Machine Learning in HEP: An Overview

Machine learning in top physics, including measurements, phenomenology and detector performance

Michael Fenton on behalf of the ATLAS and CMS collaborations

University of California, Irvine m.fenton@cern.ch

September 28, 2023

< □ > < 同 > < 回</p>

Sar

- Machine learning is now ubiquitous in high energy physics, and the world at large
- ATLAS public results with MVA/ML: 46 papers, 17 conf notes, 20 pub notes
 no equivalent filter for CMS, but number should be similar
- Mostly: ML b/top-tagging, Signal vs Background Separation
- Instead of presenting a bunch of results using ML, I'd like to go over how ML can enter into every stage of analysis from data taking to final measurement

イロト イヨト イヨト

- 1 Data Taking / MC Generation
- 2 Object Selection
- 3 Calibration
- 4 Background Estimation
- 5 Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- **9** Conclusions

- **1** Data Taking / MC Generation
- **2** Object Selection
- 3 Calibration
- Background Estimation
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- 9 Conclusions

Artificially Intelligent Data Taking

- CMS have a complex new trigger strategy for HH and HHH that includes running ParticleNet in the HLT on both small and large radius jets
- ATLAS also has ML b-tagging in trigger for small jets
- Not sure if either experiment is running a dedicated top tagging trigger, but perhaps we should?

Image: A match a ma

AutoEncoded Data Taking • 🚥

• Variational AutoEncoders (VAE) simple picture: compress into a smaller latent space, then un-compress

- Compress trigger level data to increase write out rates? Butter et al
- Also used for "anomaly detection": if the network struggles to undo the compression, event is "anomalous" and flagged for further study
 - ATLAS has some results using VAEs offline
 - Could be used directly in the trigger?
 Cerri et al
- CMS use anomaly detection tech to check DQ and flag bad runs

イロト イボト イヨト イヨト

Machine Learned Monte-Carlo Generation • Snowmass Review

- ATLAS fast detector sim "AF3" now extensively uses GANs and VAEs
- CMS have replaced some generator comparisons with weights using NNs
 - Same procedure could be used for background estimation, calibration...

- ML useful in many places for calculations: phase space sampling, amplitudes, loop integrals, parton showers...
 - NNPDF has been a staple for many years

1 Data Taking / MC Generation

- 2 Object Selection
- **3** Calibration
- Background Estimation
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- 9 Conclusions

Object Selection: *b*-tagging

• Also $X \rightarrow bb$ tagging CMS, ATLAS, fully ML based PFlow, ...

• There are MANY ML-based top taggers out there these days

• Current SOTA: Particle Transformer

The Landscape

- CMS using ParticleNet (GNN), ATLAS using DNN with HL vars
- Best performance usually comes from constituent based taggers, which use GNNs/Attention to input the entire jet (cf S.H. Lim yesterday, ADO, LASSO)
- Absolute performance improvements probably ~saturated by now

- ATLAS has released a public dataset for benchmarking on realistic detector sim / jet reco / wider p_T range
 - Non-uniform detector \rightarrow performance can vary!
 - In the near future this will be updated to include estimates of systematic uncertainties for more robust studies

Top Tagging

- **1** Data Taking / MC Generation
- **2** Object Selection

3 Calibration

- 4
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- **9** Conclusions

DQC

Learning to Calibrate

- New ATLAS ML-based calibration for jets
- Fully connected or Bayesian NN to regress topocluster response
- Inputs:

Leads to improved resolution and decreased sensitivity to out-of-time pileup

A B A B A B
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- **1** Data Taking / MC Generation
- **2** Object Selection
- 3 Calibration
- **Background Estimation** 4
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- **9** Conclusions

DQC

Background Estimation

- Several methods available for background estimation
 - Extrapolate from sidebands to SRs with Invertible NNs (INN)
 - Replace functional forms with Gaussian Processes

• Enhanced ABCD With Normalising Flows used in CMS all-hadronic 4-top search presented at this conference last year!

