Non Linear Quantum Mechanics

Surjeet Rajendran

Non Linear Quantum Mechanics?

Theory built on observations in the 1900s Why should it be "the absolute truth"?

Non Linear Quantum Mechanics?

Theory built on observations in the 1900s Why should it be "the absolute truth"?

What?

Two Postulates of Quantum Mechanics

Probability

Linearity

Which?

Finite system has a finite set of energies

Continuous observables and symmetries

Finite system has a finite set of energies

Continuous observables and symmetries

Finite system has a finite set of energies

Continuous observables and symmetries

Could an electron in an atom have a well defined position?

Finite system has a finite set of energies

Deterministic
Observables?

Continuous observables and symmetries

Could an electron in an atom have a well defined position?

Finite system has a finite set of energies

Deterministic
Observables?

Continuous observables and symmetries

Could an electron in an atom have a well defined position?

Quantum Mechanics

Sacrifice Determinism.

Preserve finite set of energy states, continuous symmetries and observables

Bell Inequalities, Kochen-Specker, SSC Theorems

Causality and Entanglement

Trial Non-Linear Term

$$i\frac{\partial\Psi}{\partial t} = H_L\Psi + \epsilon \left(\Psi^2 + \Psi^{*2}\right)\Psi$$

Causality and Entanglement

Trial Non-Linear Term

$$i\frac{\partial\Psi}{\partial t} = H_L\Psi + \epsilon \left(\Psi^2 + \Psi^{*2}\right)\Psi$$

Entanglement is fundamental to quantum mechanics

$$\Psi(x, y; t) = \sum_{i,j} c_{ij}(t) \alpha_i(x) \beta_j(y)$$

Causality and Entanglement

Trial Non-Linear Term

$$i\frac{\partial\Psi}{\partial t} = H_L\Psi + \epsilon \left(\Psi^2 + \Psi^{*2}\right)\Psi$$

Entanglement is fundamental to quantum mechanics

$$\Psi(x, y; t) = \sum_{i,j} c_{ij}(t) \alpha_i(x) \beta_j(y)$$

Apply some local operation on x: $a_i(x) \rightarrow U a_i(x)$

Does it instantly change the time evolution of y?

YES Not causal

Linearity

Electron Coupled to Electromagnetism

Electron paths do not interact via electromagnetism

Linearity

Electron Coupled to Electromagnetism

Electron paths do not interact via electromagnetism

Paths of two electrons interact causally (QFT)

Linearity

Electron Coupled to Electromagnetism

Electron paths do not interact via electromagnetism

Paths of two electrons interact causally (QFT)

Why can't path talk to itself?

Natural Language: Quantum Field Theory

The Schrodinger Picture of Quantum Field Theory

$$|\chi\left(t
ight)
angle$$
 Quantum State of Fields (e.g. in Fock states)

$$\phi\left(x\right)$$

Time Independent
Operators

$$H = \int d^3x \,\mathcal{H}\left(\phi\left(x\right), \pi\left(x\right)\right)$$

The Schrodinger Picture of Quantum Field Theory

$$|\chi\left(t
ight)
angle$$
 Quantum State of Fields (e.g. in Fock states)

$$\phi\left(x\right)$$

Time Independent
Operators

$$H = \int d^3x \,\mathcal{H}\left(\phi\left(x\right), \pi\left(x\right)\right)$$

Time Evolution

$$i\frac{\partial |\chi(t)\rangle}{\partial t} = H|\chi(t)\rangle$$

The Schrodinger Picture of Quantum Field Theory

$$|\chi\left(t
ight)
angle$$
 Quantum State of Fields (e.g. in Fock states)

$$\phi\left(x\right)$$

Time Independent
Operators

$$H = \int d^3x \,\mathcal{H}\left(\phi\left(x\right), \pi\left(x\right)\right)$$

