



# Inclusive and differential cross section measurements of ttbb production in the lepton+jets channel at $\sqrt{s}$ = 13 TeV

Emanuel Pfeffer on behalf of the CMS Collaboration | TOP 2023 Conference, Traverse City, MI, USA



emanuel.pfeffer@cern.ch



### Why ttbb?

### 3 key aspects:



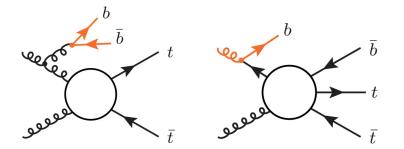
challenging to model due to massive b quark and difference in energy scales of top and b quark



important test of perturbative QCD calculations



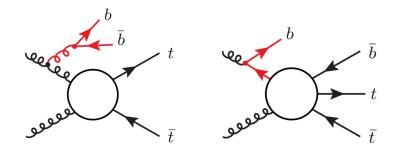
leading background for searches such as ttH with H $\rightarrow$ bb and tttt


### **Differences in ttbb modelling**





#### tt at ME at NLO (5FS)


- ttbb described by tt matrix elements at NLO (m<sub>b</sub> = 0) and g→bb shower splittings
- Residual uncertainties difficult to quantify



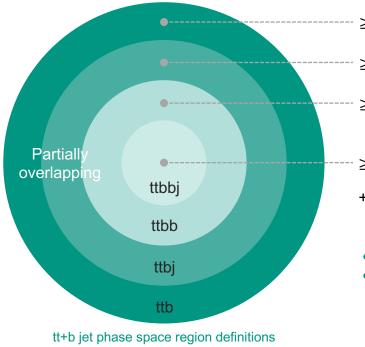
Additional b-jets from parton shower

### ttbb at ME at NLO (4FS)

- ttbb described by ttbb matrix elements at NLO (m<sub>b</sub> > 0)
- Theoretically preferred option for ttbb modelling



➤ Additional b-jets from matrix elements → expect larger scale variations


### **Modelling approaches**



|                                            | Different ME calo              | Different scale choices<br>in simulations |        |                              |                             |                                                                                                                                                                                                      |      |                           |
|--------------------------------------------|--------------------------------|-------------------------------------------|--------|------------------------------|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------|
| Generator setup                            | Process/ME order               | Generator/Shower                          | Tune   | PDF set                      | h <sub>damp</sub>           | Scales                                                                                                                                                                                               |      |                           |
| Powheg+p8 tī 5fs                           | tī/<br>NLO                     | POWHEG v2/<br>Pythia 8.240                | CP5    | 5FS NNPDF3.1<br>NNLO         | 1.379 <i>m</i> <sub>t</sub> | $\mu_{\rm F} = \mu_{\rm R} = m_{\rm T,t}$                                                                                                                                                            | -    |                           |
| Powheg+h7 $t\bar{t}$ 5fs                   | tī/<br>NLO                     | powheg v2/<br>herwig 7.13                 | CH3    | 5FS NNPDF3.1<br>NNLO         | 1.379 <i>m</i> <sub>t</sub> | $\mu_{\rm F} = \mu_{\rm R} = m_{\rm T,t}$                                                                                                                                                            |      |                           |
| Powheg+ol+p8 $t\bar{t}b\bar{b}$ 4fs        | tībb/<br>NLO                   | POWHEG-BOX-RES/<br>PYTHIA 8.240           | CP5    | 4FS NNPDF3.1<br>NNLO as 0118 | 1.379 <i>m</i> <sub>t</sub> | $ \begin{aligned} \mu_{\mathrm{R}} &= \tfrac{1}{2} \prod_{i=\mathrm{t},\bar{\mathrm{t}},\mathrm{b},\bar{\mathrm{b}}} m_{\mathrm{T},i}^{1/4}, \\ \mu_{\mathrm{F}} &= H_{\mathrm{T}}/4 \end{aligned} $ | F) \ | Note                      |
| SHERPA+OL $t\bar{t}b\bar{b}$ 4FS           | tībb/<br>NLO                   | sherpa 2.2.4                              | SHERPA | 4FS NNPDF3.0<br>NNLO as 0118 | _                           | $\begin{split} \mu_{\mathrm{R}} &= \prod_{i=\mathrm{t},\bar{\mathrm{t}},\mathrm{b},\bar{\mathrm{b}}} m_{\mathrm{T},i}^{1/4}, \\ \mu_{\mathrm{F}} &= H_{\mathrm{T}}/2 \end{split}$                    | ŦD-/ | different<br>pre-factors! |
| MG5_aMC+P8 tībb 4FS                        | tībb/<br>NLO                   | MadGraph5_amC@nlo v2.4.2/<br>pythia 8.230 | CP5    | 4FS NNPDF3.1<br>NNLO as 0118 | _                           | $\mu_{\rm F} = \mu_{\rm R} = \sum m_{\rm T}$                                                                                                                                                         |      |                           |
| MG5_aMC+P8 t $\overline{t}$ +jets FXFX 5FS | tī+jets FxFx∕<br>NLO [≤2 jets] | MadGraph5_amc@nlo v2.6.1/<br>pythia 8.240 | CP5    | 5FS NNPDF3.1<br>NNLO         | _                           | $\mu_{\rm F} = \mu_{\rm R} = \sum m_{\rm T},$<br>qCut = 40 GeV,<br>qCutME = 20 GeV                                                                                                                   |      |                           |

