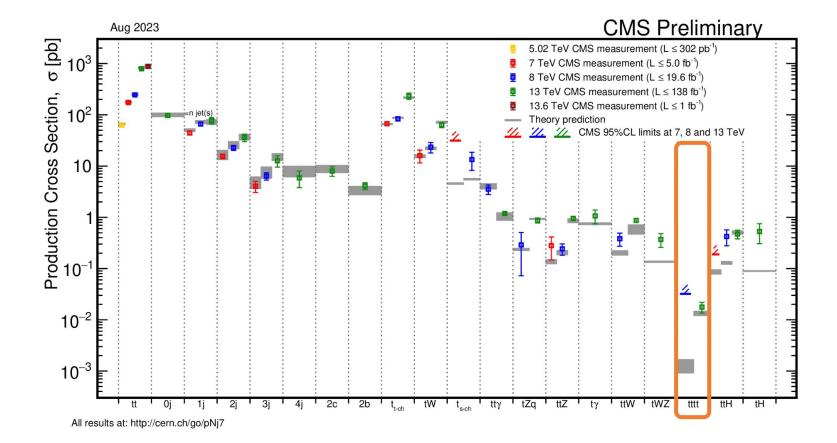

TOP2023 - 16th International Workshop on Top Quark Physics



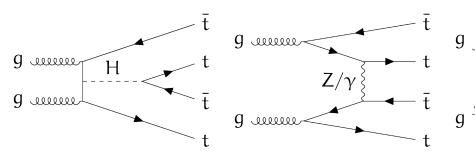
Four top searches and measurements

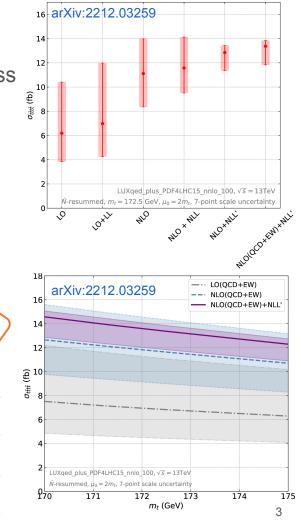
Niels Van den Bossche on behalf of the ATLAS and CMS Collaborations

Four top production in the top sector

Introduction

Four top production (tttt): a very rare standard model (SM) process


- $\sigma(\text{tttt})_{\text{NLO}(\text{QCD+EW})}$ = 12.0 ± 2.4 fb [JHEP 02 (2018) 031]
- $\sigma(\text{tttt})_{\text{NLO}(\text{QCD+EW})+\text{NLL}} = 13.4^{+1.0}$ fb [arXiv:2212.03259]


From a SM point of view:

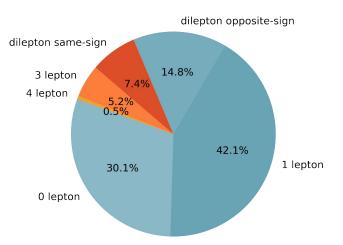
- Probe of top-Higgs Yukawa coupling
- Heaviest final state observed at LHC

And for new physics:

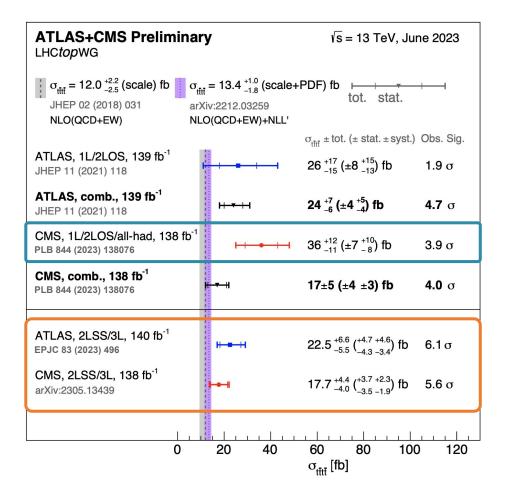
See next talk by A. Sharmal Sensitivity to wide range of new physics scenarios and effective field theory (EFT) operators

