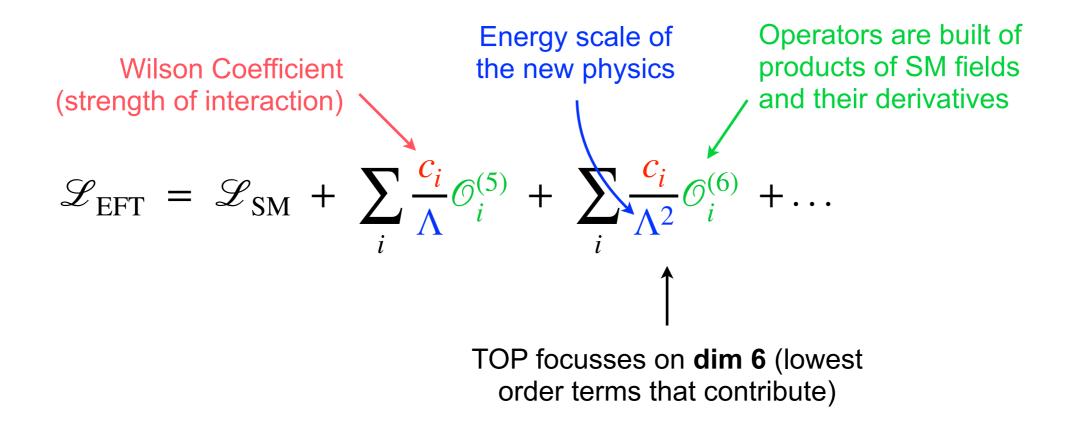
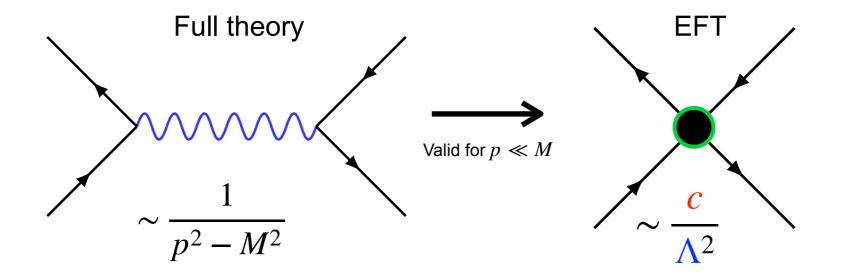
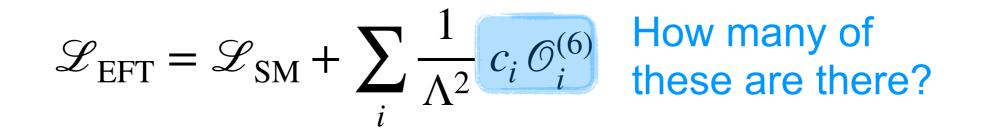


SATLAS Top23 Traverse City, MI: Sep. 26, 2023 **UF FLORIDA**


Measurements and EFT fits on detector level

Kelci Mohrman, University of Florida On behalf of ATLAS and CMS Motivation for indirect searches for new physics: New physics has to be out there, but ...


Brief introduction to SM EFT*


- Treats SM as lowest order term in an expansion of higher-dimensional operators, describes BSM at a scale Λ , interacting with strength given by Wilson coefficient
- If all Wilson coefficients (WCs) are 0, the SM is recovered -> a non-zero WC would indicate new physics

Using
$$\mathscr{L}_{EFT} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathscr{O}_i^{(6)}$$
 to describe interactions

- Example: If a heavy particle can't be produced on-shell at the LHC, would be hard to find via direct search
- Can describe the interaction with an EFT operator, interaction strength determined by the WC

 $\mathscr{L}_{\text{EFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda^2} c_i \mathscr{O}_i^{(6)}$ How many of these are there?

Depends on how you count...

- Flavor assumptions?
- Include or exclude B/L number violating operators?
- Count hermitian conjugates separately?
- ...

Some ballpark numbers:

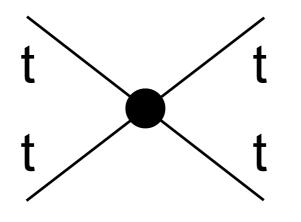
- With fewest assumptions, 1000s of operators
- With a flavor universality assumption, ~O(60)

 $\mathscr{L}_{\text{EFT}} = \mathscr{L}_{\text{SM}} + \sum_{i} \frac{1}{\Lambda^2} c_i \mathscr{O}_i^{(6)}$ How many of these are there?

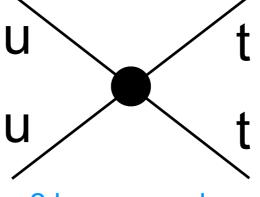
Depends on how you count...

- Flavor assumptions?
- Include or exclude B/L number violating operators?
- Count hermitian conjugates separately?
- ...

Some ballpark numbers:

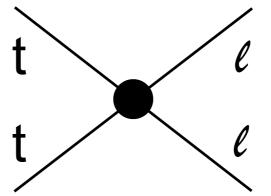

- With fewest assumptions, 1000s of operators
- With a flavor universality assumption, ~O(60)

The dim-6 EFT operators in the Warsaw basis (1008.4884)

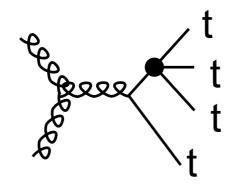

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$		$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(ar{e}_p \gamma_\mu e_r) (ar{e}_s \gamma^\mu e_t)$	Q_{le}	$(ar{l}_p\gamma_\mu l_r)(ar{e}_s\gamma^\mu e_t)$		
$Q_{qq}^{(1)}$	$(ar q_p \gamma_\mu q_r)(ar q_s \gamma^\mu q_t)$	Q_{uu}	$(ar{u}_p \gamma_\mu u_r)(ar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(ar{l}_p \gamma_\mu l_r) (ar{u}_s \gamma^\mu u_t)$		
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p \gamma_\mu d_r) (ar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(ar{l}_p \gamma_\mu l_r) (ar{d}_s \gamma^\mu d_t)$		
$Q_{lq}^{(1)}$	$(ar{l}_p\gamma_\mu l_r)(ar{q}_s\gamma^\mu q_t)$	Q_{eu}	$(ar{e}_p \gamma_\mu e_r) (ar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(ar q_p \gamma_\mu q_r) (ar e_s \gamma^\mu e_t)$		
$Q_{lq}^{(3)}$	$(ar{l}_p \gamma_\mu au^I l_r) (ar{q}_s \gamma^\mu au^I q_t)$	Q_{ed}	$(ar{e}_p \gamma_\mu e_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar q_p \gamma_\mu q_r) (ar u_s \gamma^\mu u_t)$		
		$Q_{ud}^{(1)}$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$		
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(ar{q}_p \gamma_\mu q_r) (ar{d}_s \gamma^\mu d_t)$		
				$Q_{qd}^{(8)}$	$(ar{q}_p \gamma_\mu T^A q_r) (ar{d}_s \gamma^\mu T^A d_t)$		
$(\bar{L}R)(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$		<i>B</i> -violating					
Q_{ledq}	$(ar{l}_p^j e_r) (ar{d}_s q_t^j)$	Q_{duq}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(d^{lpha}_p) ight]$	${}^{T}Cu^{eta}_{r}ig]\left[(q^{\gamma j}_{s})^{T}Cl^{k}_{t} ight]$			
$Q_{quqd}^{(1)}$	$(ar{q}_p^j u_r) arepsilon_{jk} (ar{q}_s^k d_t)$	Q_{qqu}	$arepsilon^{lphaeta\gamma}arepsilon_{jk}\left[(q_p^{lpha j})^T C q_r^{eta k} ight]\left[(u_s^{\gamma})^T C e_t ight]$				
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	Q_{qqq}	$arepsilon^{lphaeta\gamma}arepsilon_{jn}arepsilon_{km}\left[(q_p^{lpha j})^TCq_r^{eta k} ight]\left[(q_s^{\gamma m})^TCl_t^n ight]$				
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	Q_{duu}	$arepsilon^{lphaeta\gamma}\left[(d_p^lpha)^T ight]$	$\left[Cu_{r}^{\beta} ight]\left[(u_{s}^{\gamma})^{T}Ce_{t} ight]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$						
•iequ							
	-		φ^6 and $\varphi^4 D^2$		$\frac{1}{(p^2 \omega^3)}$		
	X ³	Q	φ^6 and $\varphi^4 D^2$ $(\varphi^{\dagger} \varphi)^3$	Que	$\psi^2 \varphi^3$ $(\varphi^{\dagger} \varphi)(\bar{l_{\mu}} e_{\mu} \varphi)$		
Q_G	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \end{array}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$		
Q_G $Q_{\widetilde{G}}$	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \end{array}$	$Q_{arphi\square}$	$(arphi^{\dagger}arphi)^{3} \ (arphi^{\dagger}arphi) \Box (arphi^{\dagger}arphi)$	$Q_{u\varphi}$	$egin{aligned} &(arphi^{\dagger}arphi)(ar{l}_p e_rarphi)\ &(arphi^{\dagger}arphi)(ar{q}_p u_r\widetilde{arphi}) \end{aligned}$		
Q_G $Q_{\widetilde{G}}$ Q_W	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \end{array}$		$(arphi^\dagger arphi)^3$	-	$(arphi^{\dagger}arphi)(ar{l}_{p}e_{r}arphi)$		
Q_G $Q_{\widetilde{G}}$	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \end{array}$	$Q_{arphi\square}$	$(arphi^{\dagger}arphi)^{3} \ (arphi^{\dagger}arphi) \Box (arphi^{\dagger}arphi)$	$Q_{u\varphi}$	$egin{aligned} &(arphi^{\dagger}arphi)(ar{l}_p e_r arphi)\ &(arphi^{\dagger}arphi)(ar{q}_p u_r \widetilde{arphi}) \end{aligned}$		
Q_G $Q_{\widetilde{G}}$ Q_W	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \end{array}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)^{3}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}D^{\mu}\varphi)^{*}(\varphi^{\dagger}D_{\mu}\varphi)$	$Q_{u\varphi}$	$egin{aligned} &(arphi^{\dagger}arphi)(ar{l}_pe_rarphi)\ &(arphi^{\dagger}arphi)(ar{q}_pu_r\widetilde{arphi})\ &(arphi^{\dagger}arphi)(ar{q}_pd_rarphi) \end{aligned}$		
Q_G $Q_{\widetilde{G}}$ Q_W $Q_{\widetilde{W}}$ $Q_{\varphi G}$	$\begin{array}{c} X^{3} \\ f^{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu} \\ f^{ABC}\widetilde{G}_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu} \\ \varepsilon^{IJK}W_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu} \\ \varepsilon^{IJK}\widetilde{W}_{\mu}^{I\nu}W_{\nu}^{J\rho}W_{\rho}^{K\mu} \\ x^{2}\varphi^{2} \end{array}$	$Q_{arphi \Box}$ $Q_{arphi D}$	$(\varphi^{\dagger}\varphi)^{3}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}D^{\mu}\varphi)^{\star}(\varphi^{\dagger}D_{\mu}\varphi)$ $\psi^{2}X\varphi$	Q_{uarphi} Q_{darphi}	$\begin{array}{c} (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)\\ \end{array}$ $\frac{\psi^{2}\varphi^{2}D}{(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})}$		
$\begin{array}{c} & \\ Q_G \\ Q_{\widetilde{G}} \\ Q_W \\ Q_{\widetilde{W}} \end{array}$	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ x^{2}\varphi^{2} \\ \hline \varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu} \end{array}$	$Q_{arphi \Box}$ $Q_{arphi D}$ Q_{eW}	$\begin{array}{c} (\varphi^{\dagger}\varphi)^{3} \\ (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi) \\ (\varphi^{\dagger}D^{\mu}\varphi)^{*} (\varphi^{\dagger}D_{\mu}\varphi) \\ \psi^{2}X\varphi \\ \hline (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu} \end{array}$	Q_{uarphi} Q_{darphi} $Q_{arphi}^{(1)}$	$egin{aligned} &(arphi^{\dagger}arphi)(ar{l}_pe_rarphi)\ &(arphi^{\dagger}arphi)(ar{q}_pu_r\widetilde{arphi})\ &(arphi^{\dagger}arphi)(ar{q}_pd_rarphi)\ &(arphi^{\dagger}arphi)(ar{q}_pd_rarphi)\ &arphi^2arphi^2D \end{aligned}$		
$\begin{array}{c} Q_{G} \\ Q_{\widetilde{G}} \\ Q_{W} \\ Q_{\widetilde{W}} \\ \end{array}$	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{A\mu\nu}_{\rho} \\ \varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu} \\ \varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu} \end{array}$	$Q_{\varphi \Box}$ $Q_{\varphi D}$ Q_{eW} Q_{eB}	$\begin{array}{c} (\varphi^{\dagger}\varphi)^{3} \\ (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi) \\ (\varphi^{\dagger}D^{\mu}\varphi)^{*} \left(\varphi^{\dagger}D_{\mu}\varphi\right) \\ \psi^{2}X\varphi \\ \hline \\ (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu} \\ (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\varphi B_{\mu\nu} \end{array}$	$egin{array}{c} Q_{uarphi} \ Q_{darphi} \ Q_{darphi} \ Q_{arphi l} \ Q_{ar$	$\begin{array}{c} (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)\\ \end{array}$ $\begin{array}{c} \psi^{2}\varphi^{2}D\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})\\ \end{array}$		
$\begin{array}{c} & \\ Q_G \\ Q_{\widetilde{G}} \\ Q_W \\ Q_{\widetilde{W}} \end{array}$	$\begin{array}{c} X^{3} \\ f^{ABC}G^{\mu\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\widetilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{L\mu}_{\rho} \\ \psi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu} \\ \varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu} \\ \varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I\mu\nu} \end{array}$	$Q_{\varphi\Box}$ $Q_{\varphi D}$ Q_{eW} Q_{eB} Q_{uG}	$\begin{array}{c} (\varphi^{\dagger}\varphi)^{3} \\ (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi) \\ (\varphi^{\dagger}D^{\mu}\varphi)^{\star} (\varphi^{\dagger}D_{\mu}\varphi) \end{array}$ $\begin{array}{c} \psi^{2}X\varphi \\ \hline (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu} \\ (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\varphi B_{\mu\nu} \\ (\bar{q}_{p}\sigma^{\mu\nu}T^{A}u_{r})\widetilde{\varphi} G^{A}_{\mu\nu} \end{array}$	$egin{array}{c} Q_{uarphi} \ Q_{darphi} \ Q_{\phi l} \ Q_{arphi e} \ D_{arphi $	$\begin{array}{c} (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)\\ \end{array}\\ \hline \\ \psi^{2}\varphi^{2}D\\ \hline (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}e_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})\\ \end{array}$		
$\begin{array}{c} Q_{G} \\ Q_{\widetilde{G}} \\ Q_{W} \\ Q_{\widetilde{W}} \\ Q_{\widetilde{W}} \\ Q_{\varphi \widetilde{G}} \\ Q_{\varphi \widetilde{G}} \\ Q_{\varphi W} \\ Q_{\varphi \widetilde{W}} \\ Q_{\varphi B} \end{array}$	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\tilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\tilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{L\mu}_{\rho} \\ \varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu} \\ \varphi^{\dagger}\varphi \tilde{G}^{A}_{\mu\nu}G^{A\mu\nu} \\ \varphi^{\dagger}\varphi \tilde{W}^{I}_{\mu\nu}W^{I\mu\nu} \\ \varphi^{\dagger}\varphi \tilde{W}^{I}_{\mu\nu}W^{I\mu\nu} \end{array}$	$Q_{arphi \Box}$ $Q_{arphi D}$ Q_{eW} Q_{eB} Q_{uG} Q_{uW}	$\begin{array}{c} (\varphi^{\dagger}\varphi)^{3} \\ (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi) \\ (\varphi^{\dagger}D^{\mu}\varphi)^{*} (\varphi^{\dagger}D_{\mu}\varphi) \\ \end{array}$ $\begin{array}{c} \psi^{2}X\varphi \\ \hline (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu} \\ (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\varphi B_{\mu\nu} \\ (\bar{q}_{p}\sigma^{\mu\nu}T^{A}u_{r})\widetilde{\varphi} G^{A}_{\mu\nu} \\ (\bar{q}_{p}\sigma^{\mu\nu}u_{r})\tau^{I}\widetilde{\varphi} W^{I}_{\mu\nu} \end{array}$	$egin{aligned} Q_{uarphi} & Q_{darphi} & Q_{darphi} & Q_{arphi l} & Q_{arphi l} & Q_{arphi l} & Q_{arphi l} & Q_{arphi e} & Q_{arphi q} & Q_{arp$	$\begin{array}{c} (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)\\ \end{array}\\ \hline \psi^{2}\varphi^{2}D\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})\\ \end{array}$		
$\begin{array}{c} & \\ Q_G \\ Q_{\widetilde{G}} \\ Q_W \\ Q_{\widetilde{W}} \\ \\ Q_{\varphi \widetilde{G}} \\ Q_{\varphi \widetilde{G}} \\ Q_{\varphi \widetilde{W}} \\ Q_{\varphi \widetilde{W}} \\ \end{array}$	$\begin{array}{c} X^{3} \\ f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ f^{ABC}\tilde{G}^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho} \\ \varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}W^{K\mu}_{\nu} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}W^{K\mu}_{\rho} \\ \varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}W^{L\mu}_{\rho} \\ \varphi^{\dagger}\varphi G^{A}_{\mu\nu}G^{A\mu\nu} \\ \varphi^{\dagger}\varphi \widetilde{G}^{A}_{\mu\nu}G^{A\mu\nu} \\ \varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu} \\ \varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu} \\ \varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu} \end{array}$	$Q_{arphi \Box}$ $Q_{arphi D}$ Q_{eW} Q_{eB} Q_{uG} Q_{uW} Q_{uB}	$\begin{array}{c} (\varphi^{\dagger}\varphi)^{3} \\ (\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi) \\ (\varphi^{\dagger}D^{\mu}\varphi)^{*} (\varphi^{\dagger}D_{\mu}\varphi) \\ \end{array}$ $\begin{array}{c} \psi^{2}X\varphi \\ \hline (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\tau^{I}\varphi W^{I}_{\mu\nu} \\ (\bar{l}_{p}\sigma^{\mu\nu}e_{r})\varphi B_{\mu\nu} \\ (\bar{q}_{p}\sigma^{\mu\nu}T^{A}u_{r})\widetilde{\varphi} G^{A}_{\mu\nu} \\ \hline (\bar{q}_{p}\sigma^{\mu\nu}u_{r})\tau^{I}\widetilde{\varphi} W^{I}_{\mu\nu} \\ \hline (\bar{q}_{p}\sigma^{\mu\nu}u_{r})\widetilde{\varphi} B_{\mu\nu} \end{array}$	$egin{aligned} Q_{uarphi} \ Q_{darphi} \ Q_{darphi} \ Q_{arphi l} \ Q_{arphi q} \ Q_{arp$	$\begin{array}{c} (\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})\\ (\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)\\ \end{array}$ $\begin{array}{c} \psi^{2}\varphi^{2}D\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})\\ (\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})\\ \end{array}$		