Michael Fenton (UCI)

- **1** Data Taking / MC Generation
- **2** Object Selection
- 3 Calibration
- **4** Background Estimation
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- **9** Conclusions

nac

Event Reconstruction: SPA-NET • Fenton et al

- Complete package for event reconstruction and aux tasks
 - Avoids combinatoric explosion in baseline methods like KLFitter or PDNN
- Applies to arbitrarily complex final states (jets, leptons, anything else) with easy configuration and training

• Aux outputs to remove backgrounds, bad reconstructions, partial events

Shmakov et al

- Directly regress kinematics $(\eta^{\nu}?)$
- Extremely robust training
- Less mass sculpting, faster inference than baselines

・ ロ ト ・ 同 ト ・ 三 ト ・

- \bullet Overall efficiency: 75% Spa-Net, vs 41% KLFitter
- Significant gains in final sensitivity on top mass, $t\bar{t}H, H \rightarrow b\bar{b}, Z' \rightarrow t\bar{t}$
 - Quantum entanglement? $t\bar{t}$ +HF?
- If you reconstruct your events, you should be using this!

ν^2 -Flows \bullet Raine et al

- Use normalising flows to regress neutrino kinematics in dilepton events
 - In: 4vectors of all objects, charge/btag, N(b)jets, MET
 - Out: p_x , p_y , p_z for each neutrino
- Impressive agreement with many kinematics including η_{ν} , m_W , $m_{t\bar{t}}$...
 - *m_t* not perfect
- \bullet Possible to combine with $\operatorname{SPA-NET}$, WIP!

イロト イポト イヨト イヨト

- **1** Data Taking / MC Generation
- **2** Object Selection
- 3 Calibration
- 4
- **5** Event Reconstruction
- 6 Systematics

7 Unfolding

- 8 Paper / Talk Writing
- **9** Conclusions

nac

Uncertainty Aware Training • Ghosh et al

• Idea: parameterise NN vs NPs to reduce impact of uncertainties on final measurement

- Data augmentation: include the syst shifted events in training
- Adversarial: train network to be insensitive to the NP
- Uncertainty aware: give the NP to the network during training, then profile

< D > < B > < B >

- Tested on HiggsML dataset with τ energy scale systematic
- Significant improvement in sensitivity possible!
- BUT: unclear how well this scales to multiple NPs
- Best strategy in general depends on analysis design / nature of leading systs
- See also; parameterised NNs Baldi et al, adversarial decorrelation Englert et al

Optimal Analyses / Summary Statistics

- - Requires entire pipeline to be differentiable, incl histograms (bKDE), likelihoods (pyhf)
 - see also INFERNO → de Castro, Dorigo
- MadMiner: NN estimation of LR parameterised by eg EFT operator
 - Brehmer et al

- **1** Data Taking / MC Generation
- **2** Object Selection
- 3 Calibration
- 4
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- **9** Conclusions

DQC

Unfolding with ML

- A variety of methods on the market these days
 - Omnifold, GANs, INNs, Diffusion, mixed Omnifold+Diffusion
- Omnifold reweights events to match data pre-detector sim; GANs, INNs, & Diffusion take the detector level event as input and output a truth level event
- Only one yet used on real data: HERA has used Omnifold to measure JSS

• All methods unfold very high dimensionality, unbinned distributions

- \bullet No more need to pre-arrange binning for NN(N...)LO calculations!
- But unclear how to publish these?

Michael Fenton (UCI)

イロト イポト イヨト イヨー

- **1** Data Taking / MC Generation
- **2** Object Selection
- 3 Calibration
- 4
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- **9** Conclusions

nac

ChatGPT to write code

Write a simple python function to convert a ROOT file to HDF5 format ready to be input to a Tensorflow network

To convert a ROOT file to HDF5 format in Python and prepare it for input to a TensorFlow network, you can use the 'upzoot' library to read the ROOT file and the 'h5pp' library to create the HDF5 file. Below is a simple Python function to perform this conversion:

python

Copy code

import uproot import h5py import numpy as np

def convert_root_to_hdf5(root_file_path, hdf5_file_path, dataset_name):
 # Open the ROOT file
 root_file = uproot.open(root_file_path)

