

GENT Measurements of ttbb/ttcc

TOP2023 Conference 26.09.2023, Traverse City

Jan van der Linden on behalf of the ATLAS and CMS Collaborations

jan.vdlinden@cern.ch

Highlights of today

- Study of ttbb+ttW modeling for ttH analyses in ATLAS+CMS
 - Available on arXiv: <u>arXiv:2301.11670</u>

- ❑ Inclusive and differential cross section measurement of ttbb in CMS
 - Preliminary publication: PAS-TOP-22-009
 - Will appear on arXiv in 10h 55min
 - Main focus of this talk

See also: YSF talk by Emanuel Pfeffer Poster by Juhee Song

- Inclusive and differential cross section measurement of ttbb in ATLAS
 - Published in JHEP: <u>JHEP 04 (2019) 046</u>

- □ Inclusive cross section measurement of ttcc in CMS
 - Published in PLB: <u>PLB 820 (2021) 136565</u>

Why do we care about $t\overline{t}b\overline{b}$ and $t\overline{t}c\overline{c}$?

Interesting modeling

- Large momentum-scale differences between top and bottom/charm quarks
- Calculations/simulations at ME-level very difficult
- Interesting probe of perturbative QCD

- Important for ttH(bb) and tttt measurements
 - ttbb modeling is by far limiting factor <</p>
 - ttbb often under-predicted in simulations
 - > $\overline{\text{ttcc}}$ will get more important with $\overline{\text{ttH}}(\overline{\text{cc}})$ measurements!

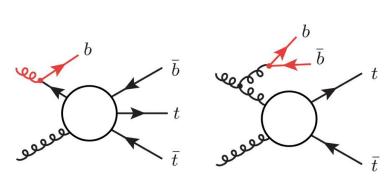

	Uncertainty source	$\Delta \mu_{t\bar{t}H}$ (observed)
	Total experimental	+0.10/-0.10
	jet energy scale and resolution	+0.08 / -0.07
	b tagging	+0.07 / -0.06
	luminosity	+0.02/-0.02
	Total theory	+0.16/-0.16
	$t\overline{t} + jets$ background	+0.15/-0.16
	signal modelling	+0.06/-0.01
	Size of the simulated event samples	+0.13/-0.12
	Total systematic	+0.20/-0.21
	Statistical	+0.17/-0.16
	background normalisation	+0.13 / -0.13
	$t\bar{t}B$ and $t\bar{t}C$ normalisation	+0.12/-0.12
nents!	QCD normalisation	+0.01/-0.01
	Total	+0.26/-0.26
		3

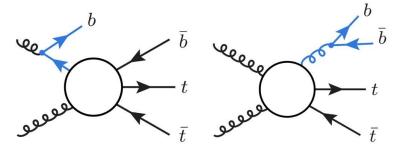
CMS ttH(bb) measurement PAS-HIG-19-011

Why do we care about ttbb and ttcc?

- What do the measurements of $t\bar{t}H(b\bar{b})$ tell us?
 - Large under-prediction of $t\bar{t}H$ cross section relative to SM (both ATLAS + CMS) >
 - Both use 4FS $t\overline{t}b\overline{b}$ as nominal background model \rightarrow Fluctuations coincidental?
 - More details on $t\bar{t}H(b\bar{b})$ in Lucia's talk later! \succ

ATLAS ttH(bb) measurement JHEP 06 (2022) 97


Different approaches for ttbb modeling


tt@NLO matrix element:

- At most one additional b jet from matrix element
- Remaining b jets from parton shower (PS)
- Treat b quarks as massless

ttbb@NLO matrix element:

- Difficult to simulate properly (large scale difference between top and bottom)
- Both additional b jets from matrix element (ME)
- Treat b quarks as massive

> How do these modeling approaches describe the data?

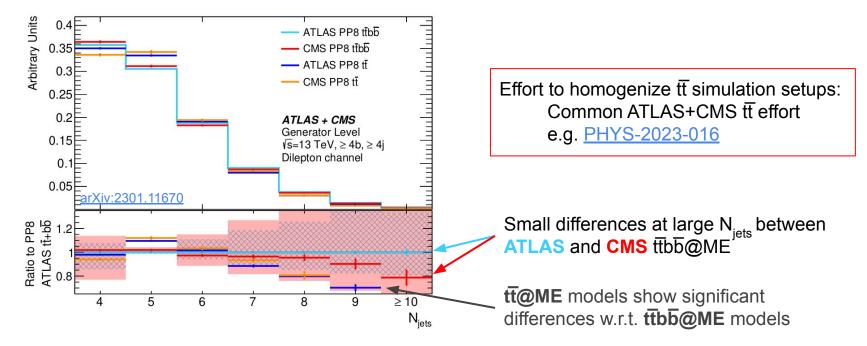
ATLAS+CMS modeling comparisons: <u>arXiv:2301.11670</u>

ttbb XS differences due to modeling and scale differences (see also next slide)

	N	name	ME	Generator	ME order	Shower	Tune	NNPDF PDF set (ME)	$h_{ m damp}$	$h_{\rm bzd}$	$\sigma^{\geq 1 \text{lep}} \text{ [pb]}$
Nominal	ATLAS	PP8 $t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$ -Powheg	NLO	Рутніа 8.224	A14	4FS 3.0 NLO as 0118	$H_T/2$	5	18.72
ttbb@ME models	CMS	PP8 $t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$ -Powheg	NLO	Рутніа 8.230	CP5	$4\mathrm{FS}$ 3.1 NLO as 0118	$1.379 \cdot m_t$	2	23.86
	ATLAS	PP8 $t\bar{t}b\bar{b}$ $h_{\rm bzd}$ 2	$t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$ -Powheg	NLO	Рутніа 8.224	A14	4FS 3.0 NLO as 0118	$H_{\mathrm{T}}/2$	2	18.46
ATLAS ttbb@ME	ATLAS	PP8 $t\bar{t}b\bar{b}$ dipole	$t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$ -Powheg	NLO	Рутніа 8.224	A14, dipoleRecoi	$4\mathrm{FS}$ 3.0 NLO as 0118	$H_{\mathrm{T}}/2$	2	18.72
uncertainties	ATLAS	PH7 $t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$ -Powheg	NLO	Herwig 7.1.6	default	$4\mathrm{FS}$ 3.0 NLO as 0118	$H_{\mathrm{T}}/2$	5	18.47
	ATLAS	Sherpa $t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$	Sherpa 2.2.10	NLO	Sherpa	default	4FS 3.0 NNLO as 0118			20.24
CMS ttbb@ME ∫	\mathbf{CMS}	PP8 $t\bar{t}b\bar{b}~h_{\rm damp}$ up	$t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$ -Powheg	NLO	Pythia 8.230	CP5	4FS 3.1 NLO as 0118	$2.305 \cdot m_t$	5	23.86
uncertainties	\mathbf{CMS}	PP8 $t\bar{t}b\bar{b}~h_{\rm damp}$ down	$t\bar{t}b\bar{b}$	$t\bar{t}b\bar{b}$ -Powheg	NLO	Рутніа 8.230	CP5	$4\mathrm{FS}$ 3.1 NLO as 0118	$0.8738\cdot m_t$	5	23.86
Nominal tt@ME	ATLAS	PP8 $t\bar{t}$	$t\bar{t}$	Powheg v2	NLO	Pythia 8.210	A14	5FS 3.0 NLO	$1.5 \cdot m_t$	5	451.78
models {	CMS	PP8 $t\bar{t}$	$t\bar{t}$	Powheg v2	NLO	Рутніа 8.230	CP5	5FS 3.1 NLO	$1.5 \cdot m_t$	5	451.78~
ATLAS <mark>tī@ME</mark> ∫	ATLAS	PH7 $t\bar{t}$	$t\bar{t}$	Powheg v2	NLO	Herwig 7.13	default	5FS 3.0 NLO	$1.5 \cdot m_t$	5	451.78^{c}
uncertainties	ATLAS	aMC+P8 $t\bar{t}$	$t\bar{t}$	MG5_AMC@NLO	NLO	Рутніа 8.210	A14	5FS 3.0 NLO	()		451.78^{c}
CMS tt@ME	CMS	PP8 $t\bar{t}~h_{\rm damp}$ up	$t\bar{t}$	Powheg v2	NLO	Рутніа 8.230	CP5	5FS 3.1 NLO	$2.305 \cdot m_t$	5	451.78^{c}
uncertainties	CMS	PP8 $t\bar{t}~h_{\rm damp}$ down	$t\bar{t}$	Powheg v2	NLO	Рутніа 8.230	CP5	5FS 3.1 NLO	$0.8738 \cdot m_t$	5	451.78^{c}