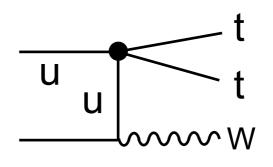
EFT operators involving top quarks

Focus on operators involving tops $\rightarrow \sim 40$ operators¹ Generally these fall into 4 categories²

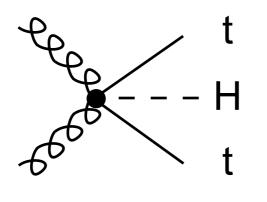

4 heavy³ quarks

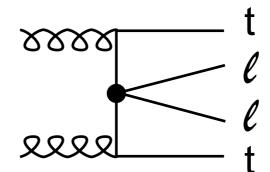
2 heavy quarks and 2 light quarks


2 heavy quarks and bosons


2 heavy quarks and 2 leptons ¹The number quoted here is from the dim6top note (<u>1802.07237</u>) assumption described in the "baseline" section i.e. 4.1

²In general an operator will give rise to multiple EFT vertices, here we just show an example vertex for an operator from each category


³Note: "heavy" means top or bottom, "light" is everything else, see dim6top model paper (<u>1802.07237</u>) for more details on the operators, also note the operators in the ~40 number quoted here does not include the FCNC operators The EFT vertices can impact observables, where the strengths of the impacts are determined by the WCs that scale the vertices


4 heavy³ quarks

2 heavy quarks and 2 light quarks

2 heavy quarks and bosons

2 heavy quarks and 2 leptons ³Note: "heavy" means top or bottom, "light" is everything else, see dim6top model paper (<u>1802.07237</u>) for more details on the operators, also note the operators in the ~40 number quoted here does not include the FCNC operators

Note: In general an operator will give rise to multiple EFT vertices, and there are also multiple types of vertices in each category, which can impact multiple signal processes. Here we just show an example vertex for an operator from each category impacting an example process.

The goal of EFT analyses

What:

- Find the best fit values (and uncertainties) for the WCs

Why:

- A non zero WC would be a sign of new physics!¹

How:

- Parameterize some prediction in terms of the WCs
- Compare observation to the prediction and extract the best fit values and corresponding uncertainties for the WCs

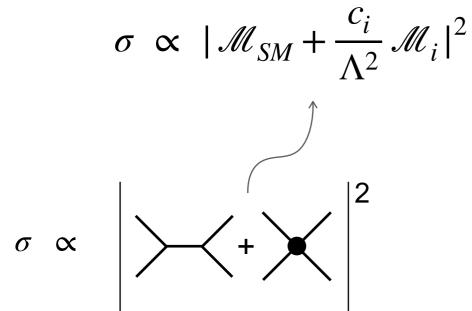
The goal of EFT analyses

What:

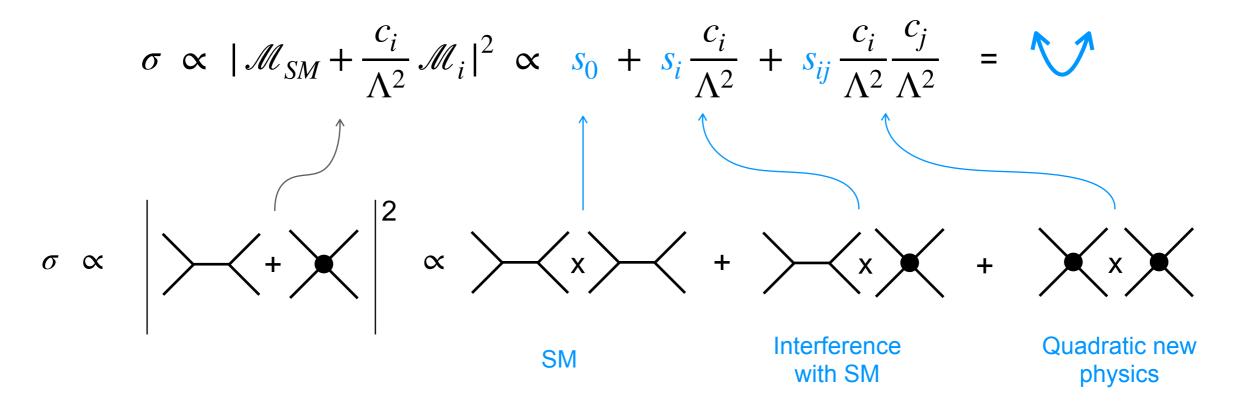
- Find the best fit values (and uncertainties) for the WCs

Why:

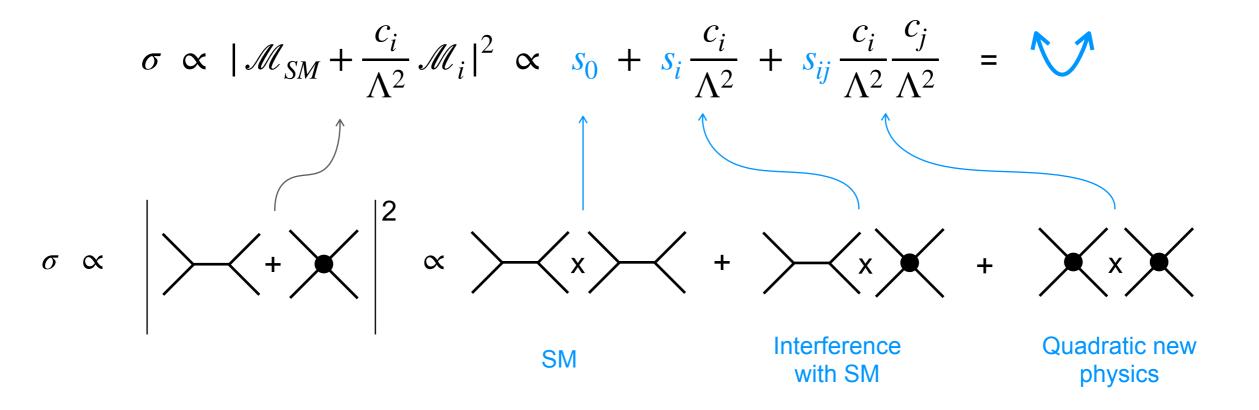
- A non zero WC would be a sign of new physics!¹


How:

- Parameterize some prediction in terms of the WCs
- Compare observation to the prediction and extract the best fit values and corresponding uncertainties for the WCs


If the EFT is modeled linearly in amplitude,

$$\sigma \propto |\mathcal{M}_{SM} + \frac{c_i}{\Lambda^2} \mathcal{M}_i|^2$$


If the EFT is modeled linearly in amplitude,

If the EFT is modeled linearly in amplitude, the cross section is an *n*-quadratic in terms of the WCs (where *n* is number of WCs)

If the EFT is modeled linearly in amplitude, the cross section is an *n*-quadratic in terms of the WCs (where *n* is number of WCs)

This holds for any cross section, inclusive or differential

The goal of EFT analyses

What:

- Find the best fit values (and

We've covered how the xsec depends on EFT Now let's cover different analysis approaches

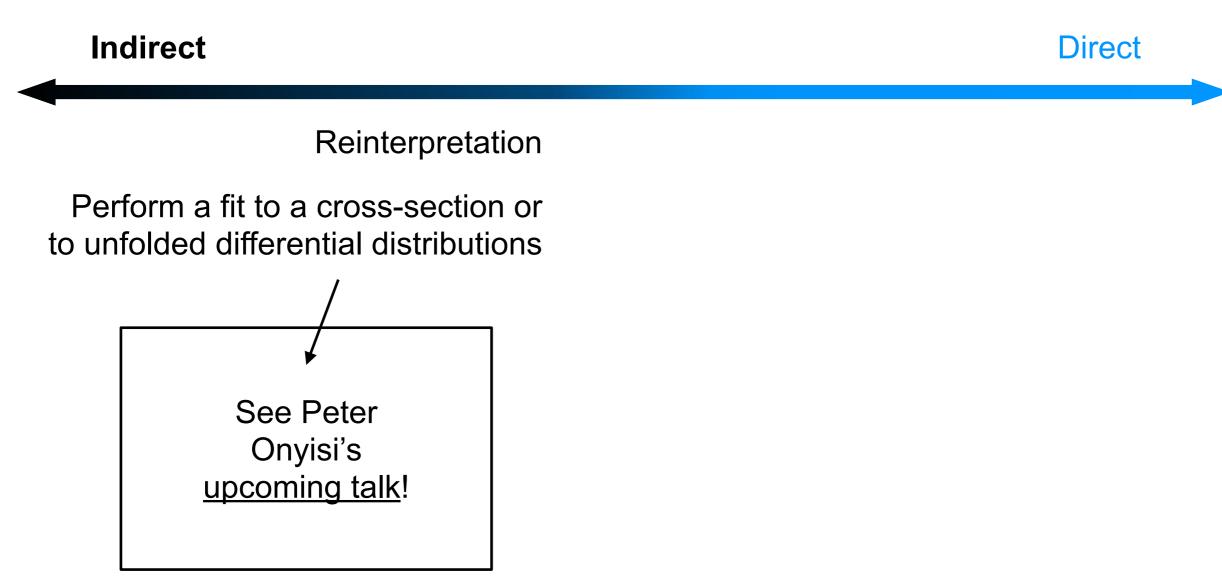
Why:

- A non zero WC would be a s i.e. how do you use this to search for non-zero WCs

How:

- Parameterize some prediction in terms of the WCs
- Compare observation to the prediction and extract the best fit values and corresponding uncertainties for the WCs

Indirect

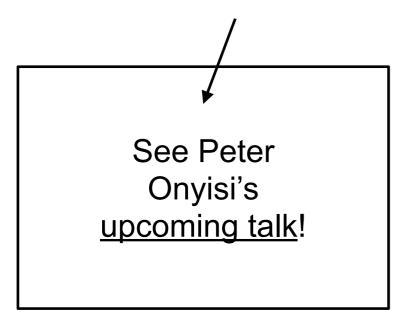

Direct

Indirect

Direct

Reinterpretation

Perform a fit to a cross-section or to unfolded differential distributions

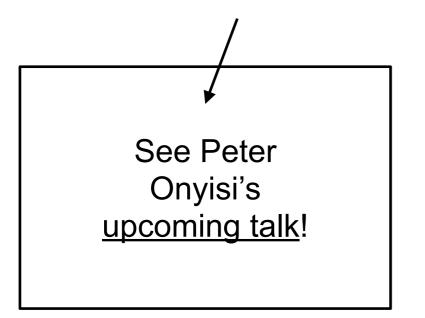


Indirect

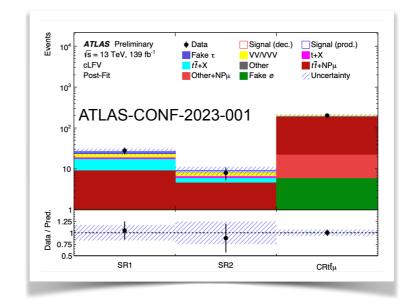
Direct

Reinterpretation

Perform a fit to a cross-section or to unfolded differential distributions


Direct detector-level

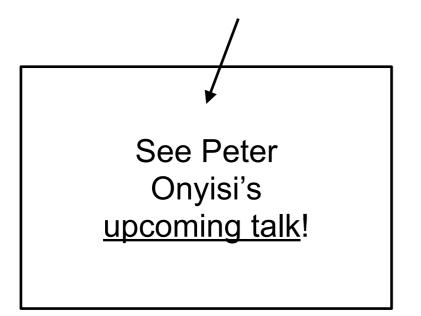
Indirect


Direct

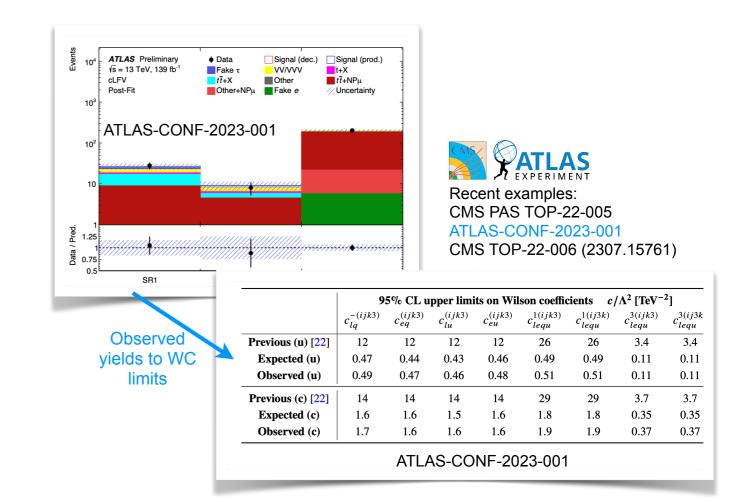
Reinterpretation

Perform a fit to a cross-section or to unfolded differential distributions

Direct detector-level



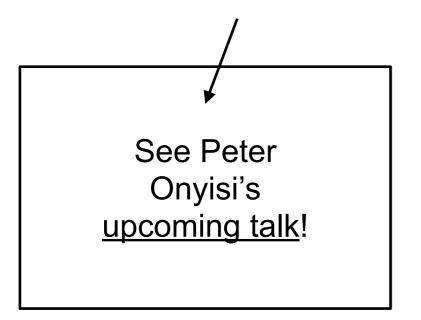
Indirect


Direct

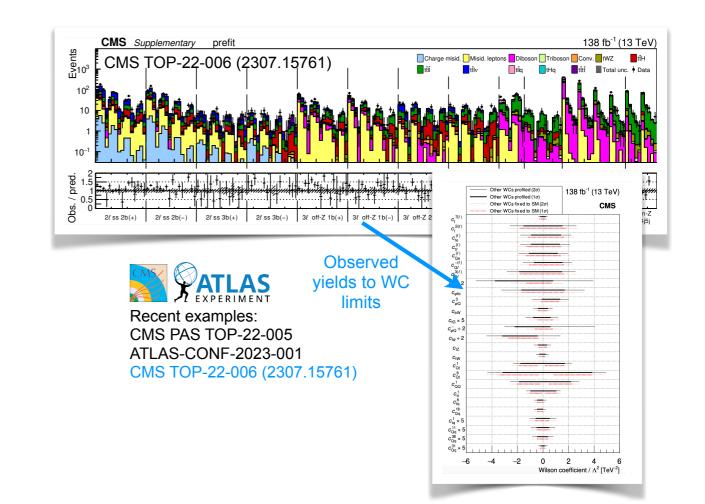
Reinterpretation

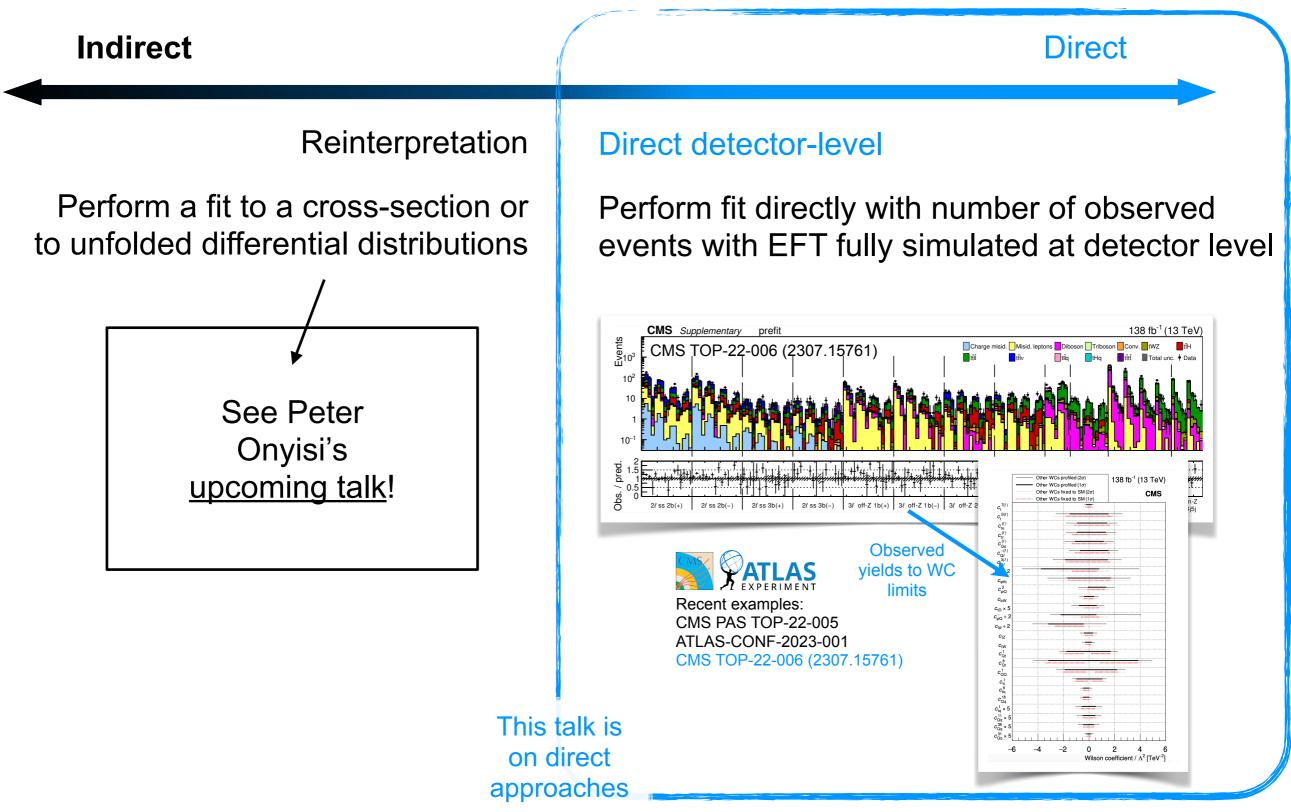
Perform a fit to a cross-section or to unfolded differential distributions

Direct detector-level

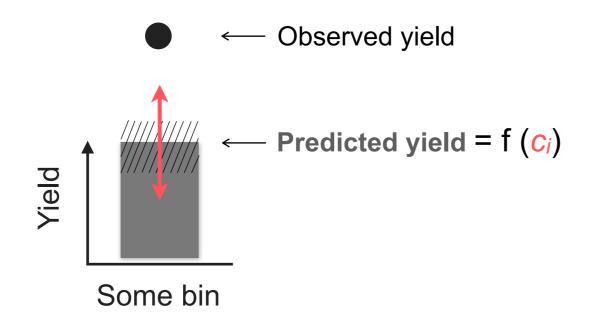


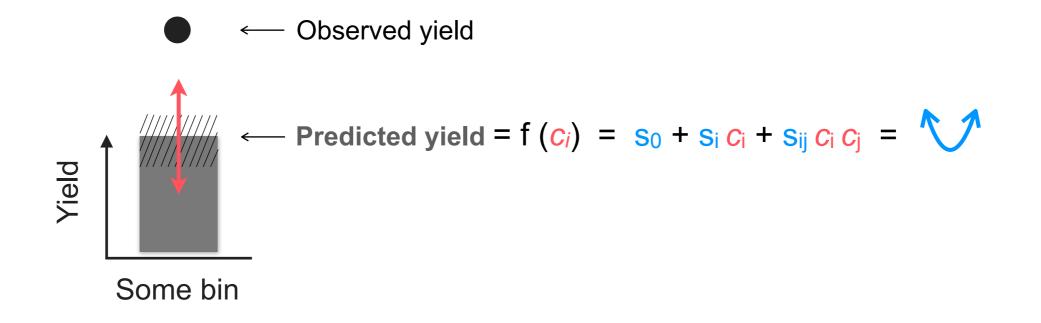
Indirect


Direct

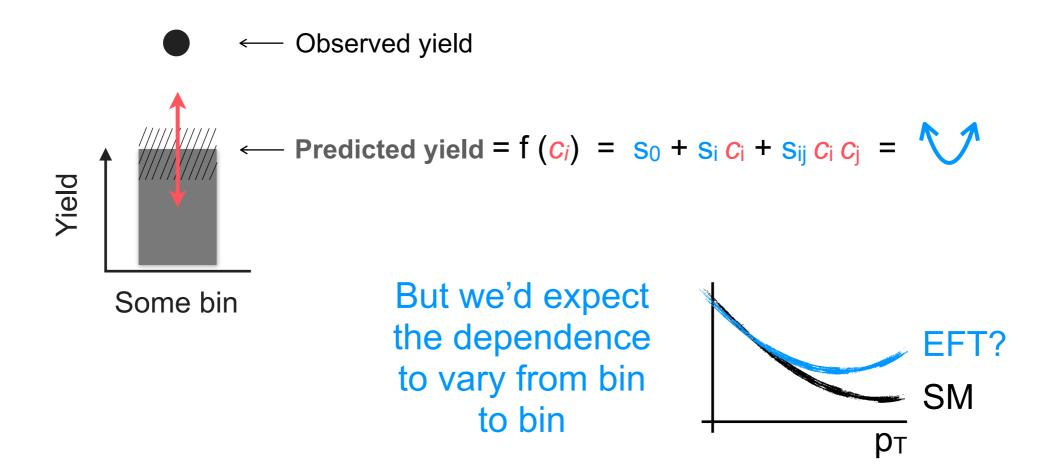

Reinterpretation

Perform a fit to a cross-section or to unfolded differential distributions


Direct detector-level


The direct detector-level approach

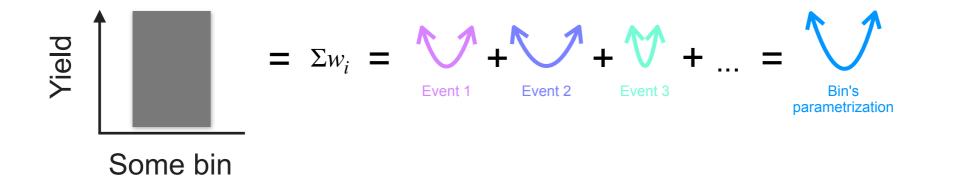
- 1. Write the **prediction** in the observable bins as a function of WCs
- 2. Compare that to the observation to extract limits for the WCs


