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Four top production in the top sector
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Four top production (tt̄tt̄): a very rare standard model (SM) process
● σ(tt̄tt̄)NLO(QCD+EW)= 12.0 ± 2.4 fb [JHEP 02 (2018) 031]
● σ(tt̄tt̄)NLO(QCD+EW)+NLL’= 13.4+1.0

-1.8 fb [arXiv:2212.03259]

From a SM point of view:
● Probe of top-Higgs Yukawa coupling
● Heaviest final state observed at LHC

And for new physics:
● Sensitivity to wide range of new physics scenarios 

and effective field theory (EFT) operators

Introduction
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See next talk by A. Sharma!

arXiv:2212.03259
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https://doi.org/10.1007/JHEP02%282018%29031
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Four top production leads to large object multiplicity final state:
● 4 b-quarks leading to jets
● the decay products of 4 W bosons

Typically divided into three main analysis strategies:
● All hadronic (0L)
● Single lepton and opposite sign dilepton (1L, OSDL)

○ Larger branching fraction and large irreducible 
background (from tt̄)

● Same-sign dilepton and multilepton (SSDL, ML)
○ Smaller branching fraction and higher purity

Four top final states
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Heavy use of machine learning techniques for signal-to-background 
discrimination in all final states:
● Boosted decision trees (BDTs)
● Graph Neural Networks (GNNs)



Measurement landscape
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CMS: all hadronic, 1L and OSDL final states 
OSDL channel:

● Regions defined by leptons, jets, b-jets
● Low (b-)jet categories: control regions
● Fit HT distributions

○ HT: ∑ jet pT

1L channel:
● Resolved top-tagger as BDT input
● Regions defined by leptons, jets, b-jets, top candidates
● BDT for signal/background separation

All-hadronic channel:
● First analysis to use it!
● Regions of resolved & boosted top candidates and HT
● Data-driven estimation of multijet and tt̄+jets background
● BDT for signal/background separation
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https://doi.org/10.1016/j.physletb.2023.138076


Observation in SSDL and ML channels
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First observation of four top production at both 
ATLAS and CMS
● Re-analysis of Run 2 datasets

○ Supersede previous results
● Profit significantly from general improvements 

in lepton and jet selection:
○ Better reconstruction methods
○ Improved b-tagging
○ Better lepton identification methods

● Major improvements in analysis methods
○ Stronger machine learning discriminants: 

GNNs (ATLAS) or multiclass BDTs (CMS)
○ Better handles on tt̄X backgrounds

ATLAS: EPJC 83 (2023) 496
CMS: arXiv:2305.13439 (submitted to PLB)

EPJC 83 (2023) 681
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https://doi.org/10.1140/epjc/s10052-023-11573-0
https://doi.org/10.48550/arXiv.2305.13439
https://doi.org/10.1140/epjc/s10052-023-11699-1
https://doi.org/10.1088/1748-0221/15/12/P12012
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SSDL and ML channels: reducible backgrounds
tt̄ with additional nonprompt leptons
● e.g. from semileptonic b-decays
● Reduced with per-lepton BDTs using b-tagging and 

isolation information
● Standard datadriven methods for prediction

○ CMS: tight-to-loose ratio
○ ATLAS: MC shapes, normalization from fit
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Events with charge mis-identified electrons
● e.g. due to Bremsstrahlung
● Mainly Z+jets and tt̄+jets events
● Datadriven prediction using DY events

JHEP 09 (2017) 084

https://doi.org/10.1007/JHEP09%282017%29084
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SSDL and ML channels: irreducible backgrounds
● tt̄W, tt̄Z, tt̄H

○ Large systematic uncertainty on tt̄X + b(b) 
component

○ tt̄W dominant in SSDL final state, tt̄Z in 3L
○ tt̄H subdominant contribution in all considered final 

states
● Diboson processes

○ mainly WZ, same-sign WW
● Single top processes with associated vector bosons

Background mix in ATLAS signal region



tt̄W modelling at large jet multiplicities corrected 
using data
● Main sherpa sample: 1j@NLO, 2j@LO QCD

○ Additive weight considering LO3 and NLO4
● Additional tt̄W EW sample: NLO3 term

○ Known to be sizeable (JHEP 02 (2018) 031)

NJets distribution corrected using jet scaling regimes:
● R(j) := N(j+1)/N(j), j is the jet multiplicity
● Staircase: R(j) = a0, valid at high jet multiplicities
● Poisson: R(j) = a1 / (1+n), n the number of 

additional jets

In addition: separate normalization factors (NFs) for 
tt̄W+ and tt̄W-

ATLAS: tt̄W modelling
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https://doi.org/10.1007/JHEP02%282018%29031


● 4 dedicated control regions to 
determine a0, a1 and 2 NFs

● N+-N- to examine tt̄W modelling
○ Good agreement between data and 

prediction

ATLAS: tt̄W modelling
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Signal extraction:
● 4 control regions for tt̄W modelling
● 4 control regions for nonprompt and conversions 

background
● Single signal region (combines SSDL and ML events)

