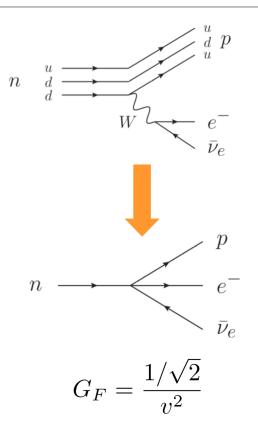
Global EFT Interpretation

Peter Onyisi

26 September 2023



Why Effective Field Theory?

- Have not yet discovered non-SM particles at the LHC
- But one didn't need the SppS to discover the weak force: first observation by Becquerel
- Beta decay explained by Fermi with a four-fermion interaction
 - prototype of an effective field theory:
 - generated by "new physics"
 - gives the right answers at nuclear energy scales
 - non-renormalizable dimension 6 operator: theory breaks down at the W mass, at scale $\sim 1/\sqrt{G_{\rm F}}$

Nature on Fermi's paper: "speculations too remote from reality to be of interest to the reader"

Relevant EFT for LHC

- Standard Model Effective Field Theory (SMEFT): maintain SM gauge invariance, no new light degrees of freedom
 - Higgs is the standard SU(2) doublet
 - No tree-level modification of SM: effects like top FCNC decays enter as higher dimension operators

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sigma_i \frac{c_i^{(5)}}{\Lambda} \mathcal{O}_i^{(5)} + \sigma_i \frac{c_i^{(6)}}{\Lambda^2} \mathcal{O}_i^{(6)} + \dots$$

- only dimension 5 operator generates neutrino masses & violates lepton number conservation
- at LHC interesting operators are dimension 6 (or maybe 8)

- Higgs Effective Field Theory (HEFT): treat physical Higgs and Goldstones as independent
 - can express more complex EWSB than SMEFT
 - at the cost of (generically) faster unitarity breakdown
 - often cleaner mapping to Higgs observables, especially interesting for self-coupling
- Weak Effective Field Theory: relevant for B physics observables
 - connect to B anomalies
 - can match to SMEFT via renormalization group running

Complications of SMEFT

- Have to choose a basis of operators (convenience depends on application)
 - "anomalous couplings": traditional for gauge boson interactions, works with physical Z/γ
 - "Warsaw basis": uses pre-EWSB gauge boson eigenstates (B/W)
 - "Higgs basis": gauge mass eigenstates, is a complete basis
 - other options exist SILH, HISZ but not much used
 - global fits are in Warsaw basis
- How to handle fermion flavor? (assume generation symmetry or not)
 - without restrictions: 2499 dim-6 operators

SMEFT Warsaw Basis

_	uge boson f-coupling		elf-coupling (+ wave fcn enormalization)	Y	ukawas		four	-feri
	X ³		H^6 and H^4D^2		$\psi^2 H^3$ –		$(\bar{L}L)(\bar{L}L)$	
\mathcal{O}_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	\mathcal{O}_{H}	$(H^{\dagger}H)^3$	\mathcal{O}_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$	$\mathcal{O}_{\iota\iota}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	\mathcal{O}_{ee}
$\mathcal{O}_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$\mathcal{O}_{H\square}$	$(H^{\dagger}H)\square(H^{\dagger}H)$	\mathcal{O}_{uH}	$(H^{\dagger}H)(\bar{q}_{p}u_{r}\widetilde{H})$	$\mathcal{O}_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{uu}
\mathcal{O}_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	\mathcal{O}_{HD}	$\left(H^{\dagger}D^{\mu}H\right)^{\star}\left(H^{\dagger}D_{\mu}H\right)$	$\mathcal{O}_{_{dH}}$	$(H^{\dagger}H)(\bar{q}_{p}d_{r}H)$	$\mathcal{O}_{qq}^{(3)}\ \mathcal{O}_{lq}^{(1)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{dd}
$\mathcal{O}_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$		2			$\mathcal{O}_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	\mathcal{O}_{eu}
	X^2H^2		$\psi^2 X H$		$\psi^2 H^2 D$	$\mathcal{O}_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	\mathcal{O}_{ed}
$\mathcal{O}_{_{HG}}$	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$	${\cal O}_{eW}$	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I H W^I_{\mu\nu}$	$\mathcal{O}_{Hl}^{(1)}$	$(H^{\dagger}iD_{\mu} H)(\bar{l}_{p}\gamma^{\mu}l_{r})$			$\mathcal{O}_{ud}^{(1)} \ \mathcal{O}_{ud}^{(8)}$
$\mathcal{O}_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	\mathcal{O}_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) H B_{\mu\nu}$	${\cal O}_{_{Hl}}^{_{(3)}}$	$(H^{\dagger}iD_{\underline{\mu}}^{I}H)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$			
\mathcal{O}_{HW}	$H^{\dagger}H W^{I}_{\mu u}W^{I\mu u}$	\mathcal{O}_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{H} G^A_{\mu\nu}$	$\mathcal{O}_{_{He}}$	$(H^{\dagger}i \vec{D}_{\mu} H) (\bar{e}_p \gamma^{\mu} e_r)$	$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	
$\mathcal{O}_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{I}_{\mu u}W^{I\mu u}$	${\cal O}_{uW}$	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \tilde{H} W^I_{\mu\nu}$	${\cal O}_{{}_{Hq}}^{(1)}$	$(H^{\dagger}i \overset{\rightarrowtail}{D}_{\mu} H)(\bar{q}_p \gamma^{\mu} q_r)$	\mathcal{O}_{ledq}	$\frac{(\bar{l}\bar{l}_p)(\bar{d}\bar{l}_s)(\bar{d}\bar{l}_s q_t^j)}{(\bar{l}_p^j e_r)(\bar{d}_s q_t^j)}$	\mathcal{O}_{duq}
$\mathcal{O}_{_{HB}}$	$H^{\dagger}H B_{\mu u}B^{\mu u}$	\mathcal{O}_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{H} B_{\mu\nu}$	${\cal O}_{{}_{Hq}}^{(3)}$	$(H^{\dagger}i D^{I}_{\mu} H)(\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r})$	$\mathcal{O}_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	\mathcal{O}_{qqu}
$\mathcal{O}_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B^{\mu u}$	\mathcal{O}_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) H G^A_{\mu\nu}$	\mathcal{O}_{Hu}	$(H^{\dagger}i \overset{\rightarrowtail}{D}_{\mu} H)(\bar{u}_p \gamma^{\mu} u_r)$	$\mathcal{O}_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_k^k T^A d_t)$	\mathcal{O}_{qqq}
\mathcal{O}_{HWB}	$H^{\dagger} \tau^{I} H W^{I}_{\mu u} B^{\mu u}$	\mathcal{O}_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I H W^I_{\mu\nu}$	${\cal O}_{_{Hd}}$	$(H^{\dagger}i \overleftrightarrow{D_{\mu}} H) (\bar{d}_p \gamma^{\mu} d_r)$	$\mathcal{O}_{lequ}^{(1)}$	$(\bar{l}_{p}^{j}e_{r})\varepsilon_{jk}(\bar{q}_{s}^{k}u_{t})$	\mathcal{O}_{duu}
$\mathcal{O}_{H\widetilde{W}B}$	$H^{\dagger}\tau^{I}H\widetilde{W}^{\mu\nu}_{\mu\nu}B^{\mu\nu}$	${\cal O}_{_{dB}}$	$(\bar{q}_p \sigma^{\mu\nu} d_r) H B_{\mu\nu}$	$\mathcal{O}_{_{Hud}}$	$i(\widetilde{H}^{\dagger}D_{\mu}H)(\bar{u}_{p}\gamma^{\mu}d_{r})$	$\mathcal{O}_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