The direct detector-level approach

- 1. Write the **prediction** in the observable bins as a function of WCs
- 2. Compare that to the observation to extract limits for the WCs

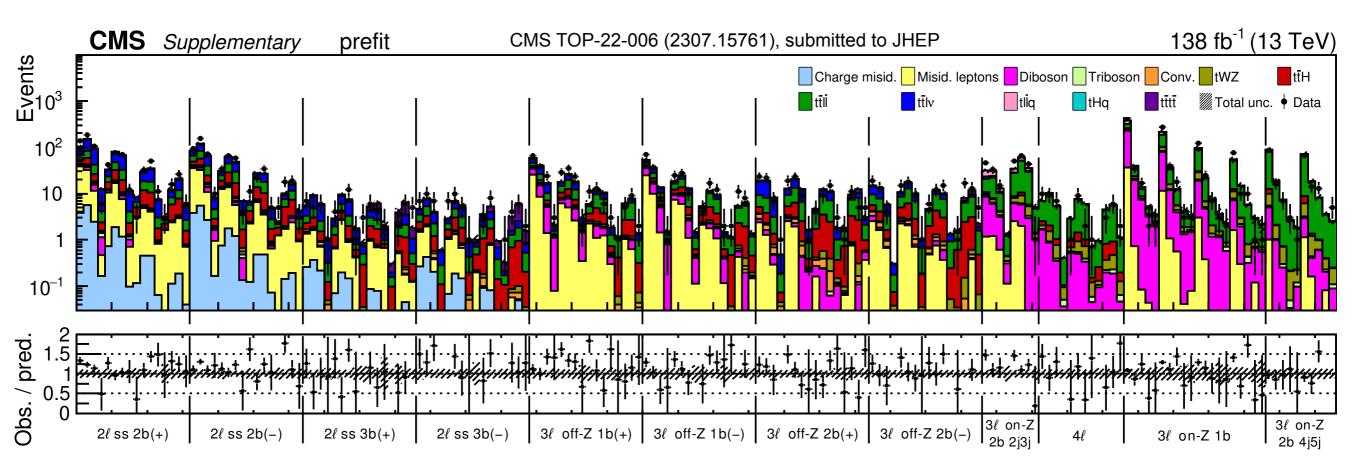
The direct detector-level approach

- 1. Write the prediction in the observable bins as a function of WCs
- 2. Compare that to the observation to extract limits for the WCs


How do we find the quadratic parametrization for each bin's yield?

 The key is to parametrize the weight of each simulated event as a quadratic in terms of the WCs*

How do we find the quadratic parametrization for each bin's yield?


- The key is to parametrize the weight of each simulated event as a quadratic in terms of the WCs*
- Can then find any arbitrary bin's yield as a function of the WCs by summing the quadratics** of the events that fall in the bin

UF FLORIDA Kelci Mohrman, k.mohrman@ufl.edu

*The quadratic for each event is extracted using MadGraph reweighing, as described in <u>this LPC EFT Workshop tutorial</u> **These are drawn as 1-dimensional, but really are *n*-dimensional quadratics for each event, where *n* = number of WCs (so e.g. 26d for CMS TOP-22-006), some more technical details on analysis approach in <u>LHC EFT WG presentation</u>

What this looks like in practice in a real analysis

- The predicted yield for each signal processes in each bin is a 26-d quadratic
- The statistical fit can turn the 26 knobs (changing shape and normalization across all 178 bins) to extract the WC ranges that agree with the observations

For the results, see <u>Aashwin Basnet's upcoming YSF talk</u>!

Advantageous vs more challenging aspects of the direct approach

Challenging

Advantageous

Analysis preservation/longevity

Reinterpretations

Need to produce detector-level EFT simulations

These challenging aspects for direct approaches are generally advantages of the indirect approach More information available \rightarrow potential for more sensitivity

Can handle final states with complicated admixtures of processes all affected differently by EFT

Account for all relevant correlations

Some recent TOP EFT analyses

CMS

- Search for CLFV with trileptons, 6 WCs (fit individually) ← New! (since Top22), see <u>FCNC/LFV CMS talk on Wednesday</u> <u>CMS PAS TOP-22-005</u>
- t(t)X multilepton, 26 WCs (fit individually and simultaneously) ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>CMS TOP-22-006 (2307.15761)</u>
- Search for CLFV in eµ final states, 6 WCs (fit individually) JHEP 06 (2022) 082
- tt with boosted Z or H, singe lepton + jets, 8 WCs (fit individually and simultaneously) <u>PRD 108 (2023) 032008</u>
- ttZ multilepton, 5 WCs (fit individually and simultaneously) JHEP 12 (2021) 083

ATLAS

- ttZ multilepton, 20 WCs plus 3 Im parts of WCs included (fit individually and simultaneously) ← New! (since Top22), see ttX talk Monday ATLAS-CONF-2023-065
- Single top t-channel leptonic, 1 WC ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>ATLAS-CONF-2023-026</u>
- Search for CLFV t→μτq, 8 WCs (fit individually) ← New! (since Top22), see <u>FCNC/LFV ATLAS talk on Wednesday</u> <u>ATLAS-CONF-2023-001</u>
- tītī multilepton, 4 WCs (fit individually) ← New! (since Top22), see 4t measurement and interpretation talks from Monday Eur. Phys. J. C 83 (2023) 496
- tt all-hadronic, 8 WCs (fit individually and in pairs) JHEP 04 (2023) 80
- tt charge asymmetry, single and di-lepton, 15 WCs (fit individually) JHEP 08 (2023) 077
- tt semi-leptonic, 2 WCs (fit individually and together), JHEP 06 (2022) 063
- Single top polarization, leptonic, Re and Im part of 1 WC (fit individually and together), JHEP 11 (2022) 040

Some recent TOP EFT analyses

CMS

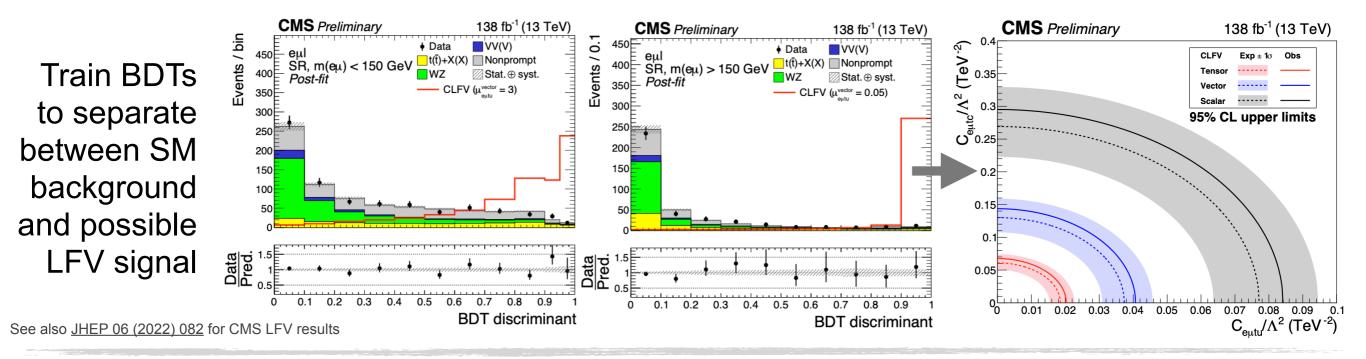
- (Direct) Search for CLFV with trileptons, 6 WCs (fit individually) ← New! (since Top22), see <u>FCNC/LFV CMS talk on Wednesday</u> <u>CMS PAS TOP-22-005</u>
- (Direct) t(t)X multilepton, 26 WCs (fit individually and simultaneously) ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>CMS TOP-22-006 (2307.15761)</u>
- (Direct) Search for CLFV in $e\mu$ final states, 6 WCs (fit individually) JHEP 06 (2022) 082
- (Direct) tt with boosted Z or H, singe lepton + jets, 8 WCs (fit individually and simultaneously) PRD 108 (2023) 032008
- (Direct) $t\bar{t}Z$ multilepton, 5 WCs (fit individually and simultaneously) JHEP 12 (2021) 083
- (Semi $t\bar{t}\gamma$ dilepton, Re and Im part of 1 WC (fit individually and together) direct) JHEP 05 (2022) 091

ATLAS

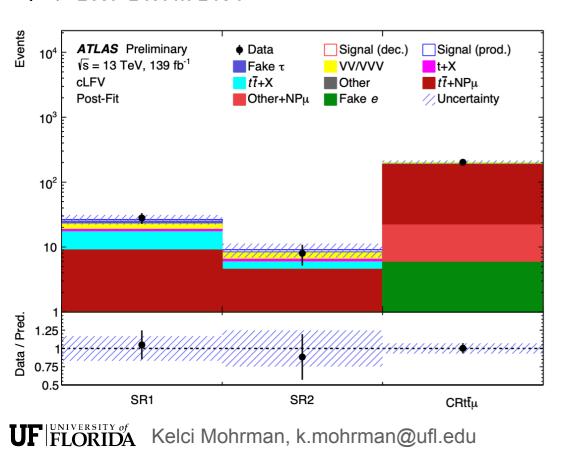
- ttZ multilepton, 20 WCs plus 3 Im parts of WCs included (fit individually and simultaneously) ← New! (since Top22), see ttX talk Monday ATLAS-CONF-2023-065
- (Direct) Single top t-channel leptonic, 1 WC ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>ATLAS-CONF-2023-026</u>
- (Direct) Search for CLFV $t \rightarrow \mu \tau q$, 8 WCs (fit individually) \leftarrow New! (since Top22), see <u>FCNC/LFV ATLAS talk on Wednesday</u> <u>ATLAS-CONF-2023-001</u>
 - tttt multilepton, 4 WCs (fit individually) ← New! (since Top22), see 4t measurement and interpretation talks from Monday Eur. Phys. J. C 83 (2023) 496
 - tt all-hadronic, 8 WCs (fit individually and in pairs) JHEP 04 (2023) 80
 - tt charge asymmetry, single and di-lepton, 15 WCs (fit individually) JHEP 08 (2023) 077
 - tt semi-leptonic, 2 WCs (fit individually and together), JHEP 06 (2022) 063
 - Single top polarization, leptonic, Re and Im part of 1 WC (fit individually and together), JHEP 11 (2022) 040

Some recent TOP EFT analyses

CMS


- (Direct) Search for CLFV with trileptons, 6 WCs (fit individually) ← New! (since Top22), see <u>FCNC/LFV CMS talk on Wednesday</u> <u>CMS PAS TOP-22-005</u>
- (Direct) t(t)X multilepton, 26 WCs (fit individually and simultaneously) ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>CMS TOP-22-006 (2307.15761)</u>
- Direct) Search for CLFV in e_{μ} final states, 6 WCs (fit individually) <u>JHEP 06 (2022) 082</u>
- (Direct) tt with boosted Z or H, si All new detector-level analyses since PRD 108 (2023) 032008 Top22 have dedicated talks at Top23
- Direct) ttZ multilepton, 5 WCs (fit individually and simultaneously) JHEP 12 (2021) 083
 - tty dilepton, Re and Im We'll briefly show their results here, but
 - see the dedicated talks for full details!

ATLAS


- tt
 Z multilepton, 20 WCs plus 3 Im parts of WCs included (fit individually and simultaneously) ← New! (since Top22), see <u>ttX talk Monday</u> <u>ATLAS-CONF-2023-065</u>
- (Direct) Single top t-channel leptonic, 1 WC ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>ATLAS-CONF-2023-026</u>
- (Direct) Search for CLFV $t \rightarrow \mu \tau q$, 8 WCs (fit individually) \leftarrow New! (since Top22), see <u>FCNC/LFV ATLAS talk on Wednesday</u> <u>ATLAS-CONF-2023-001</u>
 - tttt multilepton, 4 WCs (fit individually) ← New! (since Top22), see 4t measurement and interpretation talks from Monday Eur. Phys. J. C 83 (2023) 496
 - tt all-hadronic, 8 WCs (fit individually and in pairs) JHEP 04 (2023) 80
 - tt charge asymmetry, single and di-lepton, 15 WCs (fit individually) <u>JHEP 08 (2023) 077</u>
 - tt
 semi-leptonic, 2 WCs (fit individually and together), JHEP 06 (2022) 063
 - Single top polarization, leptonic, Re and Im part of 1 WC (fit individually and together), JHEP 11 (2022) 040

