of the $t\bar{t}$ system		$p_T^{l,non-Z}$	0.63	0.63	0.29	0.5	0.29	0.41
	$ \Delta \phi(t\bar{t},Z) $	Yes	2.4	2.1	Absolute azimuthal separation between the Z boson and the $t\bar{t}$ system		N _{jets}	1.5.1	0.42	153	0.81	-	0.75
	$m^{t\bar{t}Z}$	Yes	1.5	1.6	Invariant mass of the $t\bar{t}Z$ system		Niets	12	0.40	-	0.65	527	0.61
	$m^{t\bar{t}}$	Yes	1.5	1.4	Invariant mass of the $t\bar{t}$ system	46	$ \Delta \phi l, l /\pi$	0.75	0.76	0.73	0.75	0.74	0.80
	$ y^{t\bar{t}Z} $	Yes	1.5	1.5	1.5 Absolute rapidity of the $t\bar{t}Z$ system		H_T^l	0.03	0.02	0.03	0.02	0.03	0.02
	$H_{\rm T}^{\ell} \\ \Delta \phi(Z, t_{\rm lep}) $	No No	-	-	Sum of the transverse momenta of all the signal leptons Absolute azimuthal separation between the <i>Z</i> boson and the top	-	$ y^{Z} $	0.71	0.72	0.71	0.71	0.70	0.69
3ℓ	200 ALCONO SECTION				(anti-top) quark featuring the $W \rightarrow \ell \nu$ decay		p_T^Z	0.04	0.03	0.06	0.06	0.13	0.14
	$ \Delta y(Z, t_{\text{lep}}) $	No	-	-	Absolute rapidity difference between the <i>Z</i> boson and the top (anti-top) quark featuring the $W \rightarrow \ell \nu$ decay		$\cos \theta *^Z$	0.11	0.11	0.12	0.12	0.15	0.15
	$p_{\mathrm{T}}^{\ell,\mathrm{non}-Z}$	No	-	-	Transverse momentum of the lepton which is not associated with	46	$ \Delta\phi(t\bar{t},Z) /\pi$	0.74	0.71	0.02	0.36	0.02	0.39
	- 1				the Z boson	+	$m^{t\bar{t}}$	0.79	0.88	0.87	0.73	0.27	0.43
	Njets	No	-	-	Number of selected jets with $p_{\rm T}$ > 25 GeV and $ \eta $ < 2.5	3ℓ	$m^{t\bar{t}Z}$	0.84	0.93	0.8	0.91	0.81	0.89
	H^ℓ_{T}	No	-	Ξ	Sum of the transverse momenta of all the signal leptons		p_T^{top}	0.03	0.23	0.01	0.29	0.01	0.1
4ℓ	$ \Delta \phi(\ell_t^+,\ell_{\bar{t}}^-) $	No	-	-	Absolute azimuthal separation between the two leptons from the $t\bar{t}$ system		$p_T^{t\bar{t}}$	0.02	0.01	0.01	0.01	0.02	0.03
	Njets	No	3223	-	Number of selected jets with $p_{\rm T} > 25~{\rm GeV}$ and $ \eta < 2.5$		$ y^{t\bar{t}Z} $	0.87	0.52	0.85	0.64	0.59	0.28