Access the TTree or TBranch you want to convert tree = root_file['your_tree_name'] branch = tree['your_branch_name']

Extract data from the TBranch as numpy arrays
data = branch.array(library='np')

Create an HOF5 file and write the data to it with h5py.File(hdf5_file_path, 'w') as hdf5_file: # Create an HOF5 dataset hdf5_dataset = hdf5_file.create_dataset(dataset_name, data.shape, dt

Write the data to the datase hdf5_dataset[...] = data

if __name__ == "__main__":
 root_file_path = "your_root_file.root"
 hdf5_file_path = "output.h5"
 dataset_name = "data"

convert_root_to_hdf5(root_file_path, hdf5_file_path, dataset_name)

Michael Fenton (UCI)

Machine Learning in HEP: An Overview

ChatGPT to write code

Write a simple python function to convert a ROOT file to HDF5 format ready to be input to a Tensorflow network

To convert a ROOT file to HDF5 format in Python and prepare it for input to a TensorFlow network, you can use the 'uproot' library to read the ROOT file and the 'h5py' library to create the HDF5 file. Below is a simple Python function to perform this conversion:

python

Copy code

import uproot
import h5py
import numpy as np

def convert_root_to_hdf5(root_file_path, hdf5_file_path, dataset_name):
 # Open the ROOT file
 root_file = uproot.open(root_file_path)

Access the TTree or TBranch you want to convert tree = root_file['your_tree_name'] branch = tree['your_branch_name']

Extract data from the TBranch as numpy arrays
data = branch.array(library='np')

Create an HOF5 file and write the data to it with h5py.File(hdf5_file.path, 'w') as hdf5_file: # Create an HOF5 dataset hdf5_dataset = hdf5_file.create_dataset(dataset_name, data.shape, dt

Write the data to the dataset hdf5_dataset[...] = data

if __name__ == "__main__":
 root_file_path = "your_root_file.root"
 hdf5_file_path = "output.h5"
 dataset_name = "data"

convert_root_to_hdf5(root_file_path, hdf5_file_path, dataset_name)

Rewrite the above to loop over all branches in the tree

To loop over all branches in a ROOT tree and convert them to HDF5 format, you can modify the previous code to iterate through the branches and save each branch as a separate dataset in the HDF5 file. Here's an updated version of the code:

	Copy code
port uproof sort h5py	
cort numpy as np	
<pre>f convert_root_to_hdf5(root_file_path, hdf5_file_path): # Open the ROOT file</pre>	
<pre>root_file = uproot.open(root_file_path)</pre>	
<pre>tree = root_file['your_tree_name']</pre>	
with h5py.File(hdf5_file_path, 'w') as hdf5_file:	
<pre>for branch_name in tree.keys():</pre>	
<pre>branch = ixee[branch_name]</pre>	
<pre>data = branch.array(library='np')</pre>	
# Create an HDE5 dataset with the same name as the h	
hdf5_dataset = hdf5_file.create_dataset(branch_name,	data.shape,
# Write the data to the dataset	

if __name__ == "__main__":
 xoot_file_path = "your_root_file.root"
 hdf5_file_path = "output.h5"

convert_root_to_hdf5(root_file_path, hdf5_file_path)

Michael Fenton (UCI)

Machine Learning in HEP: An Overview

N

Leveraging ChatGPT in High Energy Physics Research

- High-energy physics (HEP) is a complex field exploring the fundamental universe.
- ChatGPT and similar tools offer valuable applications in HEP research.

Applications in HEP:

- Data Analysis: Interpretation and annotation of complex data.
- **2** Literature Review: Automated summaries and citation assistance.
- **③** Collaboration: Collaborative writing and multilingual communication.
- Education and Outreach: Teaching assistance and public engagement.

Challenges and Considerations:

- Ensure AI doesn't introduce bias or compromise accuracy.
- Protect sensitive data and uphold ethical AI practices.

Conclusion:

- AI tools like ChatGPT enhance HEP research in various ways.
- Responsible use and ongoing developments are key for success.