ermion operators

 $(\bar{R}R)(\bar{R}R)$

 $(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$

 $(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$

 $(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$

 $(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$

 $(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$

 $(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$

 $(\bar{u}_n \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$

Anomalous ff-boson H-gauge boson interactions interactions

Expand around SM vacuum, so e.g. can generate apparent "tree" FCNC couplings

Hinne

$$(H^{\dagger}H)(\bar{q}t\tilde{H}) \to v^2\bar{c}th + \dots$$

 $(\bar{L}L)(\bar{R}R)$

 $(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$

 $(\bar{l}_p \gamma_\mu l_r) (\bar{u}_s \gamma^\mu u_t)$

 $(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$

 $(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$

 $(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$

 $(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$

 $(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$

 $(\bar{q}_n \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$

 \mathcal{O}_{le}

 \mathcal{O}_{lu}

 \mathcal{O}_{1d}

 \mathcal{O}_{ae}

 $\mathcal{O}_{qu}^{(1)}$

 $\mathcal{O}_{qu}^{(8)} \ \mathcal{O}_{qd}^{(1)}$

 $\mathcal{O}_{ad}^{(8)}$

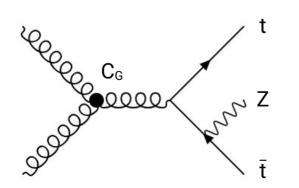
 $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$

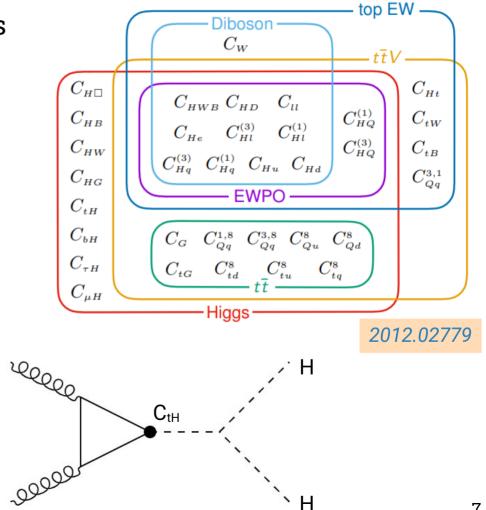
 $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jn}\varepsilon_{km}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$

 $\varepsilon^{\alpha\beta\gamma} \left[(d_{p}^{\alpha})^{T} C u_{r}^{\beta} \right] \left[(u_{s}^{\gamma})^{T} C e_{t} \right]$

B-violating $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(d_p^{\alpha})^T C u_r^{\beta}\right]\left[(q_s^{\gamma j})^T C l_t^k\right]$