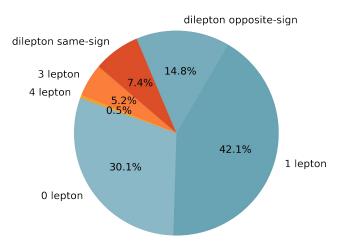
Four top final states

Four top production leads to large object multiplicity final state:


- 4 b-quarks leading to jets
- the decay products of 4 W bosons

Typically divided into three main analysis strategies:


- All hadronic (0L)
- Single lepton and opposite sign dilepton (1L, OSDL)
 - Larger branching fraction and large irreducible background (from tt)
- Same-sign dilepton and multilepton (SSDL, ML)
 - Smaller branching fraction and higher purity

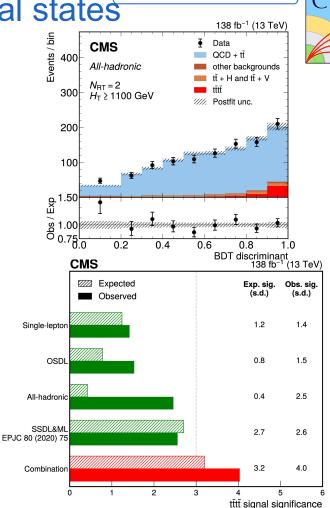

Heavy use of machine learning techniques for signal-to-background discrimination in all final states:

- Boosted decision trees (BDTs)
- Graph Neural Networks (GNNs)

Measurement landscape

CMS: all hadronic, 1L and OSDL final states

OSDL channel:

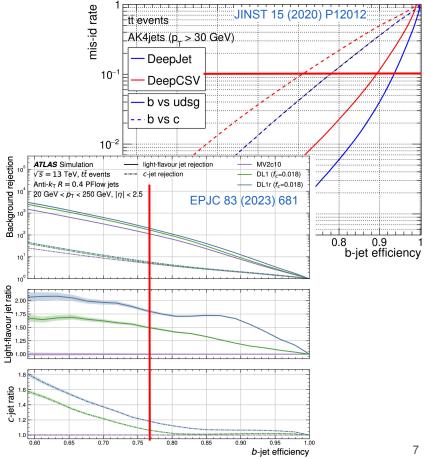

- Regions defined by leptons, jets, b-jets
- Low (b-)jet categories: control regions
- Fit HT distributions
 - o HT: ∑ jet pT

1L channel:

- Resolved top-tagger as BDT input
- Regions defined by leptons, jets, b-jets, top candidates
- BDT for signal/background separation

All-hadronic channel:

- First analysis to use it!
- Regions of resolved & boosted top candidates and HT
- Data-driven estimation of multijet and tt+jets background
- BDT for signal/background separation

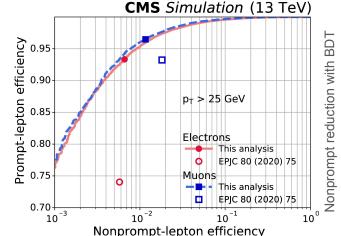


Observation in SSDL and ML channels

First observation of four top production at both ATLAS and CMS

- Re-analysis of Run 2 datasets
 - Supersede previous results
- Profit significantly from general improvements in lepton and jet selection:
 - Better reconstruction methods
 - Improved b-tagging
 - Better lepton identification methods
- Major improvements in analysis methods
 - Stronger machine learning discriminants:
 GNNs (ATLAS) or multiclass BDTs (CMS)
 - Better handles on ttX backgrounds



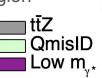


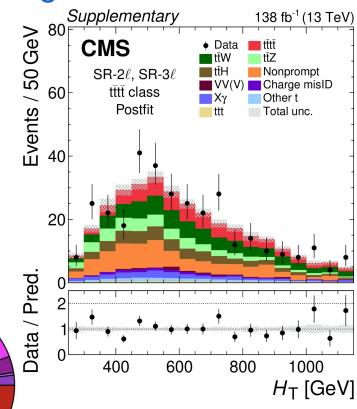
SSDL and ML channels: reducible backgrounds

tt with additional nonprompt leptons

- e.g. from semileptonic b-decays
- Reduced with per-lepton BDTs using b-tagging and isolation information
- Standard datadriven methods for prediction
 - CMS: tight-to-loose ratio
 - ATLAS: MC shapes, normalization from fit