Time Evolution

$$i\frac{\partial |\chi(t)\rangle}{\partial t} = H|\chi(t)\rangle$$

Action

$$S = \int dt \, \left(i \langle \chi | \dot{\chi} \rangle - \langle \chi | H | \chi \rangle \right)$$

Yukawa
$$H\supset \int d^3x\,y\,\phi\left(x\right)\bar{\Psi}\left(x\right)\Psi\left(x\right)$$

Yukawa
$$H\supset \int d^3x\,y\,\phi\left(x\right)\bar{\Psi}\left(x\right)\Psi\left(x\right)$$

Action

$$S = \int dt \, \left(i \langle \chi | \dot{\chi} \rangle - \langle \chi | H | \chi \rangle \right) \quad \supset \langle \chi(t) | \left(\int d^3 x \, y \, \phi(x) \, \bar{\Psi}(x) \, \Psi(x) \right) | \chi(t) \rangle$$

$$\supset \left(\int d^3 x \, y \, \langle \chi(t) | \phi(x) \, \bar{\Psi}(x) \, \Psi(x) | \chi(t) \rangle \right)$$

Yukawa
$$H\supset \int d^3x\,y\,\phi\left(x\right)\bar{\Psi}\left(x\right)\Psi\left(x\right)$$

Action

$$S = \int dt \, \left(i \langle \chi | \dot{\chi} \rangle - \langle \chi | H | \chi \rangle \right) \quad \supset \langle \chi(t) | \left(\int d^3 x \, y \, \phi(x) \, \bar{\Psi}(x) \, \Psi(x) \right) | \chi(t) \rangle$$

$$\supset \left(\int d^3 x \, y \, \langle \chi(t) | \phi(x) \, \bar{\Psi}(x) \, \Psi(x) | \chi(t) \rangle \right)$$

Quantum Field Theory
$$\supset \left(\int d^3x \, y \, \langle \chi \, (t) \, | \phi \, (x) \, \bar{\Psi} \, (x) \, \Psi \, (x) + \frac{\phi^2}{\Lambda} \bar{\Psi} \Psi + \dots | \chi \, (t) \rangle \right)$$

Yukawa
$$H\supset \int d^3x\,y\,\phi\left(x\right)\bar{\Psi}\left(x\right)\Psi\left(x\right)$$

Action

$$S = \int dt \, \left(i \langle \chi | \dot{\chi} \rangle - \langle \chi | H | \chi \rangle \right) \quad \supset \langle \chi (t) | \left(\int d^3 x \, y \, \phi (x) \, \bar{\Psi} (x) \, \Psi (x) \right) | \chi (t) \rangle$$

$$\supset \left(\int d^3 x \, y \, \langle \chi (t) | \phi (x) \, \bar{\Psi} (x) \, \Psi (x) | \chi (t) \rangle \right)$$

Quantum Field Theory
$$\supset \left(\int d^3x \, y \, \langle \chi \, (t) \, | \phi \, (x) \, \bar{\Psi} \, (x) \, \Psi \, (x) + \frac{\phi^2}{\Lambda} \bar{\Psi} \Psi + \dots | \chi \, (t) \rangle \right)$$

Non-linearities in the operators but not in the state

Yukawa
$$H\supset \int d^3x\,y\,\phi\left(x\right)\bar{\Psi}\left(x\right)\Psi\left(x\right)$$

Linear QFT:
$$S \supset \left(\int d^3x \, y \, \langle \chi \, (t) \, | \phi \, (x) \, \bar{\Psi} \, (x) \, \Psi \, (x) \, | \chi \, (t) \rangle \right)$$

Non-Linear QFT:
$$S_{NL} \supset \epsilon \left(\int d^3x \left\langle \chi\left(t\right) \left| \phi\left(x\right) \left| \chi\left(t\right) \right\rangle \left\langle \chi\left(t\right) \left| \bar{\Psi}\left(x\right) \Psi\left(x\right) \left| \chi\left(t\right) \right\rangle \right) \right)$$