○ ≥ 6 jets, ≥ 2 b-jets, HT > 500 GeV
○ HT: ∑ jet and lepton pT

● Graph neural network to separate signal/background

Sensitivity: 6.1σ observed (4.7σ expected)
Measured cross section: 22.5+4.7

-4.3(stat)+4.6
-3.4(syst) fb

SM expectation: σ(tt̄tt̄) = 13.4 fb (arXiv:2212.03259)

Bunch of interpretations: see next talk by A. Sharma

ATLAS: summary
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https://arxiv.org/abs/2212.03259


CMS: background prediction
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ttW modelling: NLO QCD MC
● Additional large uncertainty on tt̄W + jets
● Free-floating normalization in fit

○ Postfit normalization: 990 ± 98 fb
○ Compatible with inclusive CMS measurement 

(868 ± 65 fb) (JHEP 07 (2023) 219)

○ Constrained by 2 control regions and multiclass BDT

Two on-Z control regions (3 and 4 lepton channels)
● |mll-mZ| < 15 GeV
● Allows for free-floating tt̄Z normalization in fit

○ Postfit normalization: 945 ± 81 fb
○ Compatible (and competitive) with 2016+2017 CMS 

measurement (JHEP 03 (2020) 056)

● Control over WZ & ZZ with additional (b)-jets

https://doi.org/10.1007/JHEP07%282023%29219
https://doi.org/10.1007/JHEP03%282020%29056


CMS: signal extraction
3 signal regions defined (SSDL, 3L and 4L)
● Varying cuts on number of (b-)jets, HT

Two multiclass BDTs
● One for SSDL signal region, one for 

3L+4L signal regions
● Trained on 3 classes: 

○ tt̄tt̄
○ tt̄X: tt̄W, tt̄Z and tt̄H
○ tt̄: nonprompt and charge misID

Fit optimization:
● Signal regions split in 3 BDT 

categories
● SSDL signal region split in 

lepton flavors
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CMS: summary
Sensitivity: 5.6σ observed (4.9σ expected)
Measured cross section: 17.7+3.7

-3.5(stat)+2.3
-1.9(syst) fb

SM expectation: σ(tt̄tt̄) = 13.4 fb (arXiv:2212.03259)

Interpretation with triple top production: see next talk by A. Sharma

15

https://arxiv.org/abs/2212.03259


Summary
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Many new four top results:
● Evidence at CMS using the all-hadronic, 1L and 

OSDL channels
○ PLB 844 (2023) 138076

● Observation at both CMS and ATLAS using 
SSDL, 3L and 4L channels

○ ATLAS: EPJC 83 (2023) 496
○ CMS: arXiv:2305.13439 (submitted to PLB)

EPJC 83 (2023) 496

PLB 844 (2023) 138076

PLB 844 (2023) 138076

https://doi.org/10.1016/j.physletb.2023.138076
https://doi.org/10.1140/epjc/s10052-023-11573-0
https://doi.org/10.48550/arXiv.2305.13439
https://doi.org/10.1140/epjc/s10052-023-11699-1
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BACKUP



Next experimental steps
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● Final states with hadronic taus

Background prediction:
● ttW modelling
● NLO MC for ttVV and triple top backgrounds

Signal/background selection:
● Constantly improving b-tagging
● Advanced ML techniques (e.g. GNN used by ATLAS)



SSDL & ML: lepton selection
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ArXiv:2012.06888

Efficiency of the charge misID 
reduction method 

Per-lepton BDT at low (above) and high 
(below) pT for prompt lepton identification

https://arxiv.org/abs/2012.06888


Background prediction: nonprompt
● Tight-to-loose ratio method (data driven method)

○ Define data sideband based on one or more 
leptons failing tight ID

○ Fake rates (FR) measured in QCD multijet 
events in data

○ Measured as function of pT and eta

● Validation of FR (from QCD MC) in ttbar and DY MC

● Uncertainties:
○ Shapes (statistical variation of FR)
○ Flat (20% uncorr. ⊕ 20% corr.)
○ Individual nuisances per lepton flavor
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Non-prompt lepton modeling

ATLAS fake with Template fit method: (semi-data method)

● Rely on Monte Carlo simulation for shapes for different components
● 4 normalization factors are allowed to float in the fit:  

● fake electrons from semi-leptonic b-decay (HF e)
● fake muons from semi-leptonic b-decay (HF µ)
● material conversion (Mat. Conv.)
● virtual photon conversion (low mγ* )

● Systematics evaluated in the isolation loosed region  
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ATLAS: event selection
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CMS: event selection
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Results: 
overview
Central result

Relative uncertainty

Obs. (exp.) significance 
(@ 13.4 fb - NLO+NLL’)

Total uncertainty: +29%, -25%
Systematic: +21%, -15%
Statistical: +21%, -19%

6.1 (4.7)σ 

Total uncertainty: +25%, -23%
Systematic: +13%, -11%
Statistical: +21%, -20%

5.6 (4.9)σ 
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Ranking and pulls on uncertainties
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In ATLAS, signal modeling has large impact in the cross section measurement compared with 
CMS



Ranking and pulls on uncertainties
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Leading impact comes from b-jets and ttW modelling in both CMS and ATLAS



CMS: 2D scans
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