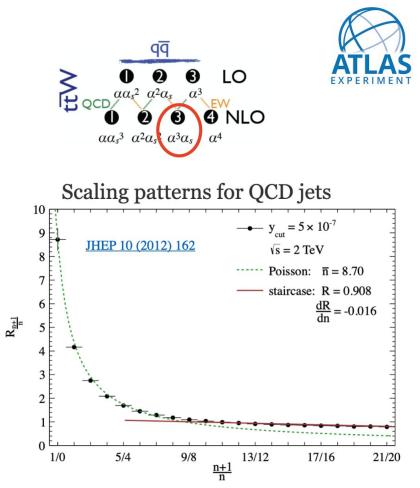
Events with charge mis-identified electrons


- e.g. due to Bremsstrahlung
- Mainly Z+jets and tt+jets events
- Datadriven prediction using DY events

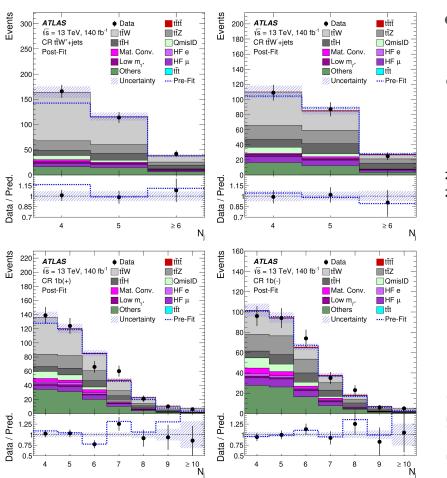

SSDL and ML channels: irreducible backgrounds

- ttW, ttZ, ttH
 - Large systematic uncertainty on ttX + b(b) component
 - ttW dominant in SSDL final state, ttZ in 3L
 - ttH subdominant contribution in all considered final states
- Diboson processes
 - mainly WZ, same-sign WW
- Single top processes with associated vector bosons

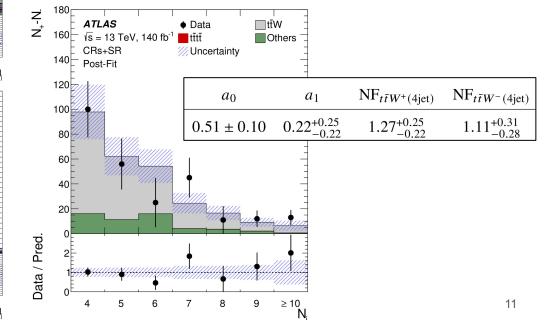
ATLAS: ttW modelling


ttW modelling at large jet multiplicities corrected using data

- Main sherpa sample: 1j@NLO, 2j@LO QCD
 - Additive weight considering LO3 and NLO4
- Additional ttW EW sample: NLO3 term
 - Known to be sizeable (JHEP 02 (2018) 031)


N_{Jets} distribution corrected using jet scaling regimes:

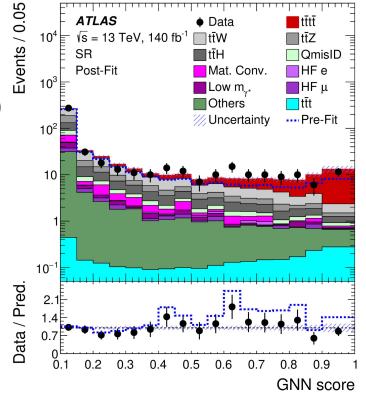
- R(j) := N(j+1)/N(j), j is the jet multiplicity
- Staircase: $R(j) = a_0$, valid at high jet multiplicities
- Poisson: R(j) = a₁ / (1+n), n the number of additional jets