Yukawa
$$H\supset \int d^3x\,y\,\phi\left(x\right)\bar{\Psi}\left(x\right)\Psi\left(x\right)$$

Linear QFT:
$$S \supset \left(\int d^3x \, y \, \langle \chi \, (t) \, | \phi \, (x) \, \bar{\Psi} \, (x) \, \Psi \, (x) \, | \chi \, (t) \rangle \right)$$

Non-Linear QFT:
$$S_{NL} \supset \epsilon \left(\int d^3x \left\langle \chi\left(t\right) \left| \phi\left(x\right) \left| \chi\left(t\right) \right\rangle \left\langle \chi\left(t\right) \left| \bar{\Psi}\left(x\right) \Psi\left(x\right) \left| \chi\left(t\right) \right\rangle \right) \right)$$

Obeys all the rules

Higher order in states - leads to state dependent quantum evolution

Yukawa
$$H\supset \int d^3x\,y\,\phi\left(x\right)\bar{\Psi}\left(x\right)\Psi\left(x\right)$$

Linear QFT:
$$S \supset \left(\int d^3x \, y \, \langle \chi \, (t) \, | \phi \, (x) \, \bar{\Psi} \, (x) \, \Psi \, (x) \, | \chi \, (t) \rangle \right)$$

Non-Linear QFT:
$$S_{NL} \supset \epsilon \left(\int d^3x \left\langle \chi\left(t\right) \left| \phi\left(x\right) \left| \chi\left(t\right) \right\rangle \left\langle \chi\left(t\right) \left| \bar{\Psi}\left(x\right) \Psi\left(x\right) \left| \chi\left(t\right) \right\rangle \right) \right)$$

Obeys all the rules

Higher order in states - leads to state dependent quantum evolution

Analyze non-linearity perturbatively

$$\mathcal{H} \supset y \Phi \bar{\Psi} \Psi = (y \phi + \epsilon \langle \chi | \phi | \chi \rangle) \bar{\Psi} \Psi$$

$$i \frac{\partial |\chi\rangle}{\partial t} = H|\chi\rangle$$

At zeroth order, this is just standard QFT

$$\mathcal{H} \supset y \Phi \bar{\Psi} \Psi = (y \phi + \epsilon \langle \chi | \phi | \chi \rangle) \bar{\Psi} \Psi$$

$$i\frac{\partial|\chi\rangle}{\partial t} = H|\chi\rangle$$

At zeroth order, this is just standard QFT

At first order, use zeroth order solution - expectation value is simply a background field

Perform standard QFT on this background field to compute first order correction

$$\mathcal{H} \supset y \Phi \bar{\Psi} \Psi = (y \phi + \epsilon \langle \chi | \phi | \chi \rangle) \bar{\Psi} \Psi$$

$$i \frac{\partial |\chi\rangle}{\partial t} = H|\chi\rangle$$

At zeroth order, this is just standard QFT

At first order, use zeroth order solution - expectation value is simply a background field

Perform standard QFT on this background field to compute first order correction

Applies to all orders: To compute term of given order, only need lower order terms

Lower order terms enter as background fields

$$\mathcal{H} \supset y \Phi \bar{\Psi} \Psi = (y \phi + \epsilon \langle \chi | \phi | \chi \rangle) \bar{\Psi} \Psi$$

$$i\frac{\partial|\chi\rangle}{\partial t} = H|\chi\rangle$$

At zeroth order, this is just standard QFT

At first order, use zeroth order solution - expectation value is simply a background field

Perform standard QFT on this background field to compute first order correction

Applies to all orders: To compute term of given order, only need lower order terms

Lower order terms enter as background fields

Causality: Non-linearity enters via expectation value. At lowest order, causal from QFT.