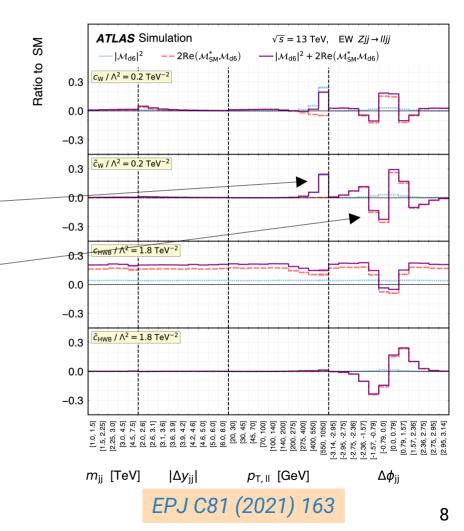
Linear vs Quadratic

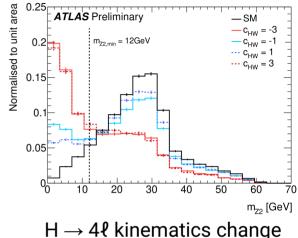

- Observables depend on squared amplitudes
 - EFT operators can have effects via interference with SM amplitudes (linear in Wilson coefficients) or directly (quadratic)


O_i interference O_i direct term O_i-O_j interference with SM $\mu = \mu_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} L_i + \sum_{i} \frac{c_i^2}{\Lambda^4} Q_i + \sum_{i \neq j} \frac{c_i c_j}{\Lambda^4} X_{ij} + \dots$

- 1/Λ⁴ "quadratic" terms above are formally of same order as dim-8 interference with SM: but have to truncate at some point
- Linear vs quadratic fit results give a sense for truncation systematics

Top vs "other" measurements

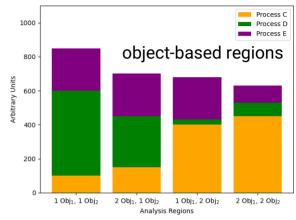

- EFT connects precision measurements between many physics sectors
- Connections can be quite subtle!
 - e.g. C_G modifies gluon self coupling and thus $qq \rightarrow ttX$
 - C_{tH} modifies $qq \rightarrow HH$ through loops
- top-specific measurements permit breaking flavor degeneracy assumptions

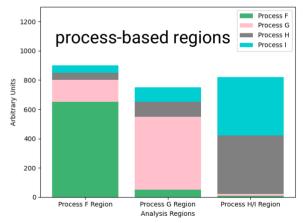

Differential distributions

- Differential distributions play an important role:
 - effects of new operators often increase at higher energy
 - new angular dependencies can arise

General Issues in EFT Fits

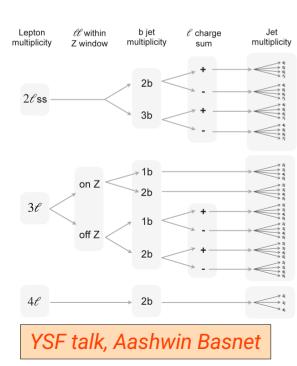
- Processes affected by many operators at once
 - scan one operator at a time? marginalize over all operators?
- Both signal and background are modified
 - potentially by different operators analyses may be valid for some subset of operators but not for arbitrary basis
 - acceptance/efficiency may be changed for MVA discriminants/unfolded measurements
- Widths, BRs of intermediate states may change
- Quadratic, NLO corrections may be important
 - linear dimension-8 contributions may be at the same level as quadratic dim-6
 - can we predict new physics contributions at same order as SM?
- SM prediction uncertainties (e.g. PDF) can affect similar distributions as EFT operators
- Flat directions not well-constrained by chosen data need to be handled
 - principal component analysis
- Generators may not have exactly the same conventions...

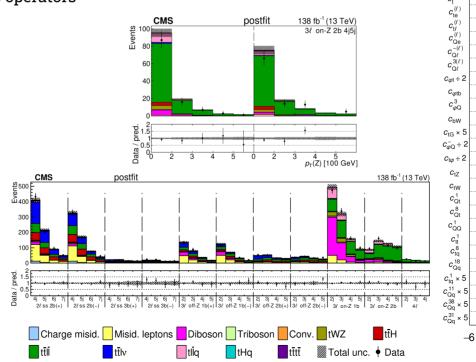

 $H \rightarrow 4\ell$ kinematics chang with nonzero C_{HW}

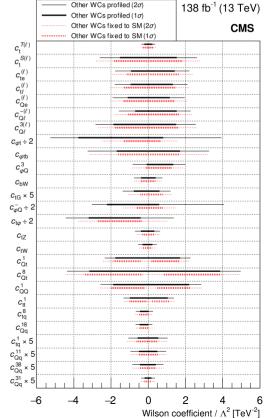

see e.g. CMS, JHEP 02 (2022) 142 and talk by Tim Hobbs

Further discussion in ATL-PHYS-PUB-2023-030

General Issues in EFT Fits


- Directly fit detector-level measurements, or unfold to truth level then fit?
 - detector-level is "easy" and great for machine learning but hard to update with better theory – need to be able to rerun analysis with new predictions
 - truth-level differential measurements require care in unfolding and/or definition of fiducial regions
 - this is ~ the Higgs STXS approach (truth regions but shaped by detector constraints)
- Try to disentangle different contributing processes (e.g. ttW vs ttH in multileptons), or take process-inclusive final states?
 - reinterpreting existing measurements that subtract SM-like "background" is complex
 - but repeating analyses for single-process extraction and EFT fits is a hard sell
- For combinations:
 - are inputs statistically independent? Non-trivial even within experiments
 - are systematics (modeling, physics objects, ...) consistent?
 - do inputs have consistent EFT validity assumptions?