In addition: separate normalization factors (NFs) for ttW^+ and ttW^-

ATLAS: ttW modelling

- 4 dedicated control regions to determine a₀, a₁ and 2 NFs
 - $N_{+}-N_{-}$ to examine ttW modelling
 - Good agreement between data and prediction

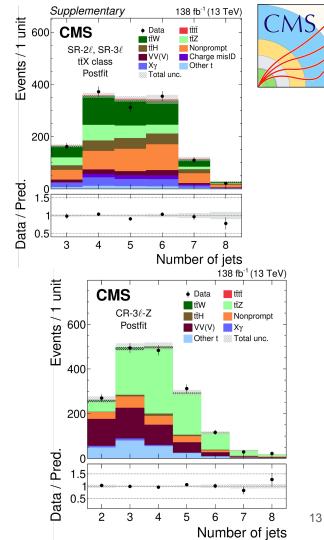
ATLAS: summary


Signal extraction:

- 4 control regions for ttW modelling
- 4 control regions for nonprompt and conversions background
- Single signal region (combines SSDL and ML events)
 - \circ ≥ 6 jets, ≥ 2 b-jets, HT > 500 GeV
 - HT: \sum jet and lepton pT
- Graph neural network to separate signal/background

Sensitivity: 6.1 σ observed (4.7 σ expected) Measured cross section: 22.5^{+4.7}_{-4.3}(stat)^{+4.6}_{-3.4}(syst) fb SM expectation: σ (tttt) = 13.4 fb (arXiv:2212.03259)

Bunch of interpretations: see next talk by A. Sharma


CMS: background prediction

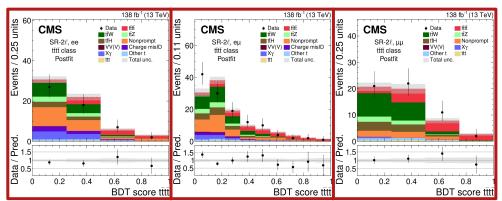
ttW modelling: NLO QCD MC

- Additional large uncertainty on ttW + jets
- Free-floating normalization in fit
 - Postfit normalization: 990 ± 98 fb
 - Compatible with inclusive CMS measurement (868 ± 65 fb) (JHEP 07 (2023) 219)
 - Constrained by 2 control regions and multiclass BDT

Two on-Z control regions (3 and 4 lepton channels)

- |m_{II}-m_Z| < 15 GeV
- Allows for free-floating ttZ normalization in fit
 - Postfit normalization: 945 ± 81 fb
 - Compatible (and competitive) with 2016+2017 CMS measurement (JHEP 03 (2020) 056)
- Control over WZ & ZZ with additional (b)-jets

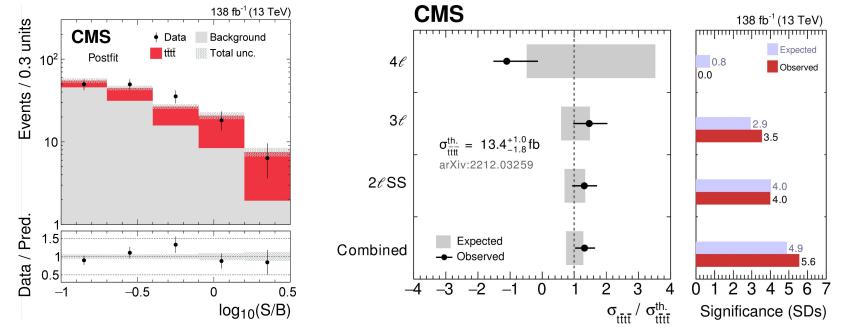
CMS: signal extraction


3 signal regions defined (SSDL, 3L and 4L)

- Varying cuts on number of (b-)jets, HT Two multiclass BDTs
- One for SSDL signal region, one for 3L+4L signal regions
- Trained on 3 classes:
 - tttt
 - ttX: ttW, ttZ and ttH
 - tt: nonprompt and charge misID