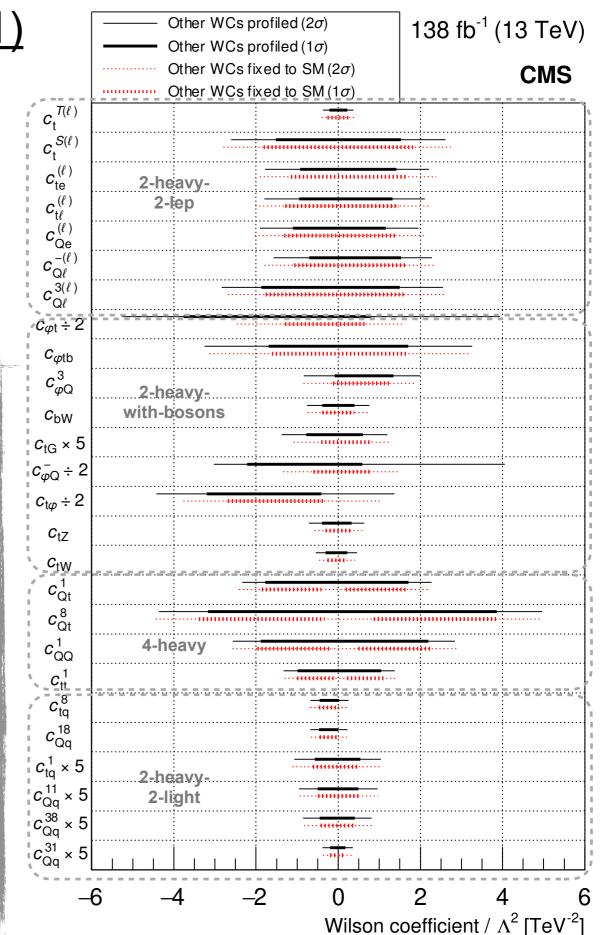
<u>PAS TOP-22-005</u> : Search for CLFV in trilepton final states Targets os $e\mu$ pair + extra ℓ + jet(s) + at most 1 b jet \rightarrow results consistent with SM

LAS <u>CONF-2023-001</u>: Search for charged LFV $\mu \tau qt$ interaction

- Events with 2μ (ss), a hadronic tau, jet(s), 1 btag
- Profile-likelihood fit across 2 SR bins and a nonprompt muon CR (binned in H_T)

	95% CL upper limits on Wilson coefficients c/Λ^2 [TeV ⁻²]									
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$		
Previous (u) [22]	12	12	12	12	26	26	3.4	3.4		
Expected (u)	0.47	0.44	0.43	0.46	0.49	0.49	0.11	0.11		
Observed (u)	0.49	0.47	0.46	0.48	0.51	0.51	0.11	0.11		
Previous (c) [22]	14	14	14	14	29	29	3.7	3.7		
Expected (c)	1.6	1.6	1.5	1.6	1.8	1.8	0.35	0.35		
Observed (c)	1.7	1.6	1.6	1.6	1.9	1.9	0.37	0.37		

CMS TOP-22-006 (2307.15761)


- Signal processes: ttH, ttll, ttl ν , tHq, tllq, tttt
- Multilepton final states (2lss or 3 or more ℓ)
- Fit 26 WCs simultaneously
- Result is consistent with SM

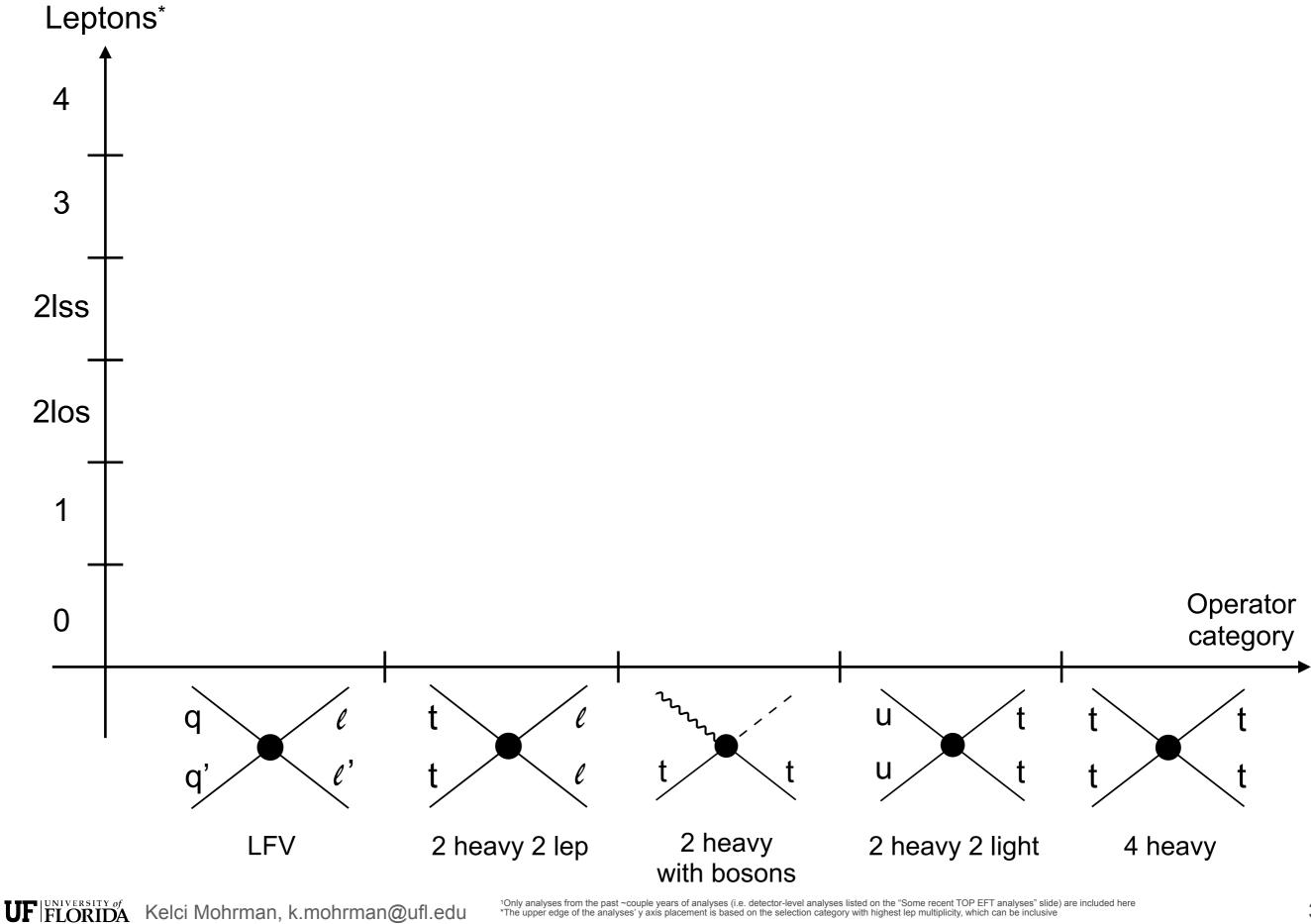
See Aashwin Basnet's <u>YSF</u> <u>talk</u> today!

ATLAS-CONF-2023-026

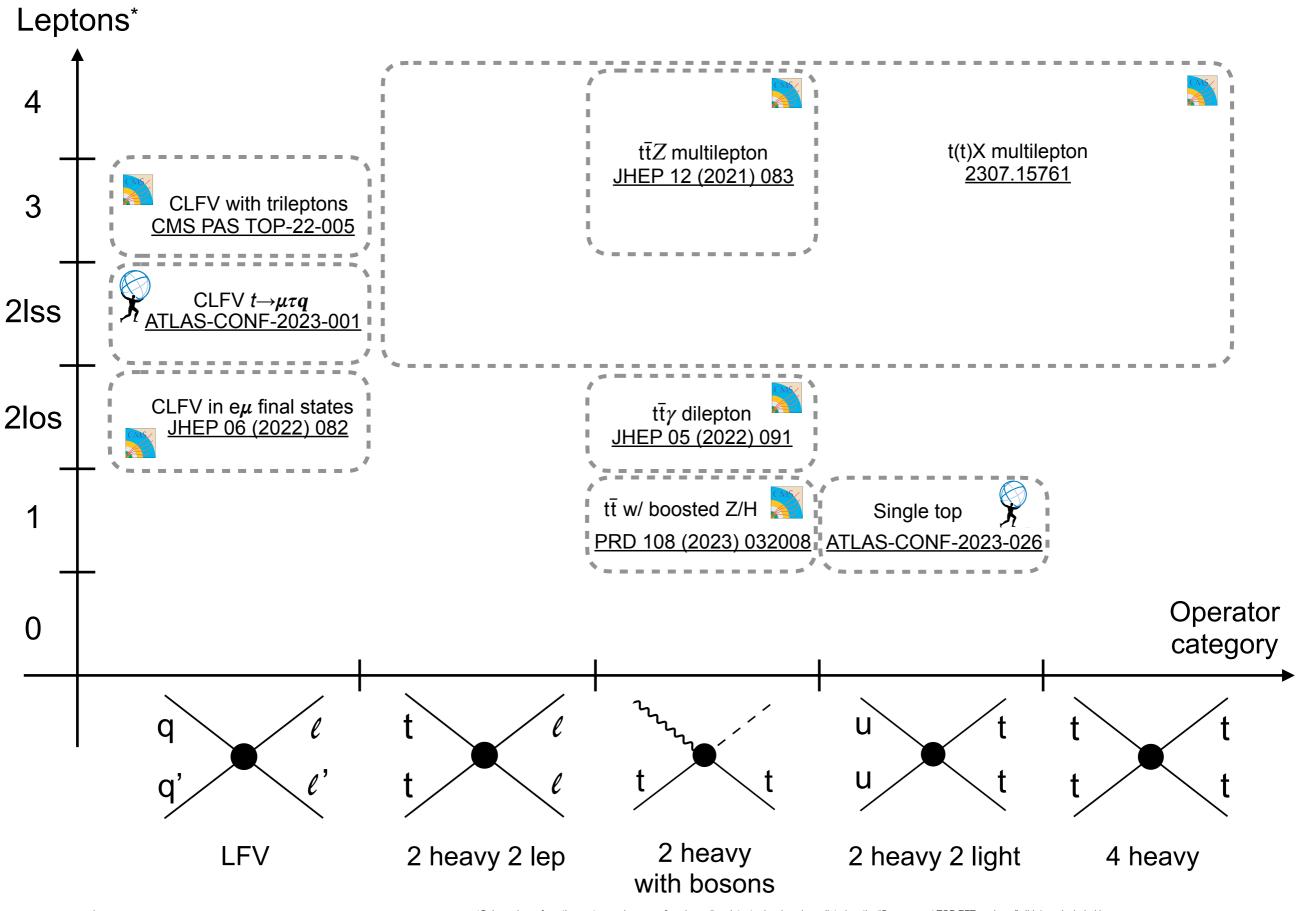
- Event selection targets 1 lep, 2 jets, 1 bjet
- Event yields in each bin in the DNN distributions in the SRs parameterized by quadratic in terms of 1 WC
- 95% CI result: $-0.25 < C_{qQ}^{(1,3)} < 0.12.$

See Joshua Aaron Reidelsturz's <u>YSF talk</u> today!