1	ATLA
	EXPERIME

140 fb

Coefficient	Expression
c _{rr}	$-9\langle\cos\theta_r^+\cdot\cos\theta_r^-\rangle$
c _{kk}	$-9\langle\cos\theta_k^+\cdot\cos\theta_k^-\rangle$
<i>c</i> _{nn}	$-9\langle\cos\theta_n^+\cdot\cos\theta_n^-\rangle$
c _{rk}	$-9\langle\cos\theta_r^+\cdot\cos\theta_k^-+\cos\theta_r^-\cdot\cos\theta_k^+\rangle$
c _{kn}	$-9\langle\cos\theta_k^+\cdot\cos\theta_n^-+\cos\theta_k^-\cdot\cos\theta_n^+\rangle$
c _{rn}	$-9\langle\cos\theta_r^+\cdot\cos\theta_n^-+\cos\theta_r^-\cdot\cos\theta_n^+\rangle$
c _r	$-9\langle\cos\theta_k^+\cdot\cos\theta_n^\cos\theta_k^-\cdot\cos\theta_n^+\rangle$
c_k	$-9\langle\cos\theta_n^+\cdot\cos\theta_r^\cos\theta_n^-\cdot\cos\theta_r^+\rangle$
c _n	$-9\langle\cos\theta_r^+\cdot\cos\theta_k^\cos\theta_r^-\cdot\cos\theta_k^+\rangle$
b_r^+	$3\langle \cos \theta_r^+ \rangle$
b_r^-	$3\langle \cos \theta_r^- \rangle$
	$3\langle \cos \theta_k^+ \rangle$
$egin{array}{c} b_k^+ \ b_k^- \ b_n^+ \end{array}$	$3\langle \cos \theta_{k}^{\kappa} \rangle$
$b_n^{\hat{+}}$	$3\langle \cos \theta_n^+ \rangle$
b_n^{-}	$3\langle \cos \theta_n^- \rangle$

$$\frac{1}{\sigma}\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\varphi} = \frac{1}{2}\left(1 - D\cos\varphi\right), \quad D = -\frac{c_{rr} + c_{kk} + c_{nn}}{3}, \quad D = -3\langle\cos\varphi\rangle$$

- **k**, **n**, **r** axes in orthonormal basis, +/- is charge of lepton/quark
- In **4I** observables defined using **leptons from t**t
- In 3I necessary to use lepton + down-type quark from W decay (c or s) c tagged jets if pass at least 85% but fail 60% (its companion is s-quark)
- **Template fit** of <u>detector-level distributions</u> (unfolded distribution cannot be used due to highly non-diagonal mig. matrices in 4I would require regularisation →bias)
- Only 9 coefficient are non-0 within theoretical uncert. →improve stability of the fit
- Coefficients fitted **individually** and then **combined** using profiled \Box^2 fit
- main systs. from MC modelling, E_T^{miss} and flavour tagging
- negative (or >1) f_{SM} caused by large variability of the fit results under local excesses not compatible with either the spin-on or spin-off templates
- fit enhances the impact of systematic uncertainties with an important shape component (alternative parton showers for ttZ, electron isolation and ZZ+b scale uncertainties in 4I)
- future spin density measurements will be able to probe possible CP-violation effects and 4-fermion operators

ATLAS-CONF-2023-065

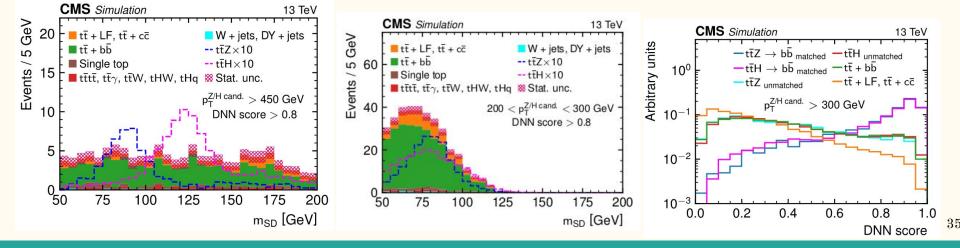
	Operator	Definition	
	Q_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\sigma^i\tilde{H}W^i_{\mu\nu}$	(*)
L	Q_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\tilde{H}B_{\mu\nu}$	(*)
op-boson	Q_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^{a}t)\tilde{H}G^{a}_{\mu\nu}$	(*)
q-do	$Q_{HQ}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	
t	$Q_{HQ}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}{}^{i}_{\mu}H)(\bar{Q}\sigma^{i}\gamma^{\mu}Q)$	
	Q_{Ht}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	
	$Q_{tu}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$	
	$Q_{tu}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{u}T^a\gamma^\mu u)$	
	$Q_{td}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{d}\gamma^{\mu}d)$	
	$Q_{td}^{(8)}$	$(\bar{t}T^a\gamma_\mu t)(\bar{d}T^a\gamma^\mu d)$	
	$Q_{qt}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$	
	$Q_{qt}^{(8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$	
	$Q_{Qu}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{u}\gamma^{\mu}u)$	
×	$Q_{Qu}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$	
four-quark	$Q_{Qd}^{(1)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$	
our-	$Q_{Qd}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$	
f	$Q_{Qq}^{(1,1)}$	$(\bar{Q}\gamma_\mu Q)(\bar{q}\gamma^\mu q)$	
	$Q_{Qq}^{\left(3,1 ight) }$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$	
	$Q_{Qq}^{(1,8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$	
	$Q_{Qq}^{(3,8)}$	$(\bar{Q}\sigma^iT^a\gamma_\mu Q)(\bar{q}\sigma^iT^a\gamma^\mu q)$	