Both: $\mu_R / \mu_F / ISR / FSR / pdf variations$ **ATLAS:** Uncertainties from Sherpa / Herwig / h_{bzd} / h_{damp} variations **CMS:** Uncertainties from h_{damp} variations h_{bzd}: Splitting of finite and singular part of real emissions in POWHEG
 h_{damp}: Regulates p_T of first emission in POWHEG PS

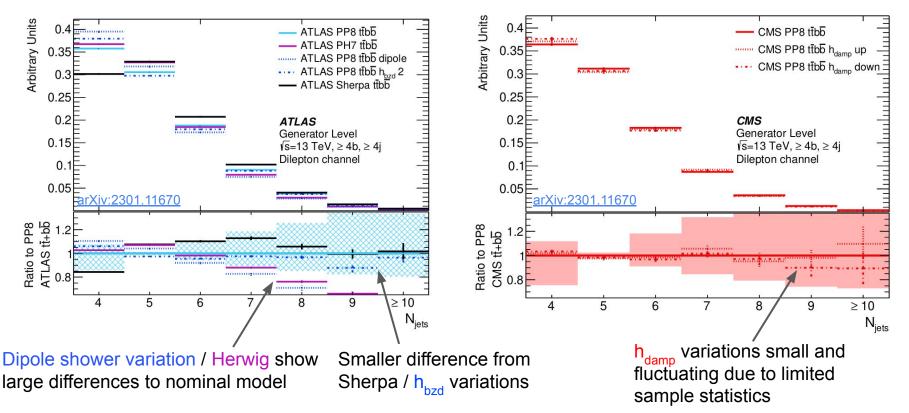
□ ATLAS+CMS modeling comparisons: <u>arXiv:2301.11670</u>


Renormalization scales are the same **Factorization scales** differ by factor two

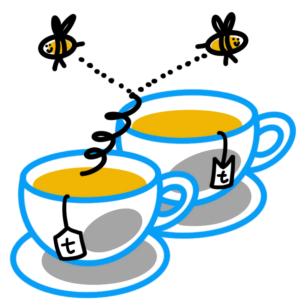
	ME Generator	$\mu_{ m R}$	$\mu_{ m F}$
Nominal ttbb@ME	ATLAS $t\bar{t}b\bar{b}$ -Powheg $t\bar{t}b\bar{b}$	$\frac{1}{2}\sqrt[4]{m_{\mathrm{T},t}\cdot m_{\mathrm{T},\bar{t}}\cdot m_{\mathrm{T},b}\cdot m_{\mathrm{T},\bar{b}}}$	$\frac{1}{2}(m_{\mathrm{T},t} + m_{\mathrm{T},\bar{t}} + m_{\mathrm{T},b} + m_{\mathrm{T},\bar{b}} + m_{\mathrm{T},g})$
models	CMS $t\bar{t}b\bar{b}$ -Powheg $t\bar{t}b\bar{b}$	$\frac{1}{2}\sqrt[4]{m_{\mathrm{T},t}\cdot m_{\mathrm{T},\bar{t}}\cdot m_{\mathrm{T},b}\cdot m_{\mathrm{T},\bar{b}}}$	$\frac{1}{4}(m_{\mathrm{T},t} + m_{\mathrm{T},\bar{t}} + m_{\mathrm{T},b} + m_{\mathrm{T},\bar{b}} + m_{\mathrm{T},g})$
	Sherpa 2.2.10	$\frac{1}{2}\sqrt[4]{m_{\mathrm{T},t}\cdot m_{\mathrm{T},\bar{t}}\cdot m_{\mathrm{T},b}\cdot m_{\mathrm{T},\bar{b}}}$	$\frac{1}{2}(m_{\mathrm{T},t} + m_{\mathrm{T},\bar{t}} + m_{\mathrm{T},b} + m_{\mathrm{T},\bar{b}} + m_{\mathrm{T},g})$

- □ Latest **ATLAS** publication of $t\bar{t}H(b\bar{b})$ (<u>JHEP 06 (2022) 97</u>) uses $\mu_R x 2$
- Latest **CMS** publication of $\overline{tt}H(b\overline{b})$ (<u>PAS-HIG-19-011</u>) uses the settings from the table
 - > Different scale settings of \overline{ttbb} still yield same $\overline{ttH}(b\overline{b})$ result in ATLAS + CMS

- Comparison of ttbb@ME models including scale and PS uncertainties
 - > Shaded bands include $\mu_R/\mu_F/ISR/FSR x2/x0.5$ variations

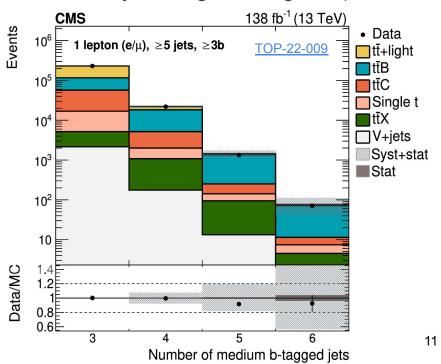


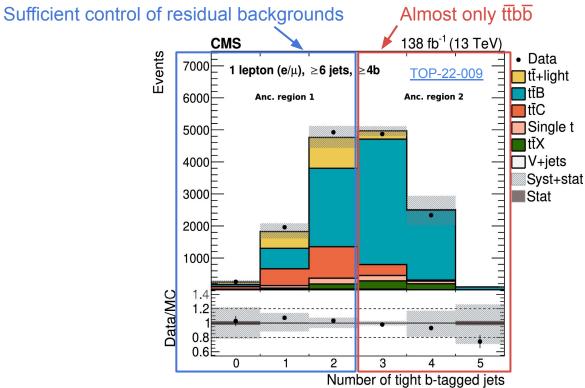
Scale variations dominated by μ_R variation \rightarrow large shape and rate (30–50%) variations