### Phase space regions for XS measurement





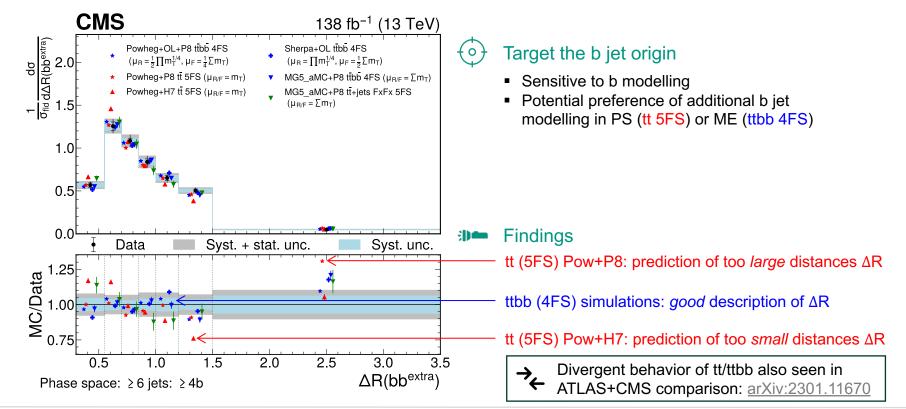
| $\geq$ 5 jets: $\geq$ 3 b jets $\rightarrow$ probing tt events with at least 1 additional b jet          |
|----------------------------------------------------------------------------------------------------------|
| $\geq$ 6 jets: $\geq$ 3 b jets, $\geq$ 3 light jets $\rightarrow$ probing additional light jet radiation |
| $\geq$ 6 jets: $\geq$ 4 b jets $\rightarrow$ probing fully resolved ttbb events                          |

 $\geq\!\!7$  jets:  $\geq\!\!4$  b jets,  $\geq\!\!3$  light jets  $\rightarrow$  probing additional light jet radiation

+ exactly one electron or muon in each region.

• Regions targeting distinct aspects of ttbb!