$$O = O_{\rm SM} + \sum_i C_i A_i + \sum_{i,j} C_i C_j B_{ij}.$$

- Observables used as an input to EFT fits particle level normalised distributions:
 - p_T^{Z} (top-Z operators), $|y^{Z}|$, $\cos \theta_Z^{*}$, p_T^{t} (4-quark operators), $|\Delta \phi(t\overline{t}, Z)|$, $|y^{t\overline{t}Z}|$

Wils	son coefficient	68% CI (exp.)	95% CI (exp.)	68% CI (obs.)	95% CI (obs.)	Best-fit
\mathcal{F}_1	$O(\Lambda^{-2})$ (marg.)	[-0.15, 0.16]	[-0.30, 0.31]	[-0.080, 0.24]	[-0.23, 0.39]	0.08
\mathcal{F}_2	$O(\Lambda^{-2})$ (marg.)	[-0.36, 0.36]	[-0.72, 0.70]	[0.18, 0.90]	[-0.18, 1.3]	0.5
\mathcal{F}_3	$O(\Lambda^{-2})$ (marg.)	[-1.4, 1.3]	[-2.7, 2.7]	[0.35, 3.1]	[-0.95, 4.5]	2

- For some operators the results of the linear fits are not quoted since the corresponding interference term is vanishing at LO in QCD
- For some operators by introducing pure EFT contributions in quadratic fits, the linearised limits are drastically reduced by factor 6 to 30, i.e. C_{Qa}^(3,1), C_{Qa}^(3,8)

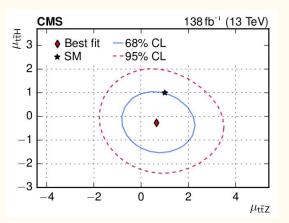

CMS: Boosted ttZ + ttH

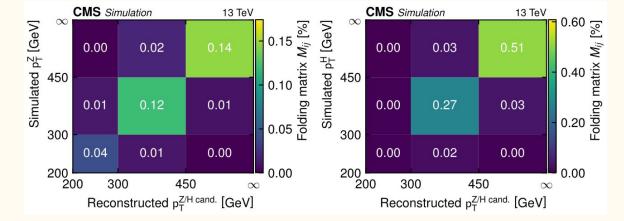
Signal selection:

- > **1 e or \mu** with p_T >30 GeV
- > At least **1 AK8 jet** (one H/Z candidate with $b\overline{b}$ tagger score >0.8, R=0.8) with p_T >200 GeV, 50<m_{sp}<200 GeV
- ≥5 AK4 jets (R=0.4) (3 or 4 jets not overlapping with AK8)
- > ≥2 b-tagged AK4 jets from $t\bar{t}$ (separated from H/Z by ΔR >0.8)
- ➢ p_T^{miss}>20 GeV
- > m_{I+I} >12 GeV (to eliminate J/ Ψ and Y decays)

Strategy:

- <u>3 discriminating variables</u> for S and B separation (p_T^{Z/H}, m_{sp} and DNN output)
- <u>DŇN:</u>
 - \circ 3 output nodes (signal ttZ/ttH, tt+bb, tt+LF/cc)
 - Only S/B discrimination
- **198 analysis bins** for signal strength extraction:
 - 3 data-taking periods
 - 3 bins in p_τ^{Z/H̄}
 - 3 (for lowest $p_T^{Z/H}$ bin) or 4 bins in m_{sD}
 - 6 bins in DNN
- Upper limits for diff. xs evaluated for p_T^Z and p_T^H (4bins, first one constrained to SM prediction)

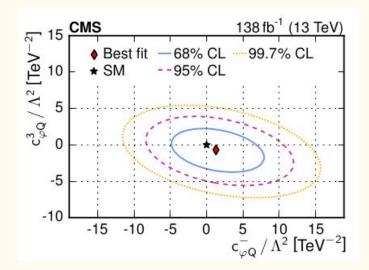

<u>PRD 108 032008 (2023)</u>

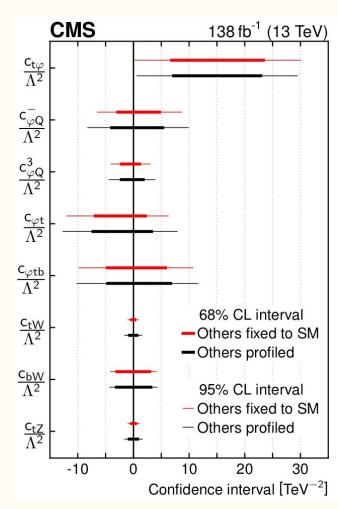

CMS: Boosted ttZ + ttH

138 fb⁻¹

CMS

$\Delta \mu_{t\bar{t}Z}$	$\Delta \mu_{t\bar{t}H}$
$^{+0.27}_{-0.23}$	$^{+0.14}_{-0.13}$
$^{+0.18}_{-0.24}$	$^{+0.16}_{-0.22}$
$^{+0.03}_{-0.03}$	±0.09
$^{+0.12}_{-0.14}$	$^{+0.11}_{-0.15}$
$^{+0.16}_{-0.17}$	$^{+0.07}_{-0.06}$
$^{+0.25}_{-0.13}$	± 0.10
$^{+0.18}_{-0.13}$	$^{+0.07}_{-0.04}$
± 0.11	$^{+0.11}_{-0.12}$
± 0.10	± 0.08
	$\begin{array}{c} +0.27\\ -0.23\\ +0.18\\ -0.24\\ +0.03\\ -0.03\\ +0.12\\ -0.14\\ +0.16\\ -0.17\\ +0.25\\ -0.13\\ +0.18\\ -0.13\\ \pm0.11\end{array}$


Signal	$p_{\rm T}^{\rm Z/H}$ interval [GeV]	95% CL upper limit [fb]		95% CL upper limit / SM	
		Observed	Expected	Observed	Expected
tīZ	200–300	360	490^{+210}_{-140}	3.4	$4.7^{+2.0}_{-1.4}$
	300-450	209	$135{}^{+58}_{-40}$	4.9	$3.2^{+1.4}_{-0.9}$
	>450	49	$51{}^{+23}_{-15}$	4.0	$4.1\substack{+1.9\\-1.3}$
tīH	200–300	420	740^{+300}_{-210}	8.0	$14.1_{-4.1}^{+5.7}$
	300-450	60	$47{}^{+20}_{-14}$	3.2	$2.5{}^{+1.1}_{-0.8}$
	>450	9.8	$16.5{}^{+7.3}_{-4.9}$	2.0	$3.3^{+1.5}_{-1.0}$


PRD 108 032008 (2023)

CMS

 138 fb^{-1}

CMS: Boosted ttZ + ttH

ATLAS: ttγ Charge Asymmetry

• <u>Central-forward</u> asymmetry predicted at the LHC

 $A_{\rm C} = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_t| < |y_{\bar{t}}|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_t| < |y_{\bar{t}}|)},$