Causal background field for all higher orders

Gauge Theories and Gravitation

Linear QFT Lagrangian, Shift bosonic field by expectation value

To Path Integral, add:

$$e^{iS_0+i\int d^4x (e((A_\mu+\epsilon_\gamma\langle\chi|A_\mu|\chi\rangle))J^\mu+\epsilon_{\tilde{\gamma}}\langle\chi|F_{\mu\nu}|\chi\rangle F^{\mu\nu})}$$

Background Field

Gauge Theories and Gravitation

Linear QFT Lagrangian, Shift bosonic field by expectation value

To Path Integral, add:

$$e^{iS_0+i\int d^4x(e((A_{\mu}+\epsilon_{\gamma}\langle\chi|A_{\mu}|\chi\rangle))J^{\mu}+\epsilon_{\tilde{\gamma}}\langle\chi|F_{\mu\nu}|\chi\rangle F^{\mu\nu})}$$

Background Field

Gravitation

$$e^{iS_0+i\int d^4x(\epsilon_G\langle\chi|g_{\mu\nu}|\chi\rangle\partial^\mu\phi\partial^\nu\phi)}$$

$$\mathcal{L} \supset y\Phi\bar{\Psi}\Psi = y\left(\phi + \tilde{\epsilon}\langle\chi|\phi|\chi\rangle\right)\bar{\Psi}\Psi$$

Suppose we have a ψ particle - how does its wave-function evolve?

$$\mathcal{L} \supset y\Phi\bar{\Psi}\Psi = y\left(\phi + \tilde{\epsilon}\langle\chi|\phi|\chi\rangle\right)\bar{\Psi}\Psi$$

Suppose we have a ψ particle - how does its wave-function evolve?

To zeroth order, ψ just sources the Φ field

Straightforward Computation of Expectation Value

$$\mathcal{L} \supset y \Phi \bar{\Psi} \Psi = y \left(\phi + \tilde{\epsilon} \langle \chi | \phi | \chi \rangle \right) \bar{\Psi} \Psi$$

Suppose we have a ψ particle - how does its wave-function evolve?

To zeroth order, ψ just sources the Φ field

Straightforward Computation of Expectation Value

$$\mathcal{L} \supset y \Phi \bar{\Psi} \Psi = y \left(\phi + \tilde{\epsilon} \langle \chi | \phi | \chi \rangle \right) \bar{\Psi} \Psi$$

Suppose we have a ψ particle - how does its wave-function evolve?

To zeroth order, ψ just sources the Φ field

Straightforward Computation of Expectation Value

Constraints What does this do to the Lamb Shift?

 $\langle \chi | A_{\mu} | \chi \rangle J^{\mu}$

Proton at Fixed Location

2S and 2P electron have different charge distribution

Different expectation value of electromagnetic field

Level Splitting!

Constraints What does this do to the Lamb Shift?

Proton at Fixed Location

2S and 2P electron have different charge distribution

Different expectation value of electromagnetic field

Level Splitting!

$$\langle \chi | A_{\mu} | \chi \rangle J^{\mu}$$

BUT: Cannot decouple center of mass and relative co-ordinates

Proton wave-function spread over some region (e.g. trap size ~ 100 nm)

Expectation value of electromagnetic field diluted

In neutral atom - heavily suppressed, except at edges!

ε < 10-2

Similarly, kills possible bounds on QCD and gravity

Experimental Tests

Interferometry - interaction between paths

Take an ion - split its wave-function

Experimental Tests

Interferometry - interaction between paths

Take an ion - split its wave-function

Coulomb Field of one path interacts with the other path

Gives rise to phase shift that depends on the intensity p of the split

Use intensity dependence to combat systematics

Conclusions

- 1. Quantum Field Theory can be generalized to include non-linear, state dependent time evolution
- 2. Conventional tests of quantum mechanics in atomic and nuclear systems do NOT probe causal non-linear quantum mechanics
- 3. Straightforward set of experimental tests possible to probe non-linear quantum mechanics
 - 4. Motivation to test other extensions as well e.g. Lindblad Decoherence