CMS Top Multilepton Fit

- Coherent analysis of closely related final states
 - dominated by tt + X: closely related operators involving top
 - individual MC events reweighted by EFT contributions (multileg LO generation with MLM matching)
 - differential measurements within final states
 - quadratic order for dim-6 operators

2307.15761 sub. to JHEP

11

ATLAS Higgs + EW Fit

- Combination of ATLAS Higgs and electroweak data and LEP/SLC electroweak precision observables
 - Higgs STXS production cross sections, decay BRs
 - Diboson differential measurements, VBF Z production
- Test both linear and quadratic fits
- Some corrections needed for operator effects on backgrounds, $H \rightarrow 4l$ mass distribution

		٠			
			\sim	Q	\mathbf{a}
Г	Т.	L	((S
			ч	ч	\mathbf{U}

Decay channel	Target Production Modes	$\mathcal{L} [{ m fb}^{-1}]$	Process
	0		$pp \rightarrow e^{\pm}$
$\begin{array}{c} H \to \gamma \gamma \\ H \to Z Z^* \end{array}$	$\mathrm{ggF},\mathrm{VBF},WH,ZH,tar{t}H,tH \ \mathrm{ggF},\mathrm{VBF},WH,ZH,tar{t}H(4\ell)$	$139 \\ 139$	$pp \rightarrow e$ $pp \rightarrow \ell^{=}$
$H \to Z Z$ $H \to W W^*$	ggF, VBF, WH, ZH, ttH(4t) ggF, VBF	$139 \\ 139$	$pp \rightarrow \ell$
$H \to \tau \tau$	$ggF, VBF, WH, ZH, t\bar{t}H(\tau_{had}\tau_{had})$	139	$pp \to \ell^-$
	WH, ZH	139	
$H \to b \bar{b}$	VBF	126	
	$tar{t}H$	139	

Diboson

Important phase space requirements

 $m_{\ell\ell} > 55 \, GeV, \, p_{\rm T}^{\rm jet} < 35 \, GeV$

 $m_{\ell\ell} \in (81, 101) \, GeV$

FWPC

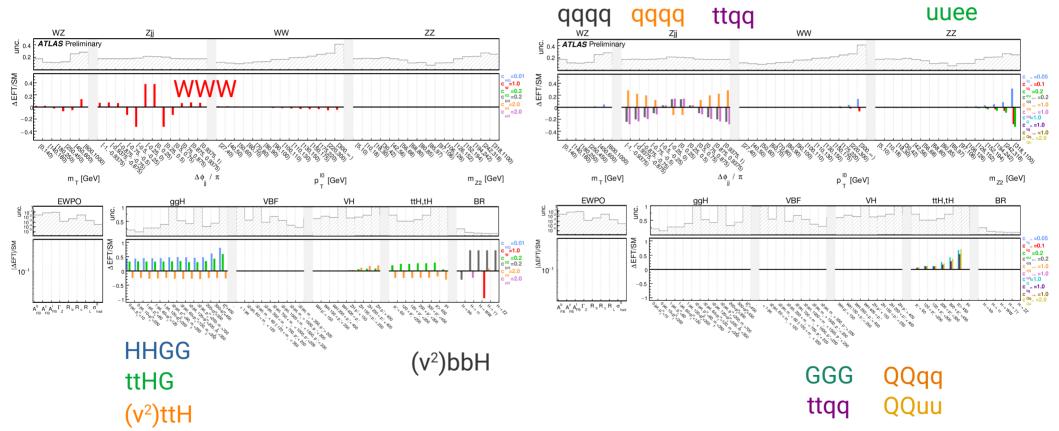
Observable

 $\Gamma_Z \, [\text{MeV}]$

 R^0_ℓ

$m_{4\ell} > 180 GeV$		m_{Z2}	139	R_c^0
$m_{jj} > 1000 GeV, m_{\ell\ell} \in (8)$	(51,101)GeV	$\Delta \phi_{jj}$	139	R_b^0
				$egin{array}{l} A_{ m FB}^{0,\ell} \ A_{ m FB}^{0,c} \ A_{ m FB}^{0,b} \ \sigma_{ m had}^{0,b} \end{array} \ egin{array}{l} \sigma_{ m had}^{0,\ell} \ [m pb] \end{array}$
	ATLAS-	PHYS-	PUB-2022	-037

Observable \mathcal{L} [fb⁻¹]