- y
- q t t g t \bar{t} \bar{q} \bar{t} \bar{t} γ

Phys.Lett.B 843 (2023) 137848

- A_c=0 at LO in QCD but is non-zero at NLO thanks to the interference between initial-state and final-state gluon emission and between box and Born diagrams
- A_c in $t\bar{t}\gamma$ largest contribution from interference between ISR and FSR in qq annihilation
- Predicted $A_c < 0$ for $t\bar{t}\gamma$

Signal selection:

- > one electron or muon
- > **one** reconstructed **photon** with $\Delta R(I,\gamma) > 0.4$
- > events with $|m_{ev}-m_{z}| < 5$ GeV rejected
- ➤ at least 4 jets (≥1 b-tag)

Backgrounds:

- ➤ tīγ decay (30%)
 - only tty before the decay considered signal
 - estimated from MC
- prompt γ bckg. (15%)
 - estimated from MC
 - two VRs Zγ and Wγ
- electron mimicking γ (16%) = e-fake
 - $\circ \qquad \text{from data using tag-and-probe to } \mathsf{Z}{\rightarrow}\text{ee events}$
- > γ from hadron decay $\pi^0 \rightarrow \gamma \gamma$ (7%) = h-fake
 - from data using ABCD method

 139 fb^{-1}

ATLAS: tty Charge Asymmetry

Signal discrimination:

- **DNN** to discriminate signal try from backgrounds
- NN discriminant used to design **signal-enriched** (O_{NN}≥0.6) and background-enriched (O_{NN}<0.6) regions

Analysis strategy:

Ac extracted from |y, |-|y, distribution in a fiducial region defined at particle level

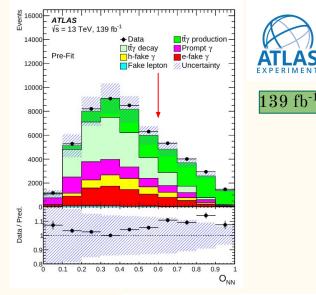
Measured:

 $A_{c} = -0.003 \pm 0.029 =$

within uncertainty!

Predicted (MG5 aMC@NLO):


Result compatible with the SM


Measurement statistically dominated!

 $A_c = -0.014 \pm 0.001$ (scale)

-0.003±0.024(stat.)±0.017(syst.)

- Simultaneous maximum likelihood unfolding in two regions (2 bins in each - $|y_{+}| - |y_{+}| > 0$ and $|y_{+}| - |y_{+}| < 0$)
- Free parameters of the fit:
 - μ_{\perp} signal strength in bin $|y_{\perp}| |y_{\perp}| > 0$
 - $A_c = (\mu_T_+ \mu_T)/(\mu_T_+ \mu_T)$ instead of μ_c Ο
 - $(T_{+} = number of t\bar{t}y events at particle level in bin |y_{+}|-|y_{+}|>0)$

b-tagging

Other experimental

Total uncertainty	0.029
Statistical uncertainty	0.024
MC statistical uncertainties	
Background processes	0.008
$t\bar{t}\gamma$ production	0.004
Modelling uncertainties	
$t\bar{t}\gamma$ production modelling	0.003
Background modelling	0.002
Prompt background normalisation	0.002
Experimental uncertainties	
Jet	0.009
Fake-lepton background estimate	0.005
E ^{miss}	0.005
Fake-photon background estimates	0.003
Photon	0.001

0.001

0.004

- Provides check of internal consistency of SM + hints of new physics
- Probes coupling between t and Z
- Differential xs useful for MC modelling improvements
- **tīZ irreducible bckg.** for several BSM searches and SM analyses (tītH, tZ,...)