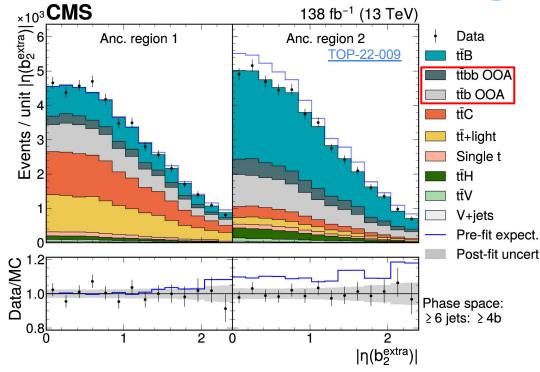

Comparison of uncertainties for ttbb@ME models

Approaches quite different and it seems to be diverging more in Run3

9


CMS ttbb measurement


- Basic event selections targeting tt+b jets and the lepton+jets final state
 - ➢ Exactly 1 e/µ
 - > At least **5 jets** ($p_T > 30$ GeV, $|\eta| < 2.4$)
 - At least 3 b-tagged jets (deepJet 75–80% b efficiency / 1% light mistag rate)
 - Measure 37 observables independently
 - Four fiducial cross section measurements

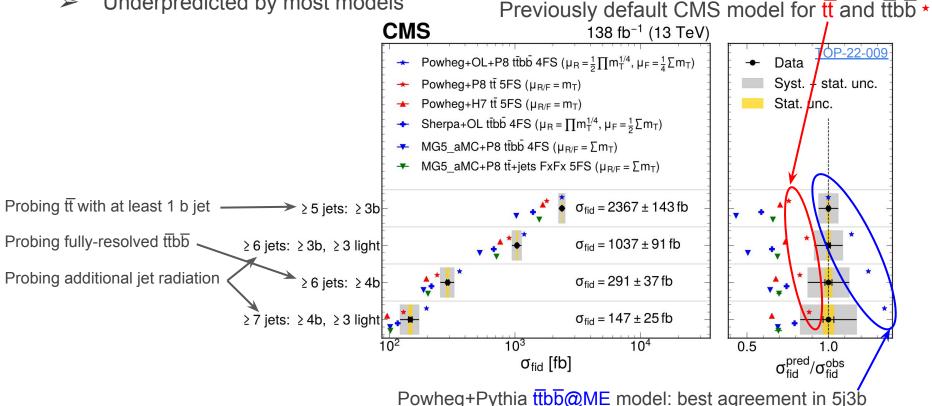

- Separate events in ancillary regions
 - **Based on b jet multiplicity at tight b tagging WP** (0.1% light jet misidentification rate)
 - Basically in-situ signal and control regions

- Each observable independently measured
 - Normalized differential cross section
 - Determine inclusive and normalized differential cross section simultaneously
 - Likelihood-based unfolding: Maximum-likelihood fit to obtain fiducial and differential cross sections

Out-of-acceptance (OOA) processes:

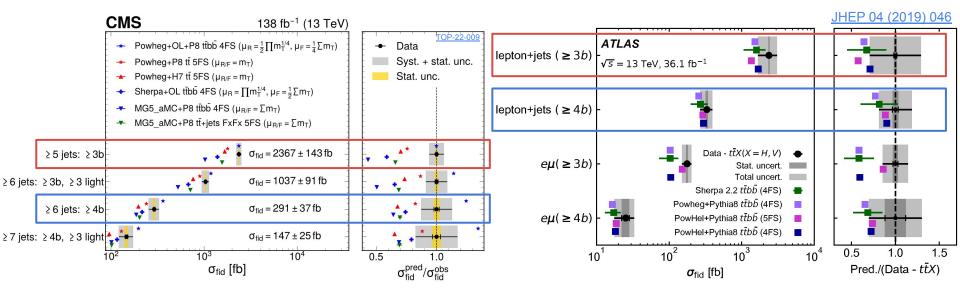
> Contributions of $t\bar{t}$ +b jets not in fid. volume

Full profiling of uncertainties



Fiducial cross section results

Fiducial cross sections measured in four overlapping fiducial regions


but similar trends as most models when going to more exclusive phase spaces *

ATLAS + CMS comparison

- ATLAS tt+b jet measurement (<u>JHEP 04 (2019) 046</u>) uses similar fid. definitions
 - > tt+≥1b jet / tt+≥2b jets
 - > Powheg+Pythia ttbb 4FS simulation (★/■):
 - \succ μ_R/μ_F scales x2 in ATLAS publication w.r.t. CMS scales
 - fid. XS too low in ATLAS setup / too high in CMS setup

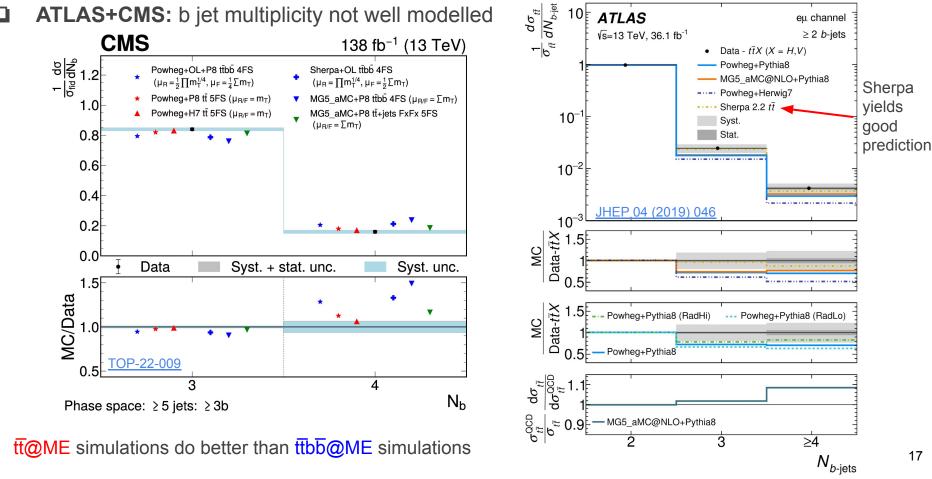
Results and limitations of measurements

Limitations of fiducial cross section measurements:

- Precision of 6–17% in CMS measurement / 13–28% in ATLAS measurement
- Dominated by signal+background modeling / b-tagging / jet energy calibration

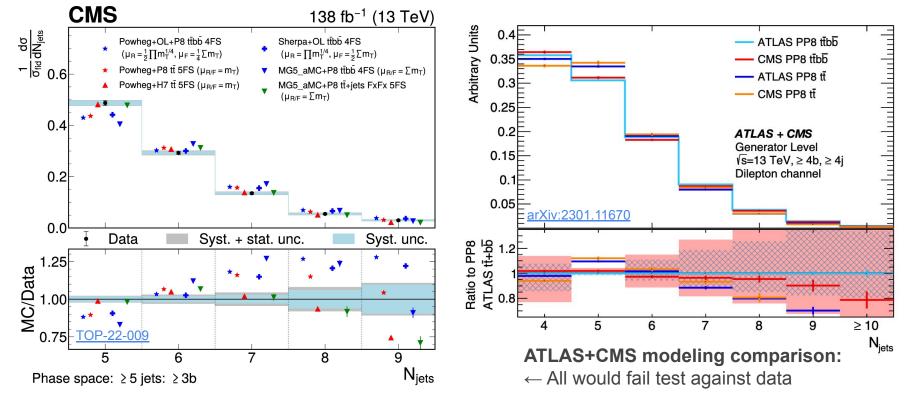
	Rela	ative und	certain	ty (%)	
Uncertainty source	5j3b	6j3b3l	6j4b	7j4b3l	
Integrated luminosity	1.6	1.6	2.0	1.8	
Pileup reweighting	0.2	0.8	0.4	0.5	
Lepton and trigger	1.1	0.9	1.9	1.8	
JES, JER	2.1	1.6	3.5	5.7	
b tagging	4.5	3.9	7.0	9.1	
$\mu_{ m R}$ and $\mu_{ m F}$ scales	2.8	6.8	8.2	12	
Top quark $p_{\rm T}$ modelling	0.3	1.0	0.6	1.3	
PDF	0.2	0.7	1.0	1.9	
PS scales	2.8	2.7	2.4	1.5	
ME-PS matching (h_{damp})	0.4	0.9	1.3	2.8	
Underlying event	0.4	< 0.1	0.4	0.4	
Colour reconnection	1.1	1.5	1.9	4.5	
b quark fragmentation	0.3	0.4	0.4	0.4	
Inclusive $t\bar{t}C$ cross section	0.5	0.3	1.9	2.6	
MC statistical	0.8	1.6	2.4	2.8	
Total systematic uncertainty	6.0	8.7	13	17	
Statistical uncertainty	0.6	1.2	2.2	3.3	
Total uncertainty TOP-22-009	6.0	8.8	13	17	