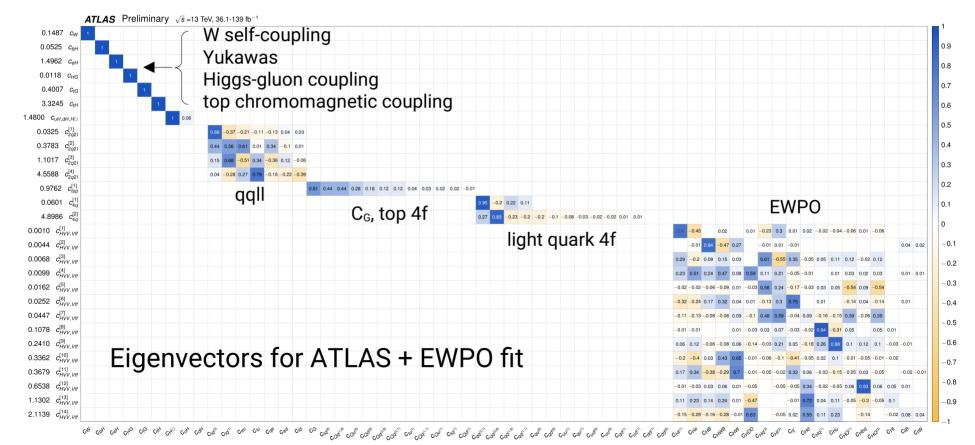

36

 $p_{\mathrm{T}}^{\mathrm{lead. \ lep.}}$

 $m_{\rm T}$

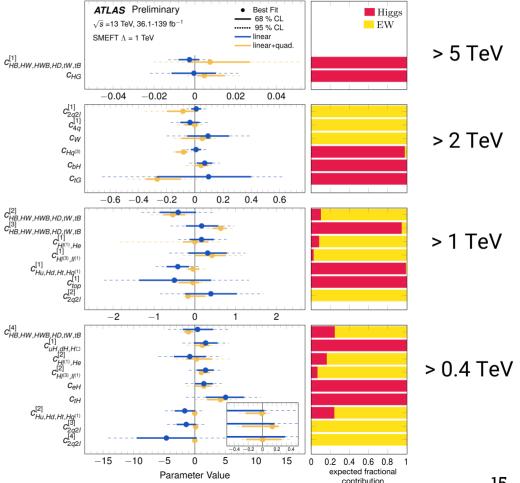
ATLAS Higgs + EW: Impacts

Some examples of operator effects on observables...



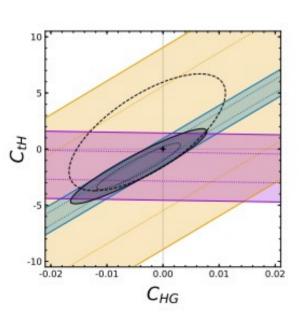
qqll

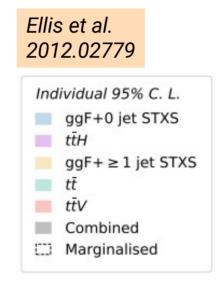
qqll

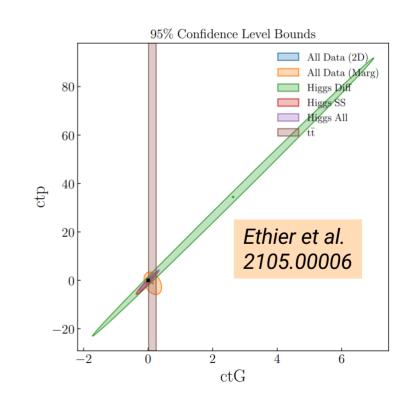

ATLAS Higgs + EW: Basis

• Use eigenvector decomposition to avoid large correlations between operator constraints

ATLAS Higgs + EW: Results

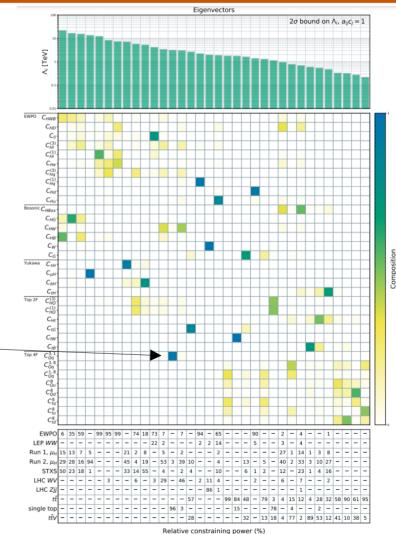

- ATLAS-only results shown here
 - also have ATLAS + EWPO
- Consistent with no new physics
- Do both linear and quadratic fits
 - in some cases qualitatively quite different

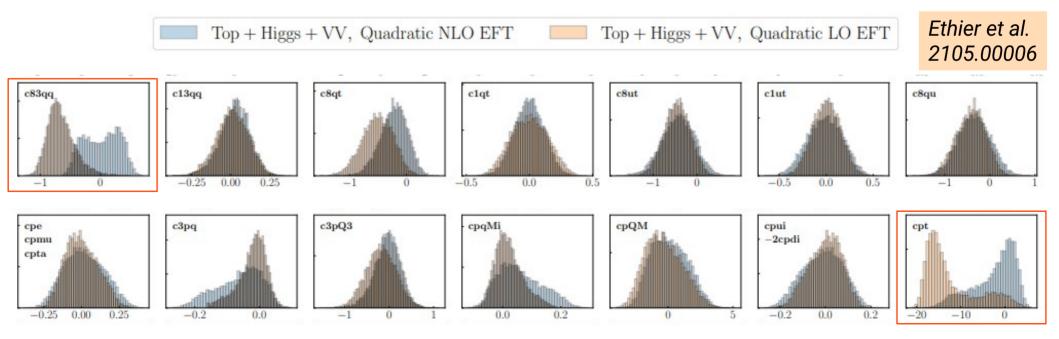



~ NP Scale

Fully Global Fits

- Fits including LHC data + EWPO (either directly included in fits or as operator constraints)
- Complementarity of top and Higgs measurements in fits