Fit optimization:

- Signal regions split in 3 BDT categories
- SSDL signal region split in lepton flavors



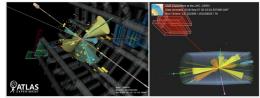
CMS: summary

Sensitivity: 5.6 σ observed (4.9 σ expected) Measured cross section: $17.7^{+3.7}_{-3.5}$ (stat)^{+2.3}_{-1.9}(syst) fb SM expectation: σ (tttt) = 13.4 fb (arXiv:2212.03259)

Interpretation with triple top production: see next talk by A. Sharma

15

Summary


Many new four top results:

- Evidence at CMS using the all-hadronic, 1L and OSDL channels
 - PLB 844 (2023) 138076
- Observation at both CMS and ATLAS using SSDL, 3L and 4L channels
 - ATLAS: <u>EPJC 83 (2023) 496</u>
 - CMS: arXiv:2305.13439 (submitted to PLB)

ATLAS and CMS observe simultaneous production of four top quarks

The ATLAS and CMS collaborations have both observed the simultaneous production of four top quarks, a rare phenomenon that could hold the key to physics beyond the Standard Model

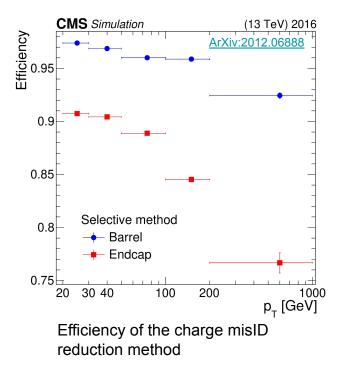
24 MARCH, 2023 | By Naomi Dinmore

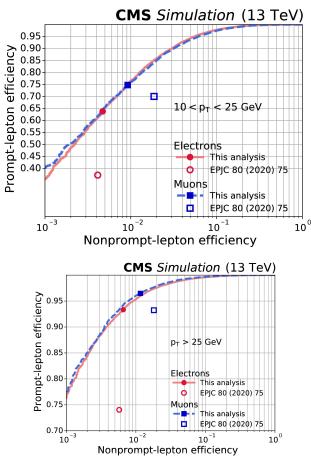
ATLAS+CMS Preliminar	√s = 13 TeV, June 2023					
$\sigma_{t\bar{t}t\bar{t}} = 12.0_{-2.5}^{+2.2} \text{ (scale) fb} \qquad \sigma_{t\bar{t}t\bar{t}} = 13.4_{-1.8}^{+1.0} \text{ (scale+PDF) fb} \qquad tot. \text{ stat.}$ $JHEP \ 02 \ (2018) \ 031 \qquad arXiv:2212.03259 \qquad tot. \text{ stat.}$ $NLO(QCD+EW) \qquad NLO(QCD+EW)+NLL'$						
ATLAS, 1L/2LOS, 139 fb ⁻¹ JHEP 11 (2021) 118	+ = + -1	$\sigma_{t\bar{t}t\bar{t}} \pm tot. (\pm stat. \pm syst.)$ 26 $^{+17}_{-15}$ (±8 $^{+15}_{-13}$) fb	Obs. Sig. 1.9 σ			
ATLAS, comb., 139 fb ⁻¹ JHEP 11 (2021) 118	₩ ▼ ₩	24 ⁺⁷ ₋₆ (±4 ⁺⁵ ₋₄) fb	4.7 σ			
CMS, 1L/2LOS/all-had, 138 fb ⁻¹ PLB 844 (2023) 138076	F+-+-+-4	36 ⁺¹² ₋₁₁ (±7 ⁺¹⁰ ₋₈) fb	3.9 σ			
CMS, comb., 138 fb⁻¹ PLB 844 (2023) 138076	₩ ₹ ₩	17±5 (±4 ±3) fb	4.0 σ			
ATLAS, 2LSS/3L, 140 fb ⁻¹ EPJC 83 (2023) 496	₩ ₩	22.5 ^{+6.6} _{-5.5} (^{+4.7 +4.6} _{-4.3 -3.4}) fb	6.1 o			
CMS, 2LSS/3L, 138 fb ⁻¹ arXiv:2305.13439	┣╼╶╢	17.7 $^{+4.4}_{-4.0}$ ($^{+3.7}_{-3.5}$ $^{+2.3}_{-1.9}$) fb	5.6 σ			
1						
0	20 40	60 80 10 σ _{tītī} [fb]	0 120			