J J J J J	0	,		
Source	Fidu	icial cross-s	ection phase	space
	e	μ	lepton	+ jets
ATLAS	$ \ge 3b \\ \text{unc. } [\%] $	$\geq 4b$ unc. [%]	$\frac{\geq 5j, \geq 3b}{\text{unc. } [\%]}$	$ \geq 6j, \geq 4b $ unc. [%]
Data statistics	2.7	9.0	1.7	3.0
Luminosity	2.1	2.1	2.3	2.3
Jet	2.6	4.3	3.6	7.2
b-tagging	4.5	5.2	17	8.6
Lepton	0.9	0.8	0.8	0.9
Pile-up	2.1	3.5	1.6	1.3
$t\bar{t}c$ fit variation	5.9	11	-	-
Non- $t\bar{t}$ bkg	0.8	2.0	1.7	1.8
Detector+background total syst.	8.5	14	18	12
Parton shower	9.0	6.5	12	6.3
Generator	0.2	18	16	8.7
ISR/FSR	4.0	3.9	6.2	2.9
PDF	0.6	0.4	0.3	0.1
$t\bar{t}V/t\bar{t}H$	0.7	1.4	2.2	0.3
MC sample statistics	1.8	5.3	1.2	4.3
$t\bar{t}$ modelling total syst.	10	20	21	12
Total syst.	13	24	28	17
Total <u>JHEP 04 (2019) 046</u>	13	26	28	17


Experimental uncertainties

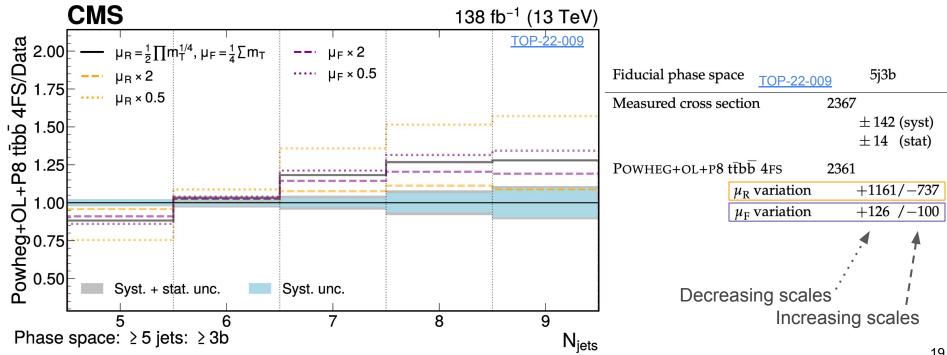
Theory uncertainties

Differential measurement: b jet multiplicity

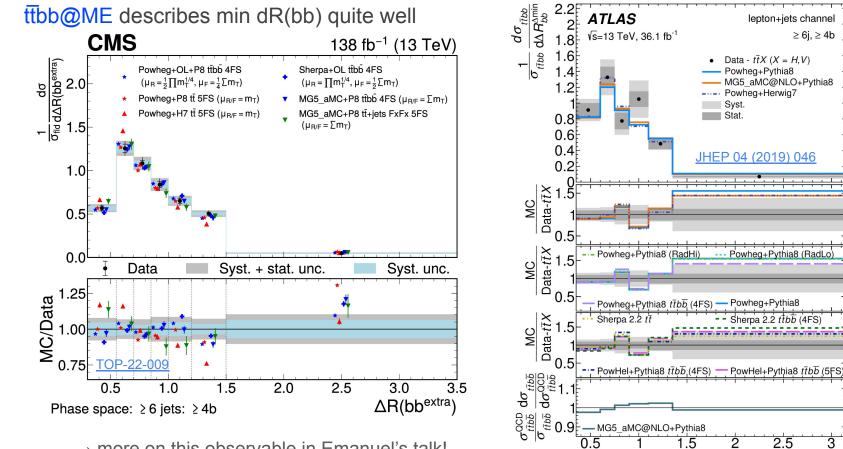


Differential measurement: jet multiplicity

CMS: not well described by any of the tested generator setups


ttbb@ME simulations with their settings predict way too many jets

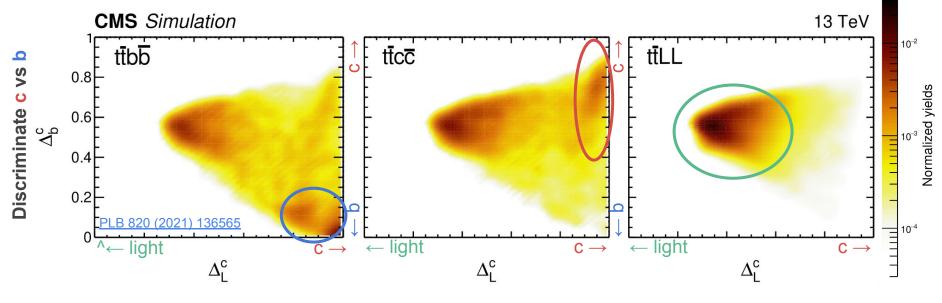
Differential measurement: jet multiplicity


- QCD scale variations improve N_{iets} description for Powheg+Pythia ttbb 4FS simulation
 - Increased scales seem favorable for differential distribution \succ
 - Increased scales at the same time reduce fiducial cross section compatibility \succ

Differential measurement: min dR(bb)

 \rightarrow more on this observable in Emanuel's talk!

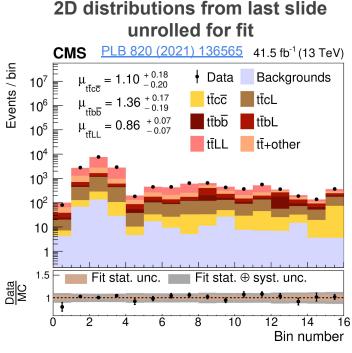
3


 $\Delta R_{bb}^{\Delta \min}$

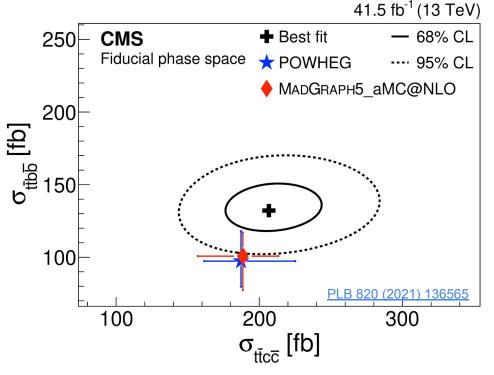
CMS ttcc measurement

First measurement of ttcc production by CMS

- ❑ Need to differentiate b, c and light jets to access ttcc
 - More difficult than ttbb
 - > use DNN + charm jet tagging to separate $\overline{\text{ttcc}}/\overline{\text{bb}}/\text{etc}$ classes