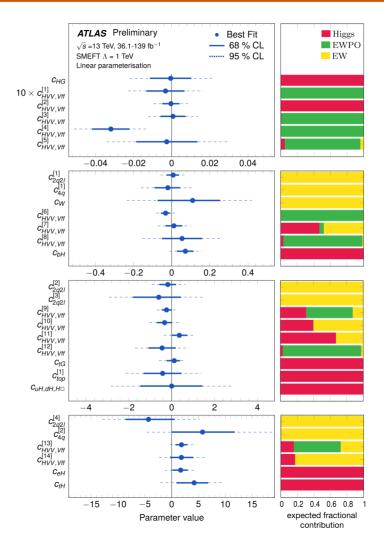



Global Fit: Takeaways

- Constraints on new physics scales range from ~ 200 GeV to > 20 TeV
- Interplay between top and Higgs measurements
 - not so much top and EWPO
- Constraints from top measurements in the 200 GeV to 3 TeV range
 - strongest single constraint is a fourfermion operator from single top

NLO Impact on Fits

- Compare global fits with NLO corrections on and off
- Significant differences seen for some operator fits more consistent with SM

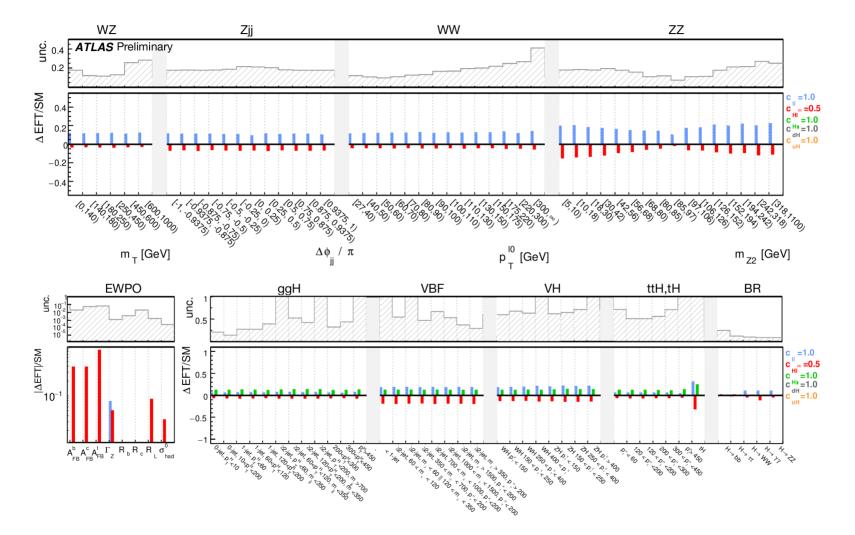


Future Directions for Global Fits

- Being able to do fully global analyses requires coherent treatments of signals + backgrounds
 - preferably built-in to analyses to begin with, not added post hoc
 - flavor assumptions need some care
- Theory refinement:
 - NLO for EFT contributions
 - Handling truncation + EFT validity assumptions
 - Combination with flavor data
- Add & optimize observables
 - NP scale limits go as 1/√C_i while in many cases C_i constraints can be expected to go as √Lumi
 - potentially great benefits from new channels + additional differential distributions
 - Engineer better observables with machine learning
- Maximum preservation of information from analyses will be important
 - Ability to rerun analyses with updated generators? Unfolded results?