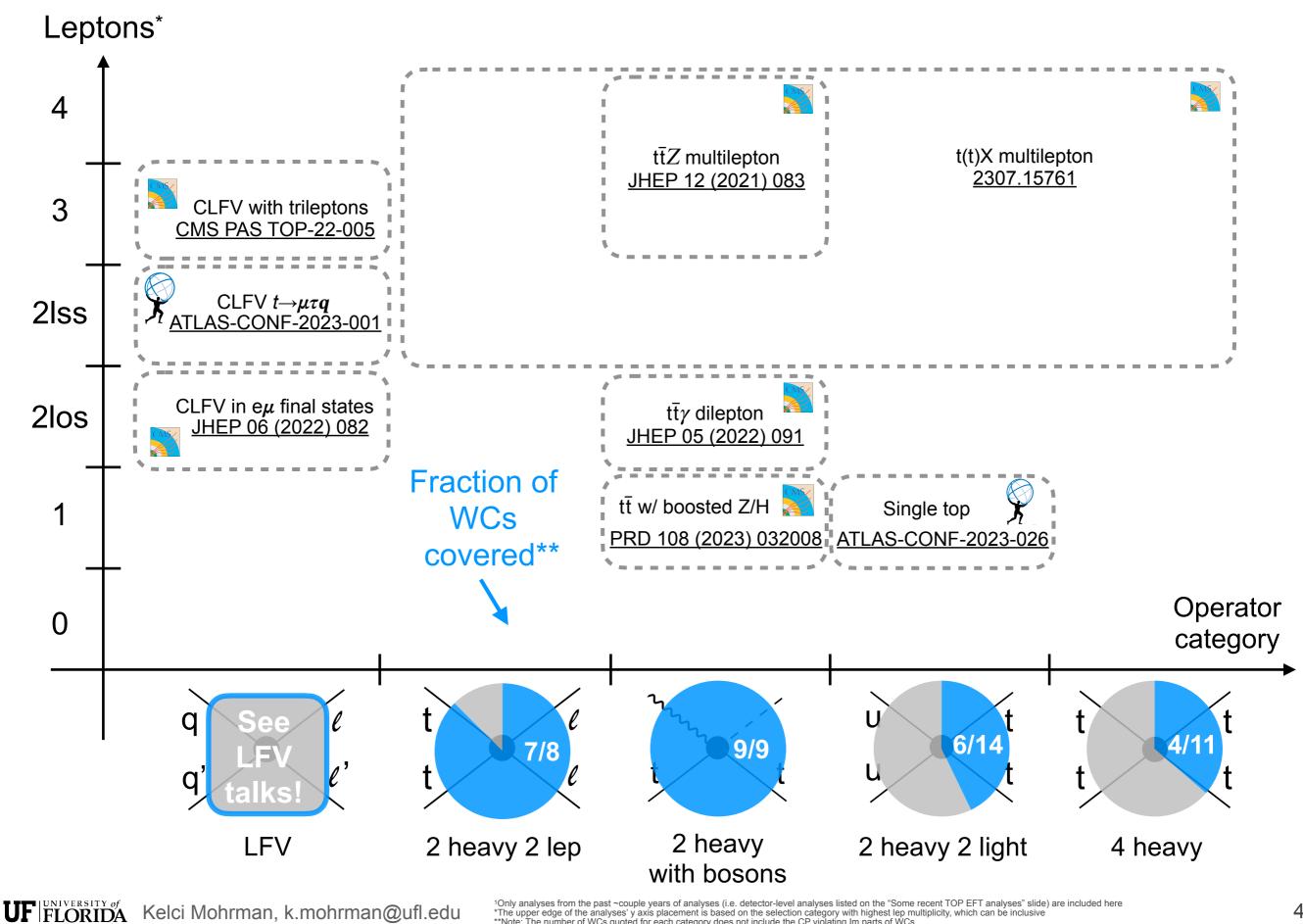
Some recent TOP EFT analyses

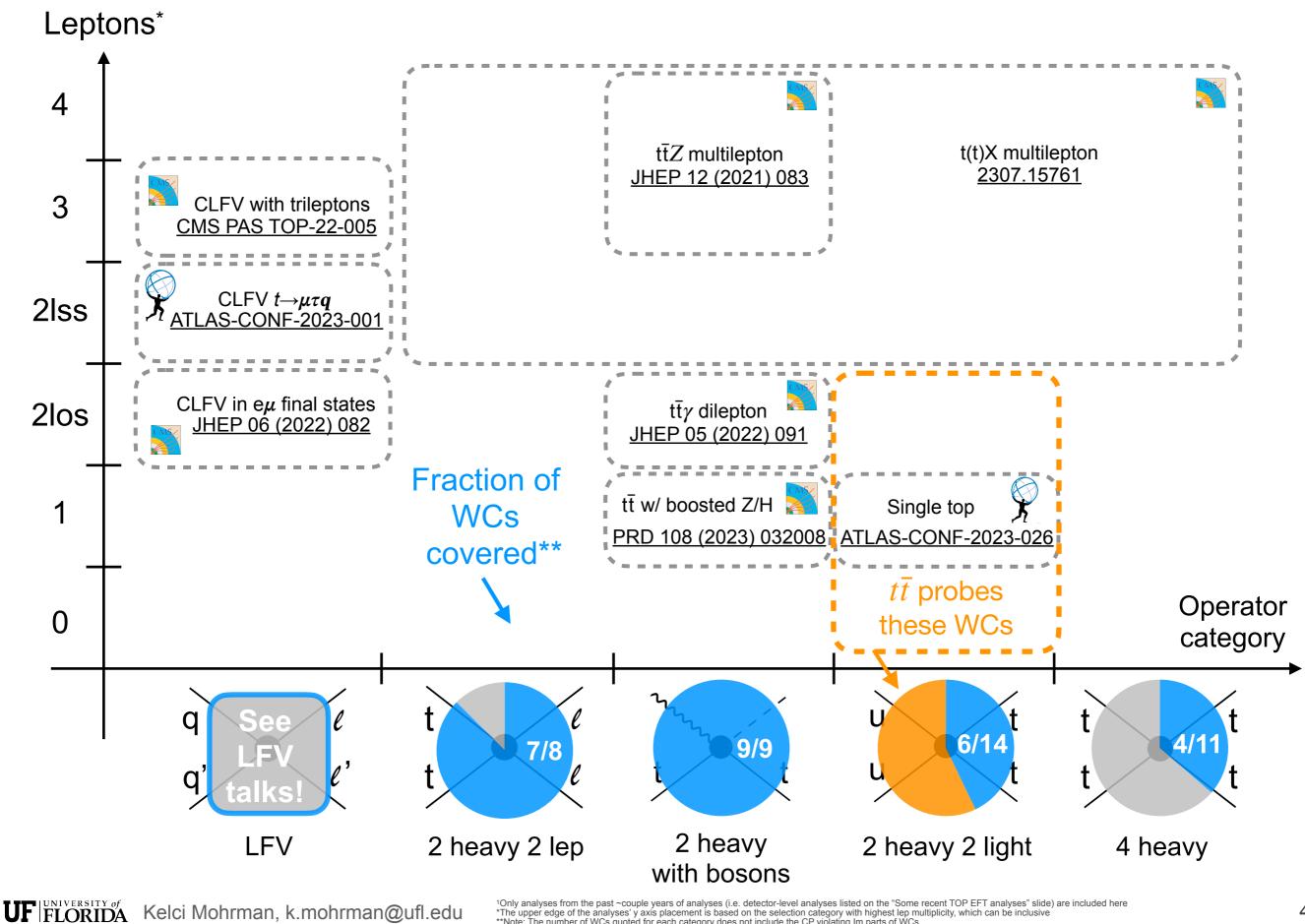


CMS

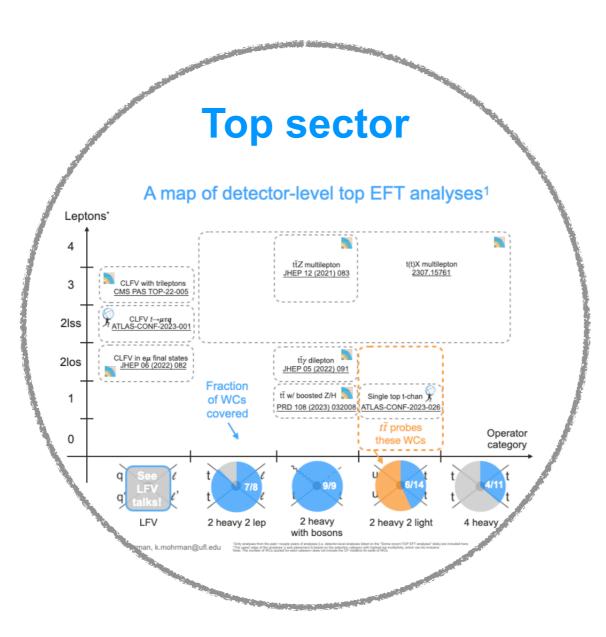

- (Direct) Search for CLFV with trileptons, 6 WCs (fit individually) ← New! (since Top22), see <u>FCNC/LFV CMS talk on Wednesday</u> <u>CMS PAS TOP-22-005</u>
- (Direct) t(t)X multilepton, 26 WCs (fit individually and simultaneously) ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>CMS TOP-22-006 (2307.15761)</u>
- (Direct) Search for CLFV in $e\mu$ final states, 6 WCs (fit individually) JHEP 06 (2022) 082
- (Direct) tt with boosted Z or H, singe lepton + jets, 8 WCs (fit individually and simultaneously) <u>PRD 108 (2023) 032008</u>
- (Direct) $t\bar{t}Z$ multilepton, 5 WCs (fit individually and simultaneously) JHEP 12 (2021) 083
- (Semi $t\bar{t}\gamma$ dilepton, Re and Im part of 1 WC (fit individually and together) direct) JHEP 05 (2022) 091

ATLAS

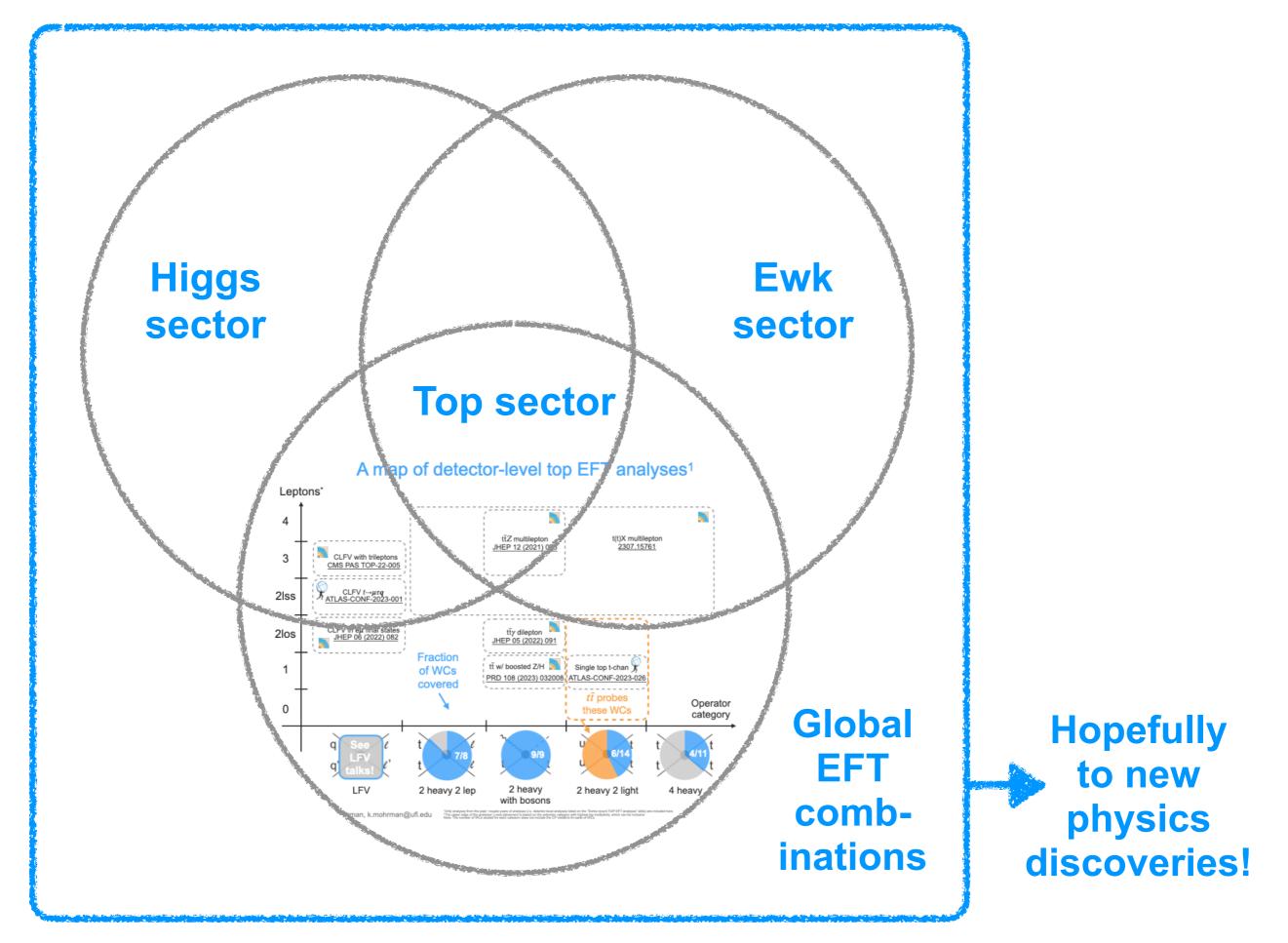

- tt
 Z multilepton, 20 WCs plus 3 Im parts of WCs included (fit individually and simultaneously) ← New! (since Top22), see <u>ttX talk Monday</u> <u>ATLAS-CONF-2023-065</u>
- (Direct) Single top t-channel leptonic, 1 WC ← New! (since Top22), see <u>YSF talk Tuesday afternoon</u> <u>ATLAS-CONF-2023-026</u>
- (Direct) Search for CLFV t→μτq, 8 WCs (fit individually) ← New! (since Top22), see <u>FCNC/LFV ATLAS talk on Wednesday</u> <u>ATLAS-CONF-2023-001</u>
 - tttt multilepton, 4 WCs (fit individually) ← New! (since Top22), see 4t measurement and interpretation talks from Monday Eur. Phys. J. C 83 (2023) 496
 - tī all-hadronic, 8 WCs (fit individually an Now) let's talk about
 - tt charge asymmetry, single and di-lepton the analyses fit JHEP 08 (2023) 077 together into the Top
 - tt semi-leptonic, 2 WCs (fit individually and t EFT, landscape
 - Single top polarization, leptonic, Re and Im part of 1 WC (fit individually and together), <u>JHEP 11 (2022) 040</u>


38

UNIVERSITY of FLORIDA Kelci Mohrman, k.mohrman@ufl.edu

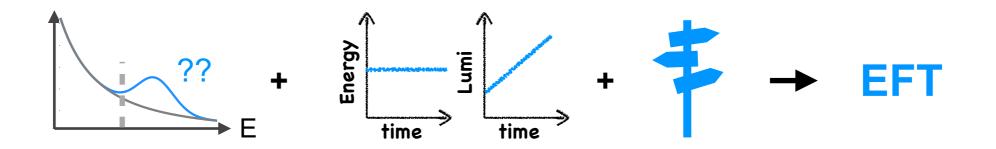


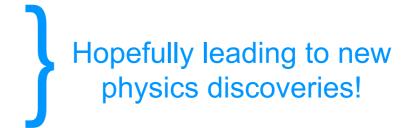
10nly analyses from the past ~couple years of analyses (i.e. detector-level analyses listed on the "Some recent TOP FET analyses" slide) are included here Kelci Mohrman, k.mohrman@ufl.edu *The upper edge of the analyses' y axis placement is based on the selection category with highest lep multiplicity, which can be inclusive per of WCs quoted for each category does not include the CP violating Im parts of WCs



Kelci Mohrman, k.mohrman@ufl.edu

10nly analyses from the past ~couple years of analyses (i.e. detector-level analyses listed on the "Some recent TOP FET analyses" slide) are included here *The upper edge of the analyses' y axis placement is based on the selection category with highest lep multiplicity, which can be inclusive per of WCs quoted for each category does not include the CP violating Im parts of WCs




Summary and outlook

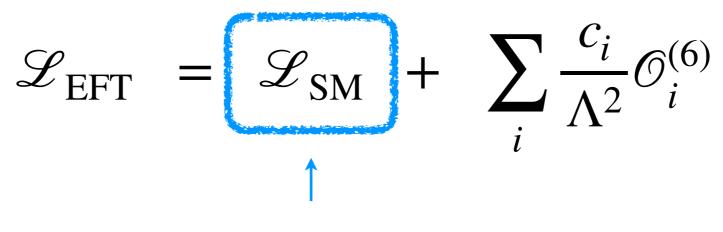
BSM is out there, but might not be light enough to make at the LHC
 => EFT aims to discover new physics via its off shell effects

- CMS and ATLAS employ a variety of direct and indirect EFT approaches to search for new physics in the TOP sector
- While no signal yet observed, still many new directions to improve and expanded, and combinations will be especially exciting:
 - More data
 - Improvements in EFT modeling
 - Combinations within TOP
 - Combinations across sectors

Thank you!