Discriminate c vs light



First measurement of ttcc production by CMS

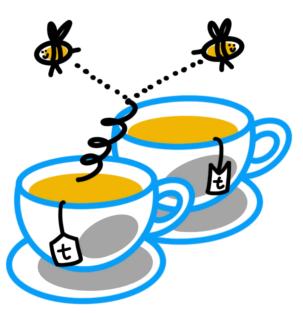
Measure ttbb, ttcc, tt+light at the same time (and also their ratios)

13.7% precision on ttcc cross section!

ttcc fairly well described by simulation ttbb underpredicted by simulation

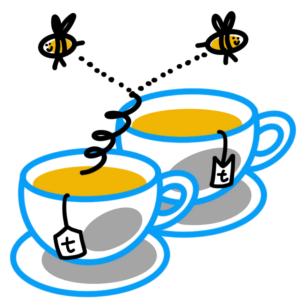
Summary

Differential ttbb measurements by CMS+ATLAS

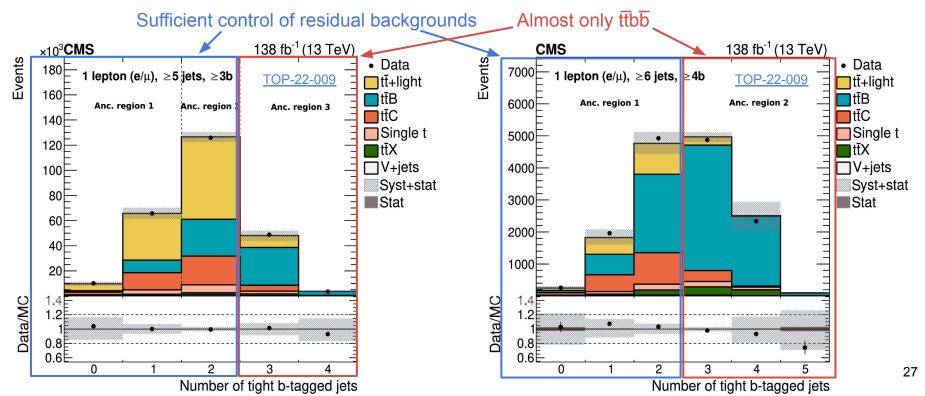

- ➢ 6−17% (13−28%) uncertainty achieved by CMS (ATLAS)
- CMS improved precision w.r.t. previous measurements
- In total 37 (24) observables measured by CMS (ATLAS)!
- Valuable input for modeling updates
- Modeling comparisons ATLAS+CMS
 - Small differences in ttbb@ME setups
 - Large difference between ttbb@ME/tt@ME
 - Modeling and uncertainty recommendations to be reviewed

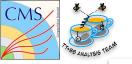
□ ttcc measurement by CMS

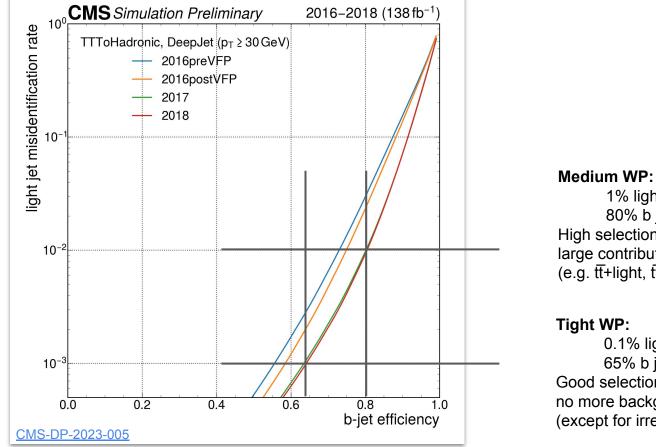
- > First time accessing $t\overline{t}c\overline{c} 13.7\%$ precision
- > Interesting for future $t\overline{t}H(c\overline{c})$ measurements


More CMS ttbb results of TOP-22-009:

YSF talk by Emanuel Pfeffer Poster by Juhee Song

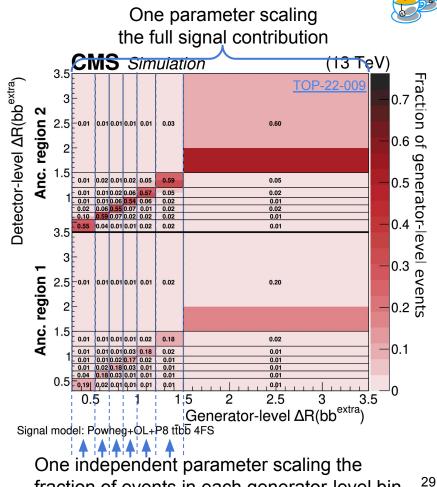

CMS ttbb measurement



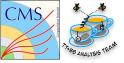


- Separate events in ancillary regions
 - > Based on b jet multiplicity at tight b tagging WP (0.1% light jet misidentification rate)
 - Basically in-situ signal and control regions

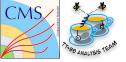
b tagging performance


1% light jet misID 80% b jet efficiency High selection efficiency for \overline{ttbb} , but also large contribution from backgrounds (e.g. tt+light, ttC)

0.1% light jet misID 65% b jet efficiency Good selection efficiency for ttbb, almost no more background contributions (except for irreducible $t\bar{t}X(b\bar{b})$)



- Each observable independently measured
 - Normalized differential cross section \succ
 - Free parameters for fid. XS and fractions \succ of events in generator-level bins
 - Good correspondence between detector >and generator level
 - Maximum-likelihood fit to obtain fiducial >and differential cross sections
 - Full profiling of uncertainties >


fraction of events in each generator-level bin

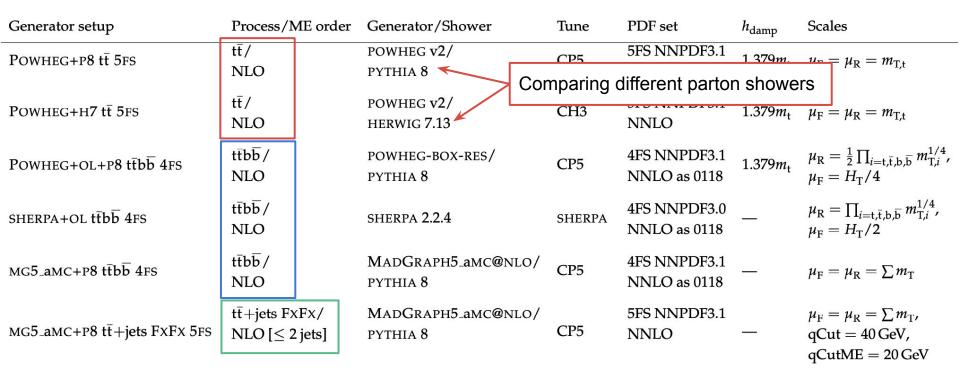
Robust systematic model

- Important modeling uncertainties decorrelated between signal and backgrounds (µ_R / µ_F / ISR / FSR / h_{damp}) —
- Rate-changing effects of modeling uncertainties removed for signal processes (d.o.f.s of cross sections)
- Out-of-acceptance ttbb modeling uncertainties correlated to signal in 6j4b/7j4b3l (similarity to signal process)
- Many correlation schemes / alternatives tested during CMS-internal review
 - Results very robust against changes