Extra

ATLAS Higgs + EW + EWPO Result



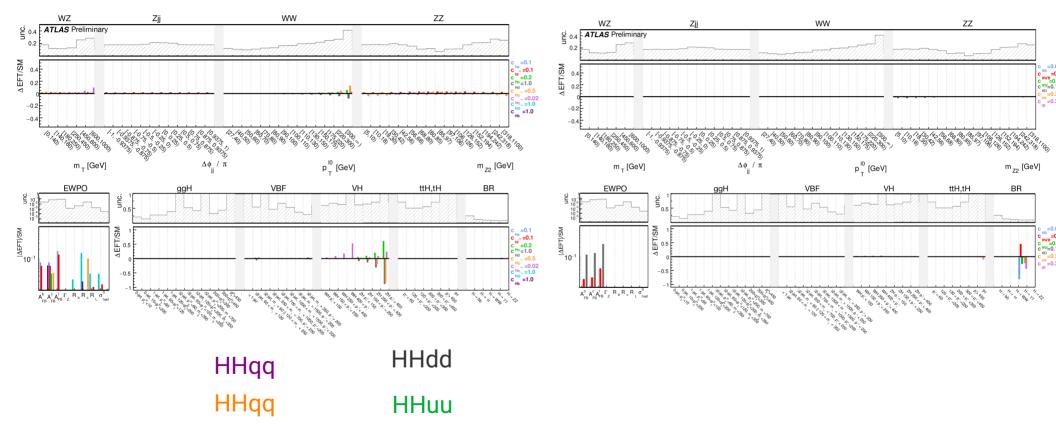
ATLAS Higgs + EW Operator Effects

Wilson coefficient and operator		Affected proce	ess group	
		LEP/SLD	ATLAS	ATLAS
		EWPO	Higgs	electroweak
$c_{H\square}$	$(\boldsymbol{H}^{\dagger}\boldsymbol{H})\Box(\boldsymbol{H}^{\dagger}\boldsymbol{H})$		\checkmark	
c_G	$f^{abc}G^{a\nu}_{\mu}G^{b\rho}_{\nu}G^{c\mu}_{\rho}$		\checkmark	\checkmark
c_W	$\epsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$		\checkmark	\checkmark
c_{HD}	$\left(H^{\dagger}D_{\mu}H\right)^{*}\left(H^{\dagger}D_{\mu}H\right)$		\checkmark	\checkmark
c_{HG}	$H^{\dagger}HG^{A}_{\mu\nu}G^{A\mu\nu}$		\checkmark	
c_{HB}	$H^{\dagger}H B_{\mu\nu}B^{\mu\nu}$		\checkmark	
c_{HW}	$H^{\dagger}H W^{I}_{\mu\nu}W^{I\mu\nu}$		\checkmark	
c_{HWB}	$H^{\dagger}\tau^{I}H W^{I}_{\mu\nu}B^{\mu\nu}$	\checkmark	\checkmark	\checkmark
c_{eH}	$(H^{\dagger}H)(\bar{l}_{p}e_{r}H)$		\checkmark	
c_{uH}	$(H^{\dagger}H)(\bar{q}Y_{u}^{\dagger}u\widetilde{H})$		\checkmark	
c_{tH}	$(H^{\dagger}H)(\bar{Q}\tilde{H}t)$		\checkmark	
c_{bH}	$(H^{\dagger}H)(\bar{Q}Hb)$		\checkmark	
$c_{Hl}^{(1)} \\ c_{Hl}^{(3)} \\ c_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{l}\gamma^{\mu}l)$	\checkmark	\checkmark	\checkmark
$c_{Hl}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{l}\tau^{I}\gamma^{\mu}l)$	\checkmark	\checkmark	\checkmark
c_{He}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{e}\gamma^{\mu}e)$	\checkmark	\checkmark	\checkmark
$c_{Hq}^{(1)} \\ c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{q}\gamma^{\mu}q)$	\checkmark	\checkmark	\checkmark
$c_{Hq}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{q}\tau^{I}\gamma^{\mu}q)$	\checkmark	\checkmark	\checkmark
c_{Hu}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{u}\gamma^{\mu}u)$	\checkmark	\checkmark	\checkmark
c_{Hd}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{d}\gamma^{\mu}d)$	\checkmark	\checkmark	\checkmark
$c_{HQ}^{(1)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{Q}\gamma^{\mu}Q)$	\checkmark	\checkmark	
$c_{HQ}^{(3)}$	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}H)(\bar{Q}\tau^{I}\gamma^{\mu}Q)$	\checkmark	\checkmark	
c_{Hb}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{b}\gamma^{\mu}b)$	\checkmark		
c_{Ht}	$(H^{\dagger}i\overleftrightarrow{D}_{\mu}H)(\bar{t}\gamma^{\mu}t)$	\checkmark	\checkmark	
c_{tG}	$(\bar{Q}\sigma^{\mu\nu}T^At)\widetilde{H}G^A_{\mu\nu}$		\checkmark	
c_{tW}	$(\bar{Q}\sigma^{\mu\nu}t)\tau^I \tilde{H} W^I_{\mu\nu}$		\checkmark	
c_{tB}	$(\bar{Q}\sigma^{\mu\nu}t)\tilde{H}B_{\mu\nu}$		\checkmark	
c_{ll}	$(\bar{l}\gamma_{\mu}l)(\bar{l}\gamma^{\mu}l)$	\checkmark		\checkmark