BACKUP

Next experimental steps

• Final states with hadronic taus

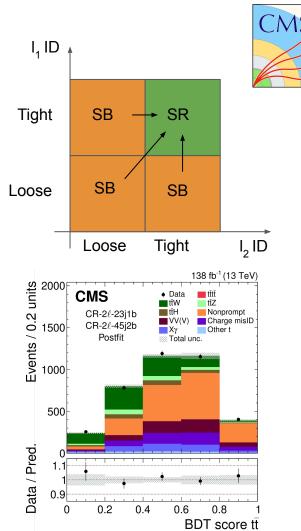

Background prediction:


- ttW modelling
- NLO MC for ttVV and triple top backgrounds

Signal/background selection:

- Constantly improving b-tagging
- Advanced ML techniques (e.g. GNN used by ATLAS)

SSDL & ML: lepton selection

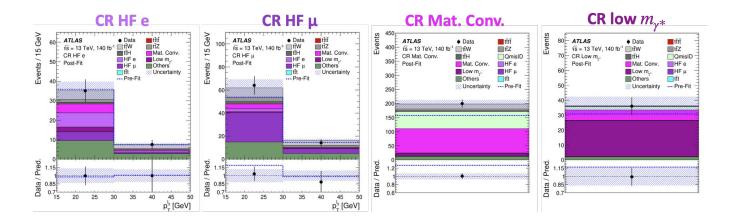


CCMS Powers unit works

Per-lepton BDT at low (above) and high (below) pT for prompt lepton identification

Background prediction: nonprompt

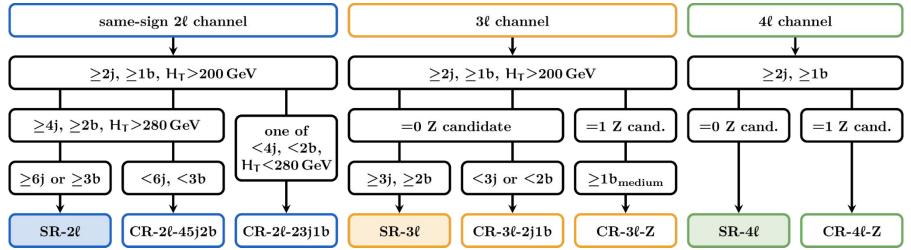
- Tight-to-loose ratio method (data driven method)
 - Define data sideband based on one or more leptons failing tight ID
 - Fake rates (FR) measured in QCD multijet events in data
 - Measured as function of pT and eta
- Validation of FR (from QCD MC) in ttbar and DY MC
- Uncertainties:
 - Shapes (statistical variation of FR)
 - Flat (20% uncorr. ⊕ 20% corr.)
 - Individual nuisances per lepton flavor



Non-prompt lepton modeling

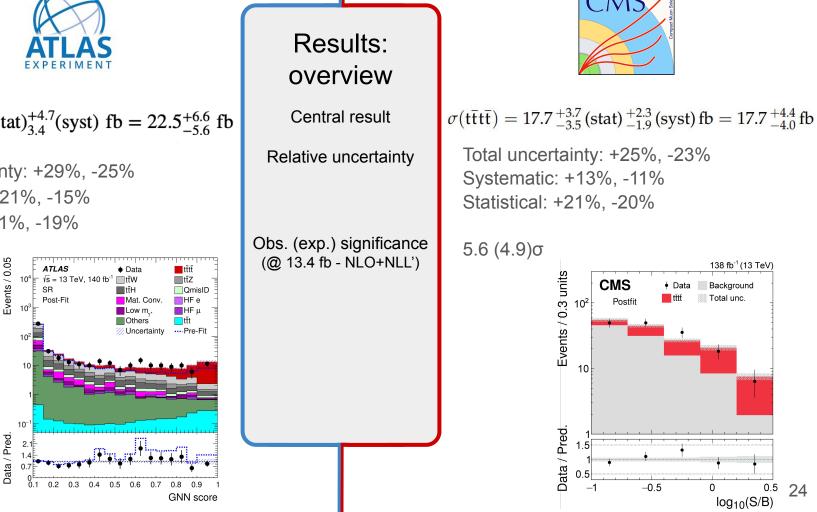
ATLAS fake with Template fit method: (semi-data method)