	Source	Corr. (period)	Corr. (process)
	Integrated luminosity	\sim	\checkmark
	Pileup	\checkmark	\checkmark
ltal	Trigger efficiency	×	\checkmark
len	L1 prefiring	\checkmark	\checkmark
rin	Electron selection efficiency	\checkmark	\checkmark
Experimenta	Muon selection efficiency	\checkmark	\checkmark
Εx	Jet energy scale	\sim	\checkmark
	Jet energy resolution	×	\checkmark
	b tagging efficiency	\sim	\checkmark
es		,	
-	μ_F and μ_R scales	\checkmark	\sim
	Top $p_{\rm T}$ modelling	\checkmark	\checkmark
al	PDF choice	\checkmark	\checkmark
tic	PS modelling: ISR & FSR scale	\checkmark	×
ore	Colour reconnection	\checkmark	\checkmark
Theoretical	ME-PS matching (h _{damp})	\checkmark	\sim
Η	Underlying-event tune	\checkmark	\checkmark
	b fragmentation	\checkmark	\checkmark
	tTC normalization	\checkmark	—

Fiducial signal definition + observables

- Generator-level phase space definitions
 - Mimic event-level selections:
 - Exactly 1 e/µ
 - □ At least 5 jets ($p_T > 25 \text{ GeV}$)
 - At least 3 b jets (Ghost Hadron clustering)
 - No reference to MC history of jets i.e. origin of b jets is unknown (purely particle-level)
 - Four fiducial phase space regions:
 - **5j3b:** tt + at least one b jet
 - □ 6j4b: tt + at least two b jets
 - Gi3b3I: additional light jets in 5j3b
 - 7j4b3l: additional light jets in 6j4b


	Observable	5j3b	6j4b	6j3b3l	7j4b3l
$\sigma_{ m fid}$	Inclusive cross section	\checkmark	\checkmark	\checkmark	\checkmark
Global obser	vables				
N _{iets}	Jet multiplicity	\checkmark	\checkmark		
Ń _b	b jet multiplicity	\checkmark			
H_{T}^{j}	Scalar sum of jet $p_{\rm T}$	\checkmark	\checkmark		
$H_{\mathrm{T}}^{\hat{\mathrm{b}}}$	Scalar sum of b jet $p_{\rm T}$	\checkmark	\checkmark		
$H_{\mathrm{T}}^{\mathrm{ligh}}$	Scalar sum of light jet $p_{\rm T}$			\checkmark	\checkmark
Observables	related to b jets				
$p_{\rm T}(b_3$		\checkmark	\checkmark		
$\eta(b_3)$) $ \eta $ of third hardest b jet	\checkmark	\checkmark		
$p_{\rm T}(b_4)$			\checkmark		
$\eta(b_4)$) $ \eta $ of fourth hardest b jet		\checkmark		
Observables	considering all pairs of b jets (bb)				
ΔR_{bb}^{av}	Average ΔR of all bb pairs		\checkmark		
m _{bb} ^{max}	x Highest invariant mass among all bb pairs		\checkmark		
Observables	related to the pair of b jets closest in ΔR (bb ^{extra})				
$p_{\rm T}(b_1^{\rm ext})$	$p_{\rm T}$ of leading extra b jet		\checkmark		
$\eta(b_1^{extr})$	$ \eta $ of leading extra b jet		\checkmark		
$p_{\rm T}(b_2^{\rm ext})$	$p_{\rm T}$ of subleading extra b jet		\checkmark		
$\eta(b_2^{extr})$	$ \eta $ of subleading extra b jet		\checkmark		
$\Delta R(bb^{e})$	$\Delta R ext{ of } bb^{extra} ext{ pair}$		\checkmark		
$ \eta $ (bb ^e)	$ \eta $ of bb ^{extra} pair		\checkmark		
m(bb ^{ex}	^{(tra}) invariant mass of bb ^{extra} pair		\checkmark		
$p_{\rm T}({\rm bb^{ex}})$	$p_{\rm T}$ of bb ^{extra} pair		\checkmark		
Observables	related to the pair of b jets not from $t\bar{t}$ decay (bb ^{add.})				
$p_{\rm T}(b_1^{\rm ad})$	$p_{\rm T}$ of leading additional b jet		\checkmark^*		
$\eta(b_1^{add})$	$ \eta $ of leading additional b jet		\checkmark^*		
$p_{\rm T}(b_2^{\rm ad})$	$p_{\rm T}$ of subleading additional b jet		\checkmark^*		
$\eta(b_2^{add})$	$ \eta $ of subleading additional b jet		√*		
$\Delta R(bb^{a}$	$^{\rm dd.}$) ΔR of bb ^{add.} pair		\checkmark^*		
$ \eta $ (bb ^a	$(\eta of bb^{add.} pair)$		√*		
m(bb ^{ac}	$^{dd.}$) invariant mass of bb ^{add.} pair		√*		
$p_{\rm T}({\rm bb}^{\rm ac})$	$^{\rm dd.})$ $p_{\rm T}$ of bb ^{add.} pair		\checkmark^* \checkmark^* \checkmark^*		
	related to extra light jets				
$p_{\rm T}(lj_1^{\rm ext})$	$p_{\rm T}$ of leading extra light jet			\checkmark	√ າ
$ \Delta \phi(\mathbf{l}\mathbf{j}_1^{\text{extra}}) $	$ \mathbf{b}_{soft}) \Delta \phi$ of leading extra light jet and softest b jet			\checkmark	√ 3

Comparing measurement to predictions

□ Test some possible predictions of ttbb against the measurements

Comparing measurement to predictions

□ Test some possible predictions of ttbb against the measurements

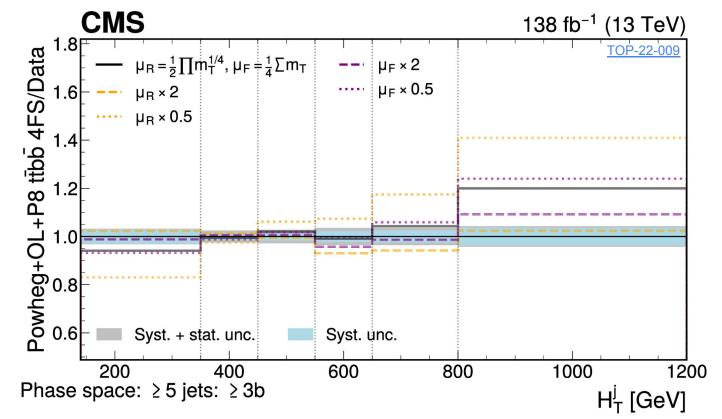
Generator setup	Process/ME order	Generator/Shower	Tune	PDF set	h_{damp}	Scales	
Powheg+p8 tī 5fs	tī/ NLO	POWHEG v2/ PYTHIA 8	CP5	5FS NNPDF3.1 NNLO	1.379 <i>m</i> _t	$\mu_{\rm F} = \mu_{\rm R} = m_{\rm T,t}$	
Powheg+h7 tī 5fs	tī/	POWHEG v2/		5ES NINPDE2 1			
	NLO	HERWIG 7.13	Comparing matrix electron description of addition		nent vs. parton shower		
Powheg+ol+p8 $t\bar{t}b\bar{b}$ 4fs	tībb/ NLO	POWHEG-BOX-RES/	ucscript	NNLO as 0118		$\mu_{ m F} = H_{ m T}/4$	
SHERPA+OL $t\bar{t}b\bar{b}$ 4fs	tībb/ NLO	SHERPA 2.2.4	SHERPA	4FS NNPDF3.0 NNLO as 0118	_	$\mu_{ m R} = \prod_{i={ m t},{ar t},{ m b},{ar b}} m_{{ m T},i}^{1/4}$, $\mu_{ m F} = H_{ m T}/2$	
MG5_aMC+P8 $t\bar{t}b\bar{b}$ 4FS	tībb/ NLO	MadGraph5_amc@nlo/ pythia 8	CP5	4FS NNPDF3.1 NNLO as 0118	_	$\mu_{ m F} = \mu_{ m R} = \sum m_{ m T}$	
MG5_aMC+P8 tt+jets FxFx 5FS	$t\bar{t}+jets FxFx/$ NLO [$\leq 2 jets$]	MadGraph5_amC@nlo/ pythia 8	CP5	5FS NNPDF3.1 NNLO	_	$\mu_{\rm F} = \mu_{\rm R} = \sum m_{\rm T},$ qCut = 40 GeV, qCutME = 20 GeV	