Wilson	n coefficient and operator		Affected process group			
		LEP/SLD EWPO	ATLAS Higgs	ATLAS electroweak		
$c_{lq}^{(1)}$	$(\bar{l}\gamma_{\mu}l)(\bar{q}\gamma^{\mu}q)$			\checkmark		
$c_{lq}^{(3)}$	$(\bar{l}\gamma_{\mu}\tau^{I}l)(\bar{q}\gamma^{\mu}\tau^{I}q)$			\checkmark		
c_{eu}	$(\bar{e}\gamma_{\mu}e)(\bar{u}\gamma^{\mu}u)$			\checkmark		
c_{ed}	$(\bar{e}\gamma_{\mu}e)(\bar{d}\gamma^{\mu}d)$			\checkmark		
c_{lu}	$(\bar{l}\gamma_{\mu}l)(\bar{u}\gamma^{\mu}u)$			\checkmark		
c_{ld}	$(\bar{l}\gamma_{\mu}l)(\bar{d}\gamma^{\mu}d)$			\checkmark		
c_{qe}	$(\bar{q}\gamma_{\mu}q)(\bar{e}\gamma^{\mu}e)$			\checkmark		
$c_{qq}^{(1,1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{q}\gamma^{\mu}q)$			\checkmark		
$c_{qq}^{(1,8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{q}T^a\gamma^\mu q)$			\checkmark		
$c_{qq}^{(3,1)}$	$(\bar{q}\sigma^i\gamma_\mu q)(\bar{q}\sigma^i\gamma^\mu q)$			\checkmark		
$c_{qq}^{(3,8)}$	$(\bar{q}\sigma^i T^a \gamma_\mu q)(\bar{q}\sigma^i T^a \gamma^\mu q)$			\checkmark		
$c_{uu}^{(1)}$	$(\bar{u}\gamma_{\mu}u)(\bar{u}\gamma^{\mu}u)$			\checkmark		
$c_{uu}^{(8)}$	$(\bar{u}T^a\gamma_\mu u)(\bar{u}T^a\gamma^\mu u)$			\checkmark		
$c_{dd}^{(1)}$	$(\bar{d}\gamma_{\mu}d)(\bar{d}\gamma^{\mu}d)$			\checkmark		
$c_{dd}^{(8)}$	$(\bar{d}T^a\gamma_\mu d)(\bar{d}T^a\gamma^\mu d)$			\checkmark		
$c_{ud}^{(1)}$	$(\bar{u}\gamma_{\mu}u)(\bar{d}\gamma^{\mu}d)$			\checkmark		
$c_{ud}^{(8)}$	$(\bar{u}T^a\gamma_\mu u)(\bar{d}T^a\gamma^\mu d)$			\checkmark		
$c_{qu}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{u}\gamma^{\mu}u)$			\checkmark		
$c_{au}^{(8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{u}T^a\gamma^\mu u)$			\checkmark		
$c_{qd}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{d}\gamma^{\mu}d)$			\checkmark		
$c_{qd}^{(1)}$ $c_{qd}^{(8)}$ $c_{qd}^{(8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{d}T^a\gamma^\mu d)$			\checkmark		
$c_{Qq}^{(1,1)}$ $c_{Qq}^{(1,8)}$	$(\bar{Q}\gamma_{\mu}Q)(\bar{q}\gamma^{\mu}q)$		\checkmark			
$c_{Qq}^{(1,8)}$ $c_{Qq}^{(3,1)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{q}T^a\gamma^\mu q)$		\checkmark			
$c_{Qq}^{(3,1)}$ $c_{Qq}^{(3,8)}$	$(\bar{Q}\sigma^i\gamma_\mu Q)(\bar{q}\sigma^i\gamma^\mu q)$		\checkmark			
Qa	$(\bar{Q}\sigma^{i}T^{a}\gamma_{\mu}Q)(\bar{q}\sigma^{i}T^{a}\gamma^{\mu}q)$		\checkmark			
$c_{tu}^{(1)}$	$(\bar{t}\gamma_{\mu}t)(\bar{u}\gamma^{\mu}u)$		\checkmark			
$c_{Qu}^{(1)}$	$(ar{Q}\gamma_{\mu}Q)(ar{u}\gamma^{\mu}u)$		\checkmark			
$c_{Qu}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{u}T^a\gamma^\mu u)$		\checkmark			
$^{\cup}Qd$	$(\bar{Q}\gamma_{\mu}Q)(\bar{d}\gamma^{\mu}d)$		\checkmark			
$c_{Qd}^{(8)}$	$(\bar{Q}T^a\gamma_\mu Q)(\bar{d}T^a\gamma^\mu d)$		\checkmark			
$c_{tq}^{(1)}$	$(\bar{q}\gamma_{\mu}q)(\bar{t}\gamma^{\mu}t)$		\checkmark			
$c_{tq}^{(8)}$	$(\bar{q}T^a\gamma_\mu q)(\bar{t}T^a\gamma^\mu t)$		\checkmark			

ATLAS Higgs + EW: Impacts

Constraining Power


- In practice different operator sectors are constrained by different classes of measurements
- C_{tG} main overlap between Higgs and top measurements

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_i	EWPO	LEP WW	Run 1 SS	Run 2 SS	STXS	LHC WW	WZ	Zjj	$t\bar{t}$	$W_{\rm hel.}$	tX	$t\bar{t}V$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C _{HWB}	51	-	7	14	28	-	-	_	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{HD}	100	-	-	-	-	-	-	-	_	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{ll}	99	-	-	-	-	-	-	-	_	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{Hl}^{(3)}$	99	-	-	-	-	-	_	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{Hl}^{(1)}$	100	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		100	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{H_{g}}^{(3)}$	89	1	-	-	2	-	6	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$C_{H_{q}}^{(1)}$	99	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		99	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{Hu}	98	-	-	-	1	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{H\square}$	-	-	22	46	32	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Chg	-	-	22	42	36	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{HW}	-	-	14	29	56	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{HB}	-	_	14	29	57	-	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_W	-	3	-	-	-	-	13	84	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_G	-	-	-	-	-	-	-	-	43	-	-	56
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{\tau H}$	-	-	22	45	34	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{\mu H}$	-	-	5	95	-	-	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C_{bH}	-	-	19	35	47	-	-	-	-	-	-	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-	-	21	45	34	-	-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{HQ}^{(3)}$	99	-	-	-	-	-	-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{HQ}^{(1)}$	100	-	-	-	-	-	-	-	-	-	-	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	-	-	-	-	-	-	-	-	100
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{tG}	-	-	13	29	24	-	-	-	24	-	-	9
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{tW}	-	-	-	-	-	-	-	-	-	84	15	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-	-	-	-	-	-	-	-	-	-	-	100
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{Qq}^{3,1}$	-	-	-	-	-	-	-	-	-	-	100	-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{Qq}^{3,8}$	-	-	-	-	-	-	-	-	87	-	-	13
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$C_{Qq}^{1,8}$	-	-	-	-	-	-	-	-	82	-	-	17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{Qu}^8	-	-	-	-	-	-	-	-	91	-	-	7
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{Qd}^8	-	-	-	2	-	-	-	-	92	-	-	6
		-	-	-	1	-	-	-	-	89	-	-	10
C_{td}^8 2 92 5	C_{tu}^8	-	-	-	-	-	-	-	-	96	-	-	3
	C_{td}^8	-	-	-	2	-	-	-	-	92	-	-	5

 Table 7.
 Relative constraining power in percent of different datasets on each coefficient of the global fit individually. Entries below 1% are not displayed. 'SS', $W_{hel.}$ and tX refer to Higgs signal strength, W-helicity fraction and single top data, respectively.

ATLAS Higgs + EW: Impacts

HHI