- Rely on Monte Carlo simulation for shapes for different components
- 4 normalization factors are allowed to float in the fit:
 - fake electrons from semi-leptonic b-decay (HF e)
 - fake muons from semi-leptonic b-decay (HF μ)
 - material conversion (Mat. Conv.)
 - virtual photon conversion (low m_{v^*})
- Systematics evaluated in the isolation loosed region

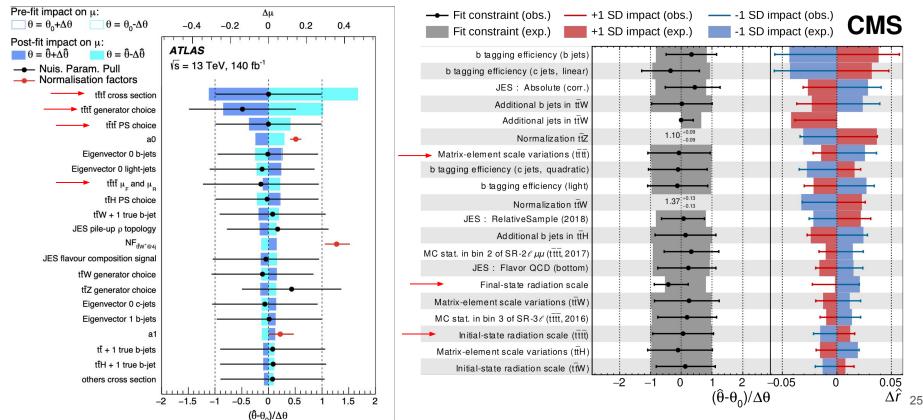

ATLAS: event selection

Region Cha	Channel	N·	N _b	Other	Fitted	
	Channel	1 N _j	NB	selection	variable	
CR Low m_{γ^*}	SS, ee or $e\mu$	$4 \le N_{j} < 6$	≥ 1	ℓ_1 or ℓ_2 is from virtual photon (γ^*) decay	counting	
				ℓ_1 and ℓ_2 are not from photon conversion	counting	
CR Mat. Conv.	SS, ee or $e\mu$	$4 \le N_{\rm j} < 6$	≥ 1	ℓ_1 or ℓ_2 is from photon conversion	counting	
				$100 < H_{\rm T} < 300 {\rm GeV}$		
CR HF μ	ann ar mun	≥ 1	= 1	$E_{\rm T}^{\rm miss} > 50 { m ~GeV}$	ℓ_3	
$CK \Pi F \mu$	$e\mu\mu$ or $\mu\mu\mu$	≥ 1	= 1	total charge = ± 1	$p_{\mathrm{T}}^{\ell_3}$	
				$100 < H_{\rm T} < 275 { m ~GeV}$		
CR HF e eee or $ee\mu$		≥ 1	= 1	$E_{\rm T}^{\rm miss} > 35 {\rm ~GeV}$	$p_{\mathrm{T}}^{\ell_3}$	
	$eee or ee\mu$			total charge = ± 1		
				$ \eta(e) < 1.5$		
				when $N_b = 2$: $H_T < 500$ GeV or $N_j < 6$		
CR $t\bar{t}W^+$ +jets	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	Nj	
				total charge > 0		
				$ \eta(e) < 1.5$		
				when $N_b = 2$: $H_T < 500$ GeV or $N_j < 6$		
CR $t\bar{t}W^-$ +jets SS, e _{μ}	SS, $e\mu$ or $\mu\mu$	≥ 4	≥ 2	when $N_b \ge 3$: $H_T < 500 \text{ GeV}$	$N_{\rm j}$	
				total charge < 0	2007	
CR 1b(+) 2LSS				ℓ_1 and ℓ_2 are not from photon conversion		
	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m ~GeV}$	Nj	
				total charge > 0		
				ℓ_1 and ℓ_2 are not from photon conversion		
CR 1b(-)	2LSS+3L	≥ 4	= 1	$H_{\rm T} > 500 { m ~GeV}$	N_{j}	
				total charge < 0		
SR	2LSS+3L	≥ 6	≥ 2	$H_{\rm T} > 500 { m ~GeV}$	GNN scor	