Comparing measurement to predictions

□ Test some possible predictions of ttbb against the measurements

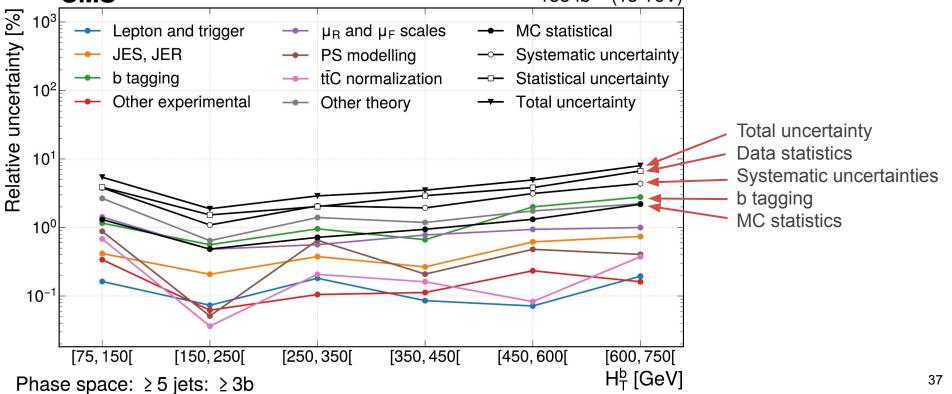
Generator setup	Process/ME order	Generator/Shower	Tune	PDF set	h _{damp}	Scales
Powheg+p8 tī 5fs	tī/ NLO	POWHEG v 2 / PYTHIA 8	CP5	5FS NNPDF3.1 NNLO	1.379 <i>m</i> _t	$\mu_{\rm F} = \mu_{\rm R} = m_{\rm T,t}$
Powheg+h7 t \overline{t} 5fs	tī / NLO	POWHEG v2/ Herwig 7.13	CH3	5FS NNPDF3.1 NNLO	1.379 <i>m</i> t	$\mu_{\mathrm{F}} = \mu_{\mathrm{R}} = m_{\mathrm{T,t}}$
Powheg+ol+p8 $t\bar{t}b\bar{b}$ 4fs	tībī/ NLO	POWHEG-BOX-RES/ PYTHIA 8	CP5	4FS NNPDF3.1 NNLO as 0118	1.379 <i>m</i> t	$\mu_{ m R} = rac{1}{2} \prod_{i={ m t},{ m \bar{t}},{ m b},{ m \bar{b}}} m_{{ m T},i}^{1/4}, \ \mu_{ m F} = H_{ m T}/4$
SHERPA+OL $t\bar{t}b\bar{b}$ 4fs	tībb/ NLO	SHERPA 2.2.4	Compari	ng different m	atrix ele	ment generators
MG5_aMC+P8 $t\bar{t}b\bar{b}$ 4FS	tībb/ NLO	MADGRAPH5_aMC@NLO/ PYTHIA 8	CP5	4FS NNPDF3.1 NNLO as 0118	_	$\mu_{ m F} = \mu_{ m R} = \sum m_{ m T}$
MG5_aMC+P8 tt+jets FxFx 5FS	$t\bar{t}$ +jets FxFx/ NLO [\leq 2 jets]	MadGraph5_amc@nlo/ pythia 8	CP5	5FS NNPDF3.1 NNLO	_	$\mu_{\rm F} = \mu_{\rm R} = \sum m_{\rm T},$ qCut = 40 GeV, qCutME = 20 GeV

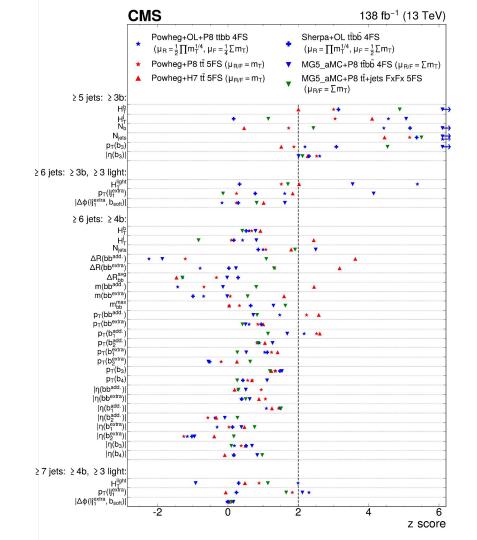
Fiducial cross section values

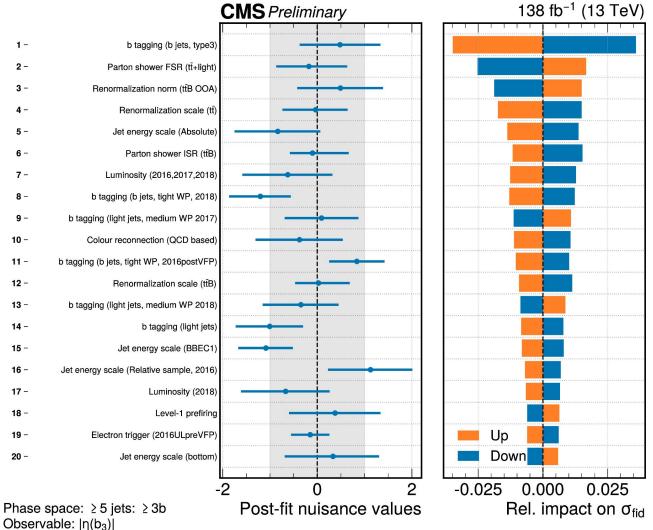

Fiducial phase space	5j3b	6j3b3l	6j4b	7j4b3l
Measured cross section	2367	1037	$\frac{291}{\pm 26}$	147 $\pm 24 \text{ (sust)}$
	\pm 142 (syst) \pm 14 (stat)	\pm 90 (syst) \pm 12 (stat)	\pm 36 (syst) \pm 6 (stat)	\pm 24 (syst) \pm 5 (stat)
Powheg+ol+p8 $t\bar{t}b\bar{b}$ 4fs	2361	1183	361	197
$\mu_{ m R}$ variation	+1161/-737	+826/-433	+183/-113	+121/-67
$\mu_{ m F}$ variation	+126 /-100	+97 /-78	+23 /-18	+16 /-13
Powheg+p8 $t\bar{t}$ 5fs	1791	899	240	129
Powheg+h7 $t\bar{t}$ 5fs	1665	762	197	95
SHERPA+OL $t\bar{t}b\bar{b}$ 4fs	1391	677	216	116
MG5_aMC+P8 $t\bar{t}b\bar{b}$ 4FS	1024	524	187	101
MG5_aMC+P8 t \bar{t} +jets FXFX 5FS	1560	712	203	101

Differential measurement: H_{T} of jets

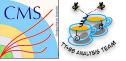
- **QCD** scale variations improve H_T description for Powheg+Pythia ttbb 4FS simulation
 - Increased scales favorable!