Sleeping Bear Dunes National Lakeshore, MI **UF IFLORIDA** Kelci Mohrman, k.mohrman@ufl.edu

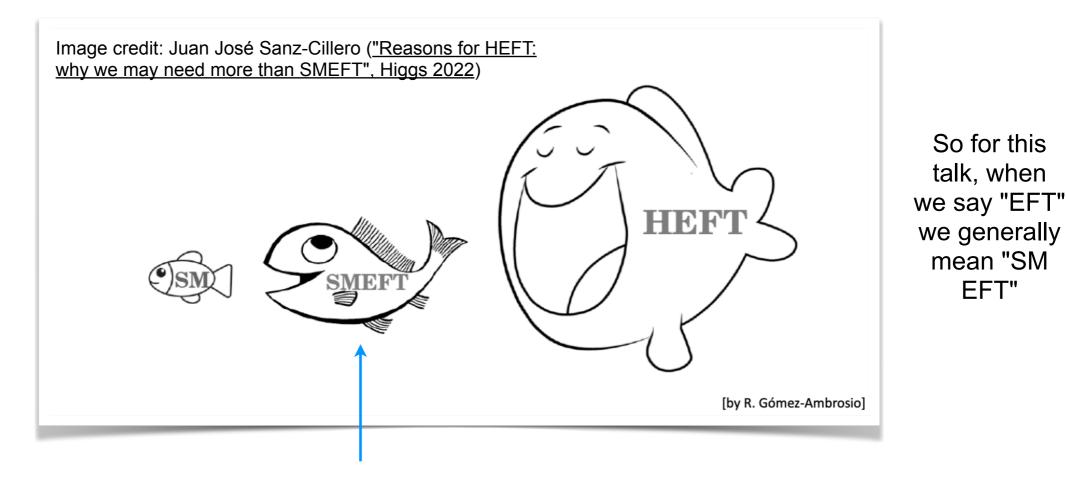
Backup


Constraints on CP violating operators in dim6top (1802.07237 i.e. dim6top note)

Four-heavy

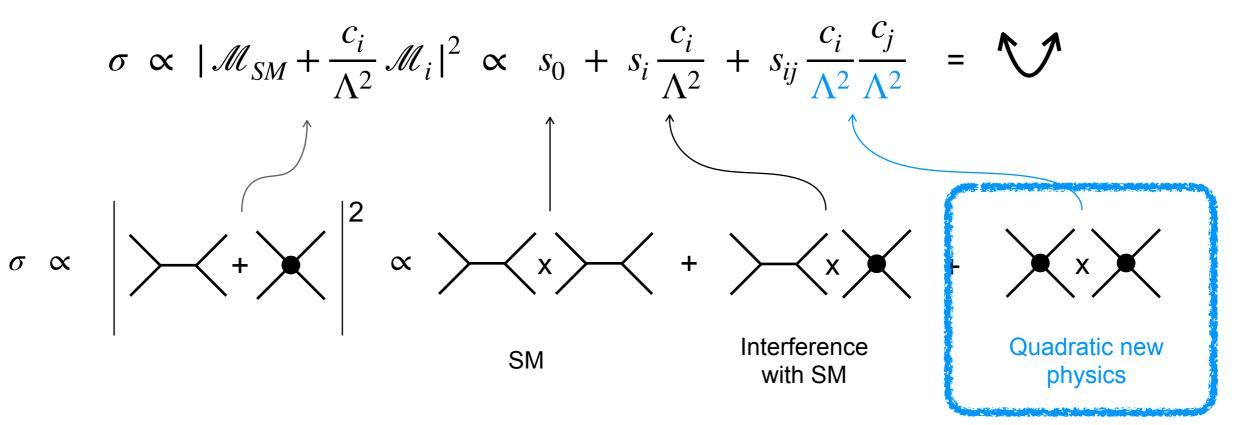
$c^{1I}_{QtQb} \equiv \operatorname{Im} \{ c^{8I}_{QtQb} \equiv \operatorname{Im} \{ c^{8I}_{QtQb} \equiv \operatorname{Im} \{ c^{8I}_{QtQb} \equiv \operatorname{Im} \{ c^{8I}_{QtQb} \in \operatorname{Im} \{ c^{8$		$\begin{array}{l} [-3.4, 3.4] \cdot 10^{-3} \\ [-2.2, 2.2] \cdot 10^{-2} \end{array}$	$\left(d_{n} ight) \ \left(d_{n} ight)$						
Two-heavy									
$c^{I}_{t\varphi} \equiv \text{Im}\{$	$\{C_{u\varphi}^{(33)}\}$	[-3.7, 3.7]	(d_n)	[-0.18, 0.18]	(d_e)				
$c^{I}_{\varphi tb} \equiv \operatorname{Im} \{$	$\{C_{\varphi ud}^{(33)}\}$	[-0.019, 0.019]	(d_n)	[-0.052, 0.052]	$(B \rightarrow X_s \gamma)$				
	$\{C_{uW}^{(33)}\}\$	$[-8.1,8.1]\cdot10^{-3}$	(d_e)	[-2.4, 4.5]	$(B \rightarrow X_s \gamma)$				
$c_{tA}^I \equiv \text{Im}\{$	$(c_W C_{uB}^{(33)} + s_W C_{uW}^{(33)})$	$[-6.3, 6.3] \cdot 10^{-3}$	(d_e)	[-9.0, 5.0]	$(B \rightarrow X_s \gamma)$				
$c^{I}_{bW} \equiv \text{Im}\{$	$\{C_{dW}^{(33)}\}\$	$[-5.5, 5.5] \cdot 10^{-4}$	(d_n)	$[-4.3,2.3]\cdot10^{-2}$	$(B \rightarrow X_s \gamma)$				
$c_{tG}^{I} \equiv \text{Im}\{$	$\{C_{uG}^{(33)}\}\$	$[-6.9, 6.9] \cdot 10^{-3}$	(d_n)						
Two-heavy-two-lepton									
$c_t^{SI(e)} \equiv \operatorname{Im}\{C_{lequ}^{1(1133)}\} \qquad [-5.5, 5.5] \cdot 10^{-8} (d_e)$									
$c_t^{TI(e)} \equiv \text{Im}\{$	$c_t^{TI(e)} \equiv \operatorname{Im}\{C_{lequ}^{3(1133)}\}$ [-8.0, 8.0] · 10 ⁻¹¹ (d _e)								
$c_b^{SI(e)} \equiv \text{Im}\{$		$[-2.5,2.5]\cdot 10^{-4}$	(d_e)						

Table 5: Constraints from the electron and neutron EDMs as well as $A_{CP}(B \rightarrow X_s \gamma)$. Here we turn on one coupling at a time and assume $\Lambda = 1$ TeV. The source of the constraints are indicated in brackets.


We've been saying "model agnostic" a lot... But, what about this model?

This assumption means that so far in this presentation we have actually been talking about a special case of EFT, known as "SM EFT"

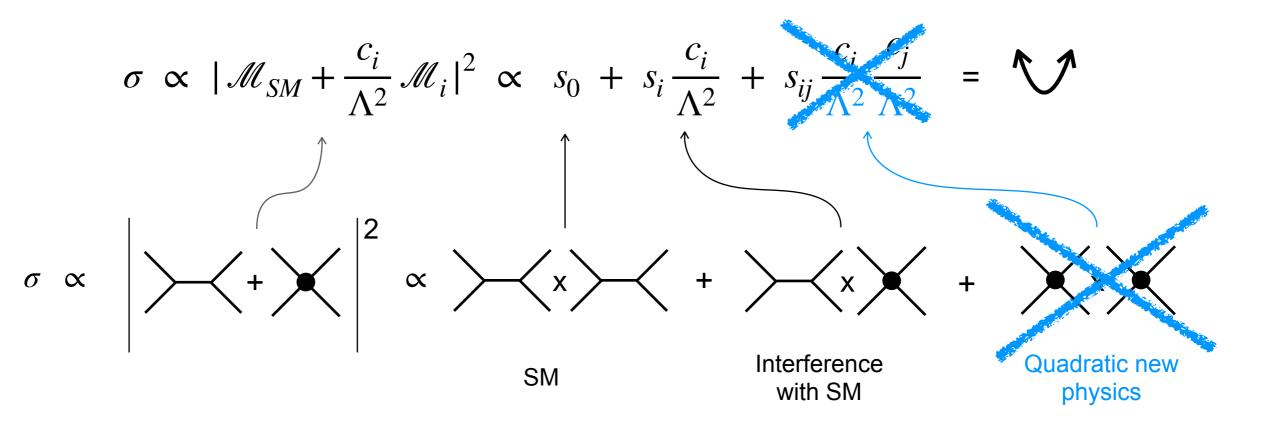
Assumptions that go into SM EFT $(\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i^{(6)})$


- TOP mainly uses SM EFT, i.e. assumes SM is correct and complete description of everything we can produce on shell
- Other EFTs (e.g. HEFT) can be more general

SMEFT is a special case of HEFT in which the resonance at 125GeV is the SM Higgs*

How do observables depend on EFT? Let's start with σ

If the EFT is modeled linearly in amplitude, the cross section is an *n*-quadratic in terms of the WCs (where *n* is number of WCs)



Other contributions at the same Λ^{-4} order: dim-8 interfering with the SM, and double insertions of dim-6 interfering with the SM

e.g.:

How do observables depend on EFT? Let's start with σ

If the EFT is modeled linearly in amplitude, the cross section is an *n*-quadratic in terms of the WCs (where *n* is number of WCs)

So some analyses include only up to the linear term, though this can be challenging in cases where there is not strong interference, or where most of the sensitivity comes from the quadratic piece