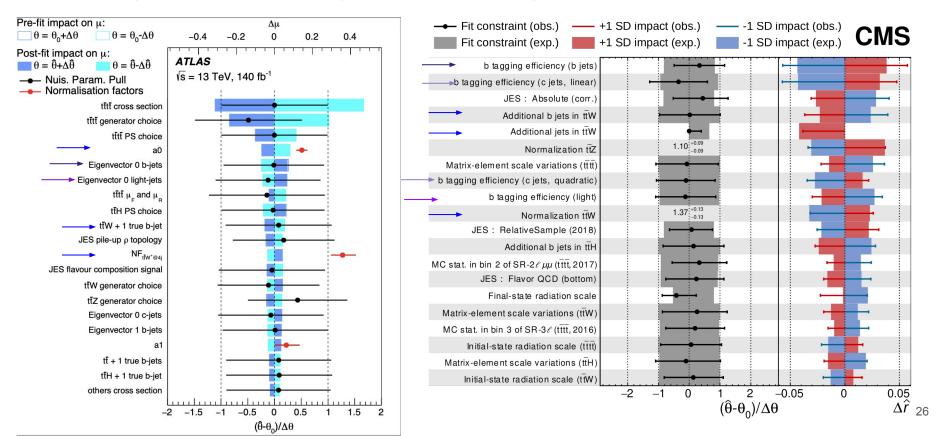
CMS: event selection



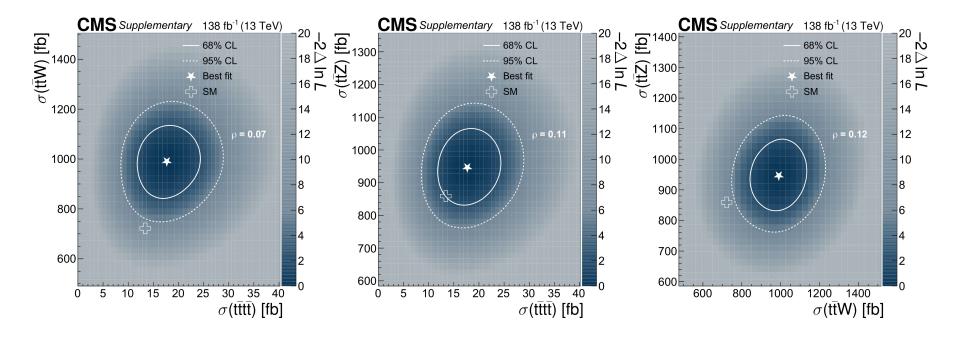
$$\sigma_{t\bar{t}t\bar{t}} = 22.5^{+4.7}_{-4.3}(\text{stat})^{+4.7}_{3.4}(\text{syst}) \text{ fb} = 22.5^{+6.6}_{-5.6} \text{ fb}$$


Total uncertainty: +29%, -25% Systematic: +21%, -15% Statistical: +21%, -19%

6.1 (4.7)σ


Ranking and pulls on uncertainties

In ATLAS, signal modeling has large impact in the cross section measurement compared with CMS



Ranking and pulls on uncertainties

Leading impact comes from b-jets and ttW modelling in both CMS and ATLAS

CMS: 2D scans