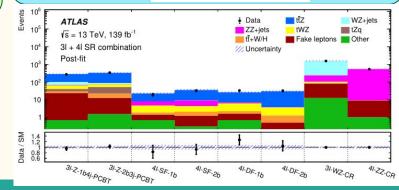
Signal selection:

- 3 signal regions in <u>31 channel</u>:
 - 1b4j and 2b3j PCBT inclusive xs
 - **2b3j** fixed 85% btag WP *differential xs*
- 4 signal regions in <u>4l channel</u>:
 - 1b2j SF, 2b2j SF, 1b2j DF, 2b2j DF
 - separate for inclusive, combined for diff.
 - E_T^{miss} cuts to reduce ZZ+jets in SF regions
- > At least **1** OSSF lepton pair with $|m_{\parallel}-m_{_{7}}| < 10 \text{ GeV}$
 - mosse >10 GeV for all OSSE lepton pairs

Backgrounds:

- WZ/ZZ+ I jets from data 2 dedicated CRs (WZ/ZZ + b and c jets from MC)
- tWZ important bckg., from MC
- > fake leptons from data using matrix method
- ➢ others (tt+W/H, ttWW, …) from MC

M Probe top-Z vertex of SM

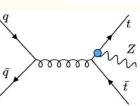

0000

Inclusive xs:

• **Simultaneous PLF** of event yields in 3I, 4I and 3I+4I regions

 \sim^{Z}

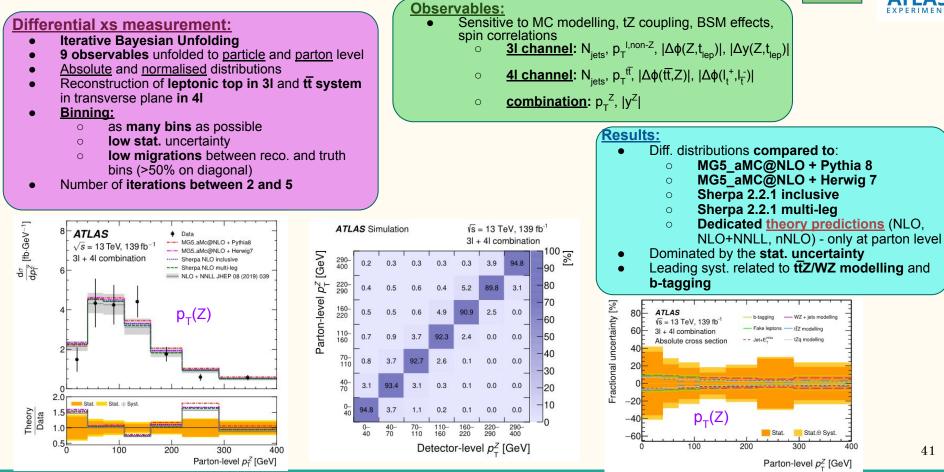
- Free parameters of the fit: $\mu_{t\bar{t}Z}$, N_{WZ+I} , N_{ZZ+I}
- Combined fit <u>dominated by 31 channel</u>
- Results stat. limited in 4I, syst. limited in 3I and comb.
- Measured: $\sigma(pp \rightarrow t\bar{t}Z) = 0.99 \pm 0.05 \text{ (stat.)} \pm 0.08 \text{ (syst.) pb.}$
- <u>Predicted NLO:</u> $\sigma(pp \to t\bar{t}Z) = 0.84^{+0.09}_{-0.10} \,\mathrm{pb}$


139 fb⁻

9.5%

EPJC 81 (2021) 737

00000



Uncertainty	$\Delta \sigma_{t\bar{t}Z} / \sigma_{t\bar{t}Z} [\%]$
$t\bar{t}Z$ parton shower	3.1
tWZ modelling	2.9
b-tagging	2.9
WZ/ZZ+jets modelling	2.8
tZq modelling	2.6
Lepton	2.3
Luminosity	2.2
Jets + $E_{\rm T}^{\rm miss}$	2.1
Fake leptons	2.1
tīZ ISR	1.6
$t\bar{t}Z \mu_{\rm f}$ and $\mu_{\rm r}$ scales	0.9
Other backgrounds	0.7
Pile-up	0.7
tīZ PDF	0.2
Total systematic	8.4
Data statistics	5.2
Total	10

139 fb⁻