This slide, apart from this footnote, was written entirely by $GhatGBT \leftarrow a + a = b$

- Plug-in for VSCode, allows tab completion of code based on LLM prediction
- Available free to students and teachers!

```
void ttbarHistograms::Fill(std::shared ptr<Event> event){
    const float weight = event->floatVariableConst("eventWeight");
   m hadtop = m topReco->m hadtop;
   m leptop = m topReco->m leptop;
```

Sar

イロト イヨト イヨト

- Plug-in for VSCode, allows tab completion of code based on LLM prediction
- Available free to students and teachers!

```
void ttbarHistograms::Fill(std::shared_ptr<Event> event){{
    const float weight = event->floatVariableConst("eventWeight");
    m_hadtop = m_topReco->m_hadtop;
    m_leptop = m_topReco->m_leptop;
    m_ttbar = m_topReco->m_ttbar;
```

Sar

イロト イヨト イヨト

- Plug-in for VSCode, allows tab completion of code based on LLM prediction
- Available free to students and teachers!

```
void ttbarHistograms::Fill(std::shared ptr<Event> event){
    const float weight = event->floatVariableConst("eventWeight");
   m hadtop = m topReco->m hadtop;
   m leptop = m topReco->m leptop;
   m ttbar = m topReco->m ttbar;
   m hist hadtop pt->Fill(m hadtop->Pt()/GeV, weight);
```

イロト イボト イヨト イヨト

- Plug-in for VSCode, allows tab completion of code based on LLM prediction
- Available free to students and teachers!

```
void ttbarHistograms::Fill(std::shared ptr<Event> event){
    const float weight = event->floatVariableConst("eventWeight");
   m hadtop = m topReco->m hadtop;
   m leptop = m topReco->m leptop;
   m ttbar = m topReco->m ttbar;
   m hist hadtop pt->Fill(m hadtop->Pt()/GeV, weight);
   m hist hadtop eta->Fill(m hadtop->Eta(), weight);
```

イロト 人口 ト イロト イロ

Plug-in for VSCode, allows tab completion of code based on LLM prediction
 Available free to students and teachers!

```
m_hadtop = m_topReco->m_hadtop;
m_leptop = m_topReco->m_leptop;
m_ttbar = m_topReco->m_ttbar;
```

```
m_hist_hadtop_pt->Fill(m_hadtop->Pt()/GeV, weight);
m_hist_hadtop_eta->Fill(m_hadtop->Eta(), weight);
m_hist_hadtop_phi->Fill(m_hadtop->Phi(), weight);
m_hist_hadtop_m->Fill(m_hadtop->M()/GeV, weight);
```

```
m_hist_leptop_pt->Fill(m_leptop->Pt()/GeV, weight);
m_hist_leptop_eta->Fill(m_leptop->Eta(), weight);
m_hist_leptop_phi->Fill(m_leptop->Phi(), weight);
m_hist_leptop_m->Fill(m_leptop->M()/GeV, weight);
```

```
m_hist_ttbar_pt->Fill(m_ttbar->Pt()/GeV, weight);
m_hist_ttbar_eta->Fill(m_ttbar->Eta(), weight);
m_hist_ttbar_phi->Fill(m_ttbar->Phi(), weight);
m_hist_ttbar_m->Fill(m_ttbar->M()/GeV, weight);
```

- **1** Data Taking / MC Generation
- **2** Object Selection
- 3 Calibration
- 4
- **5** Event Reconstruction
- 6 Systematics
- 7 Unfolding
- 8 Paper / Talk Writing
- **9** Conclusions

DQC

Summary

- Machine learning is an increasingly ubiquitous part of our work (and personal!) lives: can help solve problems at all stages of analysis, from data collection to final interpretation
- Modern ML tools like ChatGPT, Github Copilot, etc can make our lives easier
 - Can we create CERN/ATLAS/CMS-GPT?
- Happy to discuss any and all ML ideas or questions over coffee/lunch by email: mjfenton@uci.edu
- Useful resource: HEPML Living Review

イロト イボト イヨト イヨト

DQC