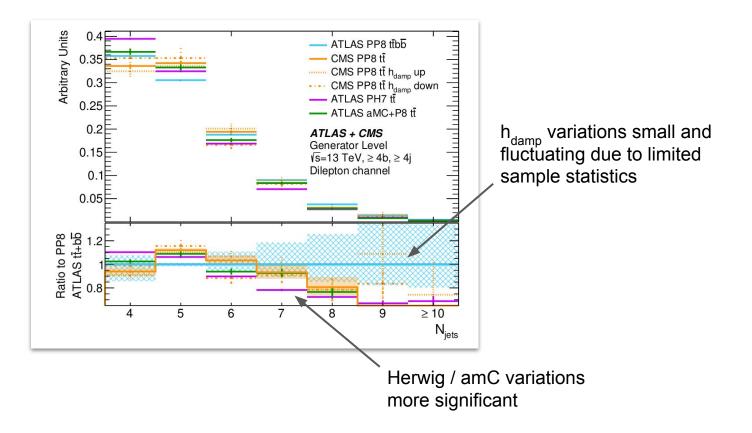



Results and limitations



Limitations of normalized differential cross sections:

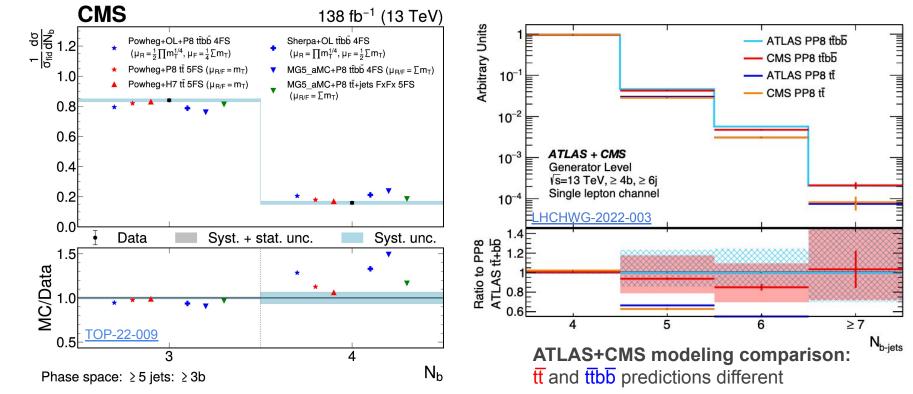

mostly statistically limited due to cancellation of systematics in normalized diff. XSs CMS 138 fb⁻¹ (13 TeV)



CMS+ATLAS comparisons

Modeling comparisons ATLAS+CMS

Comparison of uncertainties for tt@ME models



Differential measurement: b jet multiplicity

ATLAS+CMS: b jet multiplicity not well modelled

tt-inclusive simulations do better than ttbb simulations

ATLAS tītbb measurement

ATLAS generator settings in ttbb measurement

Generator sample	Process	Matching	Tune	Use
Powheg-Box v2 + Pythia 8.210 MadGraph5_aMC@NLO + Pythia 8.210	$tar{t}$ NLO $tar{t} + V/H$ NLO	Powheg $h_{damp} = 1.5 m_t$ MC@NLO	A14 A14	nom. nom.
Powheg-Box v2 + Pythia 8.210 RadLo Powheg-Box v2 + Pythia 8.210 RadHi Powheg-Box v2 + Herwig 7.01 Sherpa 2.2.1 $t\bar{t}$	$tar{t}$ NLO $tar{t}$ NLO $tar{t}$ NLO $tar{t}$ +0,1 parton at NLO +2,3,4 partons at LO	Powheg $h_{damp} = 1.5m_t$ Powheg $h_{damp} = 3.0m_t$ Powheg $h_{damp} = 1.5m_t$ MePs@Nlo	A14Var3cDown A14Var3cUp H7UE Sherpa	syst. syst. syst. syst.
MADGRAPH5_aMC@NLO + PYTHIA 8.210 SHERPA 2.2.1 $t\bar{t}b\bar{b}$ (4FS) Powheg-Box v2 + Pythia 8.210 $t\bar{t}b\bar{b}$ (4FS) PowHel + Pythia 8.210 (4FS) PowHel + Pythia 8.210 (5FS)	$tar{t}$ NLO $tar{t}bar{b}$ NLO $tar{t}bar{b}$ NLO $tar{t}bar{b}$ NLO $tar{t}bar{b}$ NLO $tar{t}bar{b}$ NLO	$\begin{array}{l} \mathrm{MC@NLO} \\ \mathrm{MC@NLO} \\ \mathrm{Powheg} \ h_{\mathrm{damp}} = H_{\mathrm{T}}/2 \\ \mathrm{Powheg} \ h_{\mathrm{damp}} = H_{\mathrm{T}}/2 \\ \mathrm{Powheg} \ h_{\mathrm{damp}} = H_{\mathrm{T}}/2 \end{array}$	A14 Sherpa A14 A14 A14	comp. comp. comp. comp. comp.

CMS ttcc measurement

First measurement of ttcc production by CMS

□ 11.4% precision for ttbb / 13.7% precision for ttcc

Sources	S	ystemati	ic uncert	ainty (%	»)
Sources	$\Delta \sigma_{t\bar{t}c\bar{c}}$	$\Delta \sigma_{t\bar{t}b\bar{b}}$	$\Delta \sigma_{\mathrm{t\bar{t}LL}}$	$\Delta R_{\rm c}$	$\Delta R_{\rm b}$
Jet energy scale	4.0	3.2	4.7	2.8	2.1
Jet energy resolution	2.3	1.0	0.9	2.5	1.3
c tagging calibration	7.0	3.2	2.5	7.3	3.5
Lepton identification and isolation	0.8	1.0	1.3	0.6	0.3
Trigger	2.0	2.0	2.0	< 0.1	< 0.1
Pileup	0.3	0.2	0.3	0.5	< 0.1
Total integrated luminosity	2.3	2.4	2.3	< 0.1	< 0.1
$\mu_{ m R}$ and $\mu_{ m F}$ scales in ME	3.3	6.2	2.1	3.8	6.8
PS scale	0.4	1.6	0.3	0.5	1.6
PDF	0.3	0.1	0.1	0.2	0.1
ME-PS matching	7.1	5.7	3.5	2.6	1.5
Underlying event	1.9	2.3	1.1	0.5	0.9
b fragmentation	0.4	1.9	0.8	0.3	2.4
c fragmentation	4.6	< 0.1	< 0.1	3.9	0.7
$t\bar{t}bL(cL)/t\bar{t}b\overline{b}(c\overline{c})$ and $t\bar{t}+other/t\bar{t}LL$	2.4	1.8	1.1	1.8	1.5
Efficiency (theoretical)	2.4	2.1	2.0	< 0.1	< 0.1
Simulated sample size	3.2	2.6	1.1	3.1	2.5
Background normalization	0.5	0.7	0.6	0.1	0.1
Total TOP-20-003	13.7	11.4	8.2	10.9	9.2

Experimental limitations from jet energy calibration / c tagging calibration

Theory limitations from QCD scales and ME-PS matching