More info on the CMS and ATLAS analyses

TOP-22-006 SM cross sections used

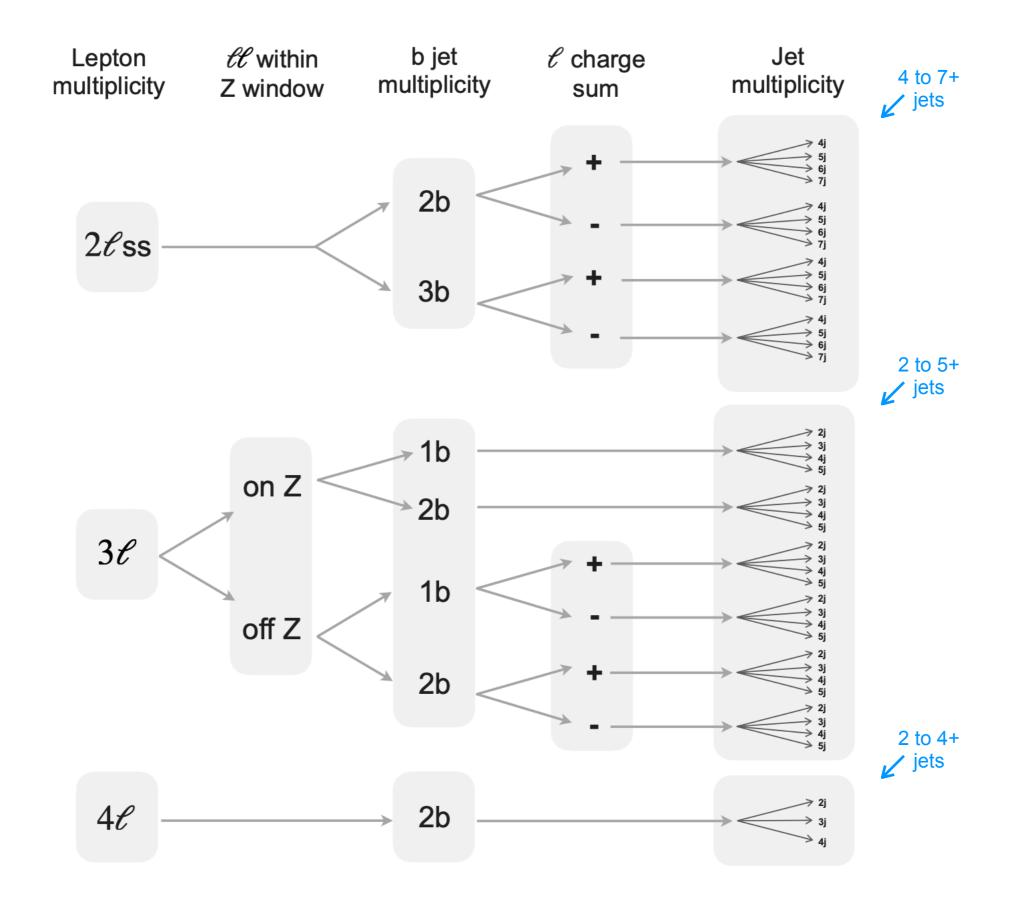
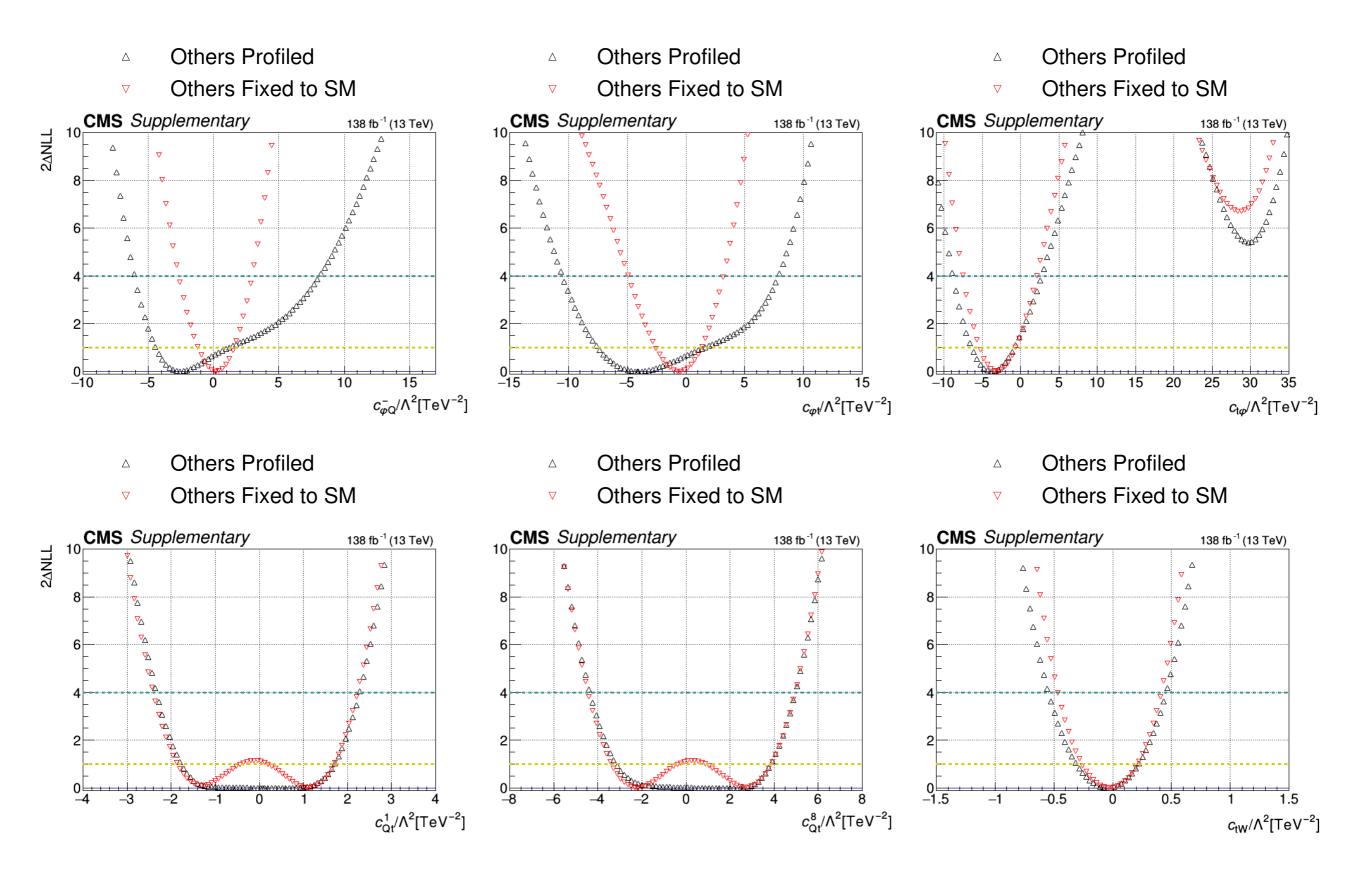
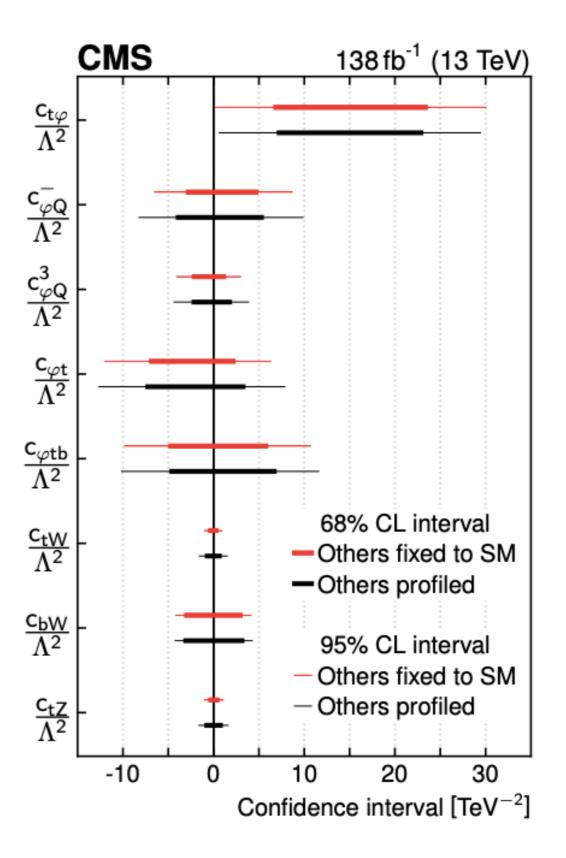


Table 2: Theoretical cross sections at next-to-LO (NLO) used for normalization of simulated signal samples. The uncertainties are broken into normalization components due to modeling the parton distribution functions (PDFs) and QCD order. Entries without a value are negligible.

Process	Cross section (pb)	Accuracy	Ref.
tīH	$0.5071 \pm 2.4\%$ (PDF) $^{+7.6\%}_{-7.1\%}$ (QCD)	NLO (QCD + EWK)	[28]
$t\bar{t}\ell\overline{\ell}~(m_{\ell\ell}>10{ m GeV})$	0.281 ^{+12%} _{-10%} (QCD)	NLO (QCD + EWK)	[28]
$t\overline{t}\ell u$	0.235 ^{+10%} 11% (QCD)	NLO (QCD + EWK) (incl. $\alpha_S \alpha^4$ terms and multijet merging)	[29]
$t\ell \overline{\ell}q$ ($m_{\ell\ell} > 30 \text{GeV}$)	$0.076 \pm 2.7\%$ (PDF) $\pm 2.0\%$ (QCD)	NLO QCD	[19–21]
tHq	$0.071 \pm 5.1\%$ (PDF) $^{+6.5\%}_{-15\%}$ (QCD)	NLO QCD	[28]
tītī	$0.01337 \pm 6.9\%$ (PDF) $^{+3.6\%}_{-11\%}$ (QCD)	NLO (QCD + EWK) + NLL'	[30]


TOP-22-006 event selection summary

Example one-dimensional scans TOP-22-006



Summary: CMS TOP-21-003

- "Search for new physics using effective field theory in 13 TeV pp collision events that contain a top quark pair and a boosted Z or Higgs boson"
 - Target ttZ/H where the Z/H is boosted
 - Single lepton signatures
- EFT modeling:
 - Detector level approach (parameterize event weights in terms of the WCs in order to obtain detector level yields as a function of the WCs)
 - Fit 8 WCs (2heavy-withbosons) individually and profiled

Summary: CMS TOP-21-004

- "Measurement of the inclusive and differential tty cross sections in the dilepton channel and effective field theory interpretation in proton-proton collisions at \sqrt{s} = 13 TeV"
 - Target leptonic decays of $t\bar{t}\gamma$
 - Final states: Opposite sign leptons and a photon
- EFT modeling:
 - Studied in bins of photon pt
 - Model operator effects using gen-sample reweighting to estimate the expected SMEFT modifications at the reconstructed level
 - Real and imaginary part of ctZ is studied

			Dilepto	n result	Dilepton & ℓ +jets combination			
	Wilson coefficient		68% CL interval $[(\Lambda/\text{TeV})^2]$	95% CL interval $[(\Lambda/\text{TeV})^2]$	68% CL interval $[(\Lambda/\text{TeV})^2]$	95% CL interval $[(\Lambda/\text{TeV})^2]$		
g	<u> </u>	$c_{\mathrm{tZ}}^{\mathrm{I}}=0$	[-0.28, 0.35]	[-0.42, 0.49]	[-0.15, 0.19]	[-0.25, 0.29]		
Expected	c_{tZ}	profiled	[-0.28, 0.35]	[-0.42, 0.49]	[-0.15, 0.19]	[-0.25, 0.29]		
Exp	$c_{\mathrm{tZ}}^{\mathrm{I}}$	$c_{\mathrm{tZ}}=0$	[-0.33, 0.30]	[-0.47, 0.45]	[-0.17, 0.18]	[-0.27, 0.27]		
	۲tZ	profiled	[-0.33, 0.30]	[-0.47, 0.45]	[-0.18, 0.18]	[-0.27, 0.27]		
ved	6.7	$c_{\mathrm{tZ}}^{\mathrm{I}}=0$	[-0.43, -0.09]	[-0.53, 0.52]	[-0.30, -0.13]	[-0.36, 0.31]		
F	c_{tZ}	profiled	[-0.43, 0.17]	[-0.53, 0.51]	[-0.30, 0.00]	[-0.36, 0.31]		
Obser	c_{tZ}^{I}	$c_{tZ} = 0$	[-0.47, -0.03] $\cup [0.07, 0.38]$	[-0.58, 0.52]	[-0.32, -0.13] \cup [0.16, 0.29]	[-0.38, 0.36]		
		profiled	[-0.43, 0.33]	[-0.56, 0.51]	[-0.28, 0.23]	[-0.36, 0.35]		

Summary: CMS TOP-21-001

- "Probing effective field theory operators in the associated production of top quarks with a Z boson in multilepton final states at $\sqrt{s} = 13$ TeV"
 - Target ttZ and tZq
 - Multilepton final states (3 or 4 leptons)
- EFT modeling:
 - Detector level approach (parameterize event weights in terms of the WCs in order to obtain detector level yields as a function of the WCs)
 - Probe 5 WCs, fit individually and profiled

WC/Λ^2	95% CL confidence intervals						
$[{ m TeV^{-2}}]$	Other WCs f	fixed to SM	5D fit				
	Expected	Observed	Expected	Observed			
c_{tZ}	[-0.97, 0.96]	[-0.76, 0.71]	[-1.24, 1.17]	[-0.85, 0.76]			
c_{tW}	[-0.76, 0.74]	[-0.52, 0.52]	[-0.96, 0.93]	[-0.69, 0.70]			
$c_{\varphi Q}^3$	[-1.39, 1.25]	[-1.10, 1.41]	[-1.91, 1.36]	[-1.26, 1.43]			
$c_{\varphi Q}^{\prime}$	[-2.86, 2.33]	[-3.00, 2.29]	[-6.06, 14.09]	[-7.09, 14.76]			
$c_{\varphi t}$	[-3.70, 3.71]	$[-21.65, -14.61] \cup [-2.06, 2.69]$	[-16.18, 10.46]	[-19.15, 10.34]			

Summary: ATLAS-CONF-2023-001

- "Search for charged-lepton-flavour violating $\mu \tau q t$ interaction in topquark production and decay with the ATLAS detector at the LHC"
 - The analysis targets events containing two muons, a hadronically decaying tau lepton and at least one jet, with exactly one b-tagged jet, produced by a $\mu\tau qt$ interaction in top-quark production or decay
 - No excess above the Standard Model background is observed
 - "The dominant source of uncertainty in all the limits extracted in this analysis is statistical, while the larges" sources of systematic uncertainty relate to the *tt*⁻ modelling and the NP muon estimation"

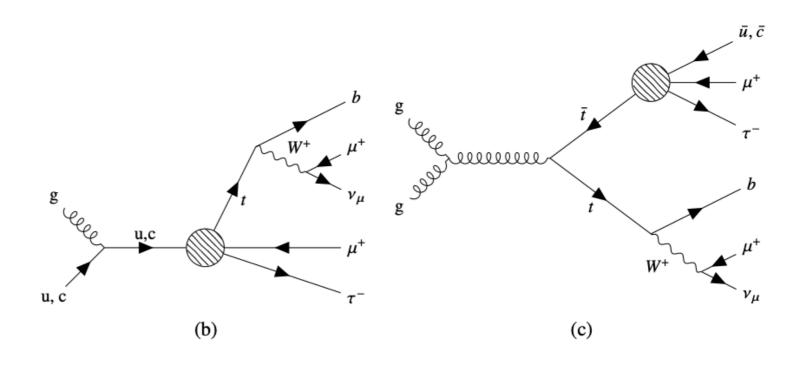


Table 7: Expected and observed 95% CL upper limits on Wilson coefficients corresponding to 2Q2L EFT operators which could introduce cLFV top decay in the $\mu\tau$ channel, and existing limits from Ref. [22] (previous). Results are shown separately for $\mu\tau ut$ and $\mu\tau ct$ interactions. The lepton generations are denoted by i, j = 2, 3 for μ and τ (where $i \neq j$) and the quark generations are denoted by k = 1, 2 for u and c, respectively.

	95% CL upper limits on Wilson coefficients c/Λ^2 [TeV ⁻²]							
	$c_{lq}^{-(ijk3)}$	$c_{eq}^{(ijk3)}$	$c_{lu}^{(ijk3)}$	$c_{eu}^{(ijk3)}$	$c_{lequ}^{1(ijk3)}$	$c_{lequ}^{1(ij3k)}$	$c_{lequ}^{3(ijk3)}$	$c_{lequ}^{3(ij3k)}$
Previous (u) [22]	12	12	12	12	26	26	3.4	3.4
Expected (u)	0.47	0.44	0.43	0.46	0.49	0.49	0.11	0.11
Observed (u)	0.49	0.47	0.46	0.48	0.51	0.51	0.11	0.11
Previous (c) [22]	14	14	14	14	29	29	3.7	3.7
Expected (c)	1.6	1.6	1.5	1.6	1.8	1.8	0.35	0.35
Observed (c)	1.7	1.6	1.6	1.6	1.9	1.9	0.37	0.37