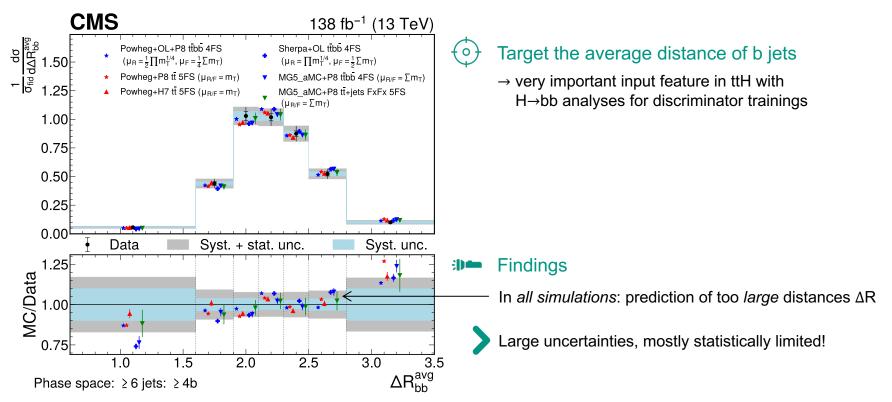
### **Observables**




|                                                                                                                                                                                                                                                                                                                                                  | Observable                                                                                                                                                                                                                                                                                                                                                                                                             | 5j3b                                                                                         | 6j4b                                                                                                                                                                                          | 6j3b3l       | 7j4b3l       |                                                                                                    |                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|----------------------------------------------------------------------------------------------------|-------------------------------------|
| $\sigma_{\rm fid}$                                                                                                                                                                                                                                                                                                                               | Inclusive cross section                                                                                                                                                                                                                                                                                                                                                                                                | $\checkmark$                                                                                 | $\checkmark$                                                                                                                                                                                  | $\checkmark$ | $\checkmark$ | XS inclusive                                                                                       |                                     |
| Global observables<br>$N_{jets}$<br>$N_b$<br>$H_T^{-}$<br>$H_T^{-}$<br>$H_T^{-}$<br>$H_T^{-}$                                                                                                                                                                                                                                                    | Jet multiplicity<br>b jet multiplicity<br>Scalar $p_T$ sum of all jets<br>Scalar $p_T$ sum of all b jets<br>Scalar $p_T$ sum of all light jets                                                                                                                                                                                                                                                                         | $\begin{array}{c} \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\\ \checkmark\end{array}$ | $\checkmark$<br>$\checkmark$                                                                                                                                                                  | √            | V            | Global observables covering various aspects of all jets                                            | Talk by<br>Jan van der Linden       |
| $\begin{array}{c} \text{Observables related} \\ p_{\mathrm{T}}(\mathbf{b}_3) \\  \eta(\mathbf{b}_3)  \\ p_{\mathrm{T}}(\mathbf{b}_4) \\  \eta(\mathbf{b}_4)  \end{array}$                                                                                                                                                                        | I to b jets<br>$p_{\rm T}$ of third hardest b jet<br>$ \eta $ of third hardest b jet<br>$p_{\rm T}$ of fourth hardest b jet<br>$ \eta $ of fourth hardest b jet                                                                                                                                                                                                                                                        | √<br>√                                                                                       | $\checkmark$<br>$\checkmark$<br>$\checkmark$                                                                                                                                                  |              |              | Jet kinematics, preferably b jets not from tt (3 <sup>rd</sup> /4 <sup>th</sup> b jet)             | 0                                   |
| Observables consid<br>$\Delta R_{bb}^{avg}$<br>$m_{bb}^{max}$                                                                                                                                                                                                                                                                                    | lering all pairs of b jets (bb)<br>Average ΔR of all bb pairs<br>Highest invariant mass among all bb pairs                                                                                                                                                                                                                                                                                                             |                                                                                              | $\checkmark$                                                                                                                                                                                  |              |              | All b jets                                                                                         |                                     |
| $ \begin{array}{c} \text{Observables related} \\ p_{T}(b_{1}^{\text{extra}}) \\  \eta(b_{1}^{\text{extra}})  \\ p_{T}(b_{2}^{\text{extra}}) \\  \eta(b_{2}^{\text{extra}})  \\ \mathcal{A}\mathcal{R}(\text{bbextra}) \\  \eta(b_{2}^{\text{extra}})  \\ \mathcal{O} \\ (b_{2}^{\text{bextra}}) \\ p_{T}(b_{2}^{\text{bextra}}) \\ \end{array} $ | to the pair of b jets closest in $\Delta R$ (bb <sup>extra</sup> )<br>$p_{\rm T}$ of leading extra b jet<br>$ \eta $ of leading extra b jet<br>$p_{\rm T}$ of subleading extra b jet<br>$ \eta $ of subleading extra b jet<br>$\Delta R$ of bb <sup>extra</sup> pair<br>$ \eta $ of bb <sup>extra</sup> pair<br>invariant mass of bb <sup>extra</sup> pair<br>$p_{\rm T}$ of bb <sup>extra</sup> pair                  |                                                                                              | $ \begin{array}{c} \checkmark \\ \checkmark $                                 |              |              | Observables based on<br>closest b jets in ∆R,<br>b <sup>extra</sup> preferrably b jets not from tt | $\mathbf{Q}$ = covered in this talk |
| $\begin{array}{l} \text{Observables related} \\ p_{T}(b_{1}^{add.}) \\  \eta(b_{1}^{add.})  \\ p_{T}(b_{2}^{add.})  \\  \eta(b_{2}^{add.})  \\ \Delta R(bb^{add.}) \\  \eta(bb^{add.})  \\ m(bb^{add.}) \\ p_{T}(bb^{add.}) \end{array}$                                                                                                         | It to the pair of b jets not from tī decay (bb <sup>add</sup> )<br>$p_{\rm T}$ of leading additional b jet<br>$ \eta $ of leading additional b jet<br>$p_{\rm T}$ of subleading additional b jet<br>$ \eta $ of subleading additional b jet<br>$\Delta R$ of bb <sup>add</sup> . pair<br>$ \eta $ of bb <sup>add</sup> . pair<br>invariant mass of bb <sup>add</sup> . pair<br>$p_{\rm T}$ of bb <sup>add</sup> . pair |                                                                                              | $\begin{array}{c} \checkmark^{*} \\ \checkmark^{*} \end{array}$ |              |              | Observables based on DNN<br>identification targeting b jets not<br>from tt                         | Poster by<br>Juhee Song             |
| Observables related<br>$p_{T}(l_{j_{1}}^{extra})$<br>$ \Delta \phi(l_{j_{1}}^{extra}, b_{soft}) $                                                                                                                                                                                                                                                | t to extra light jets<br>$p_{\rm T}$ of leading extra light jet<br>$\Delta \phi$ of leading extra light jet and softest b jet                                                                                                                                                                                                                                                                                          |                                                                                              |                                                                                                                                                                                               | $\checkmark$ | $\checkmark$ | Extra light jet radiaton                                                                           |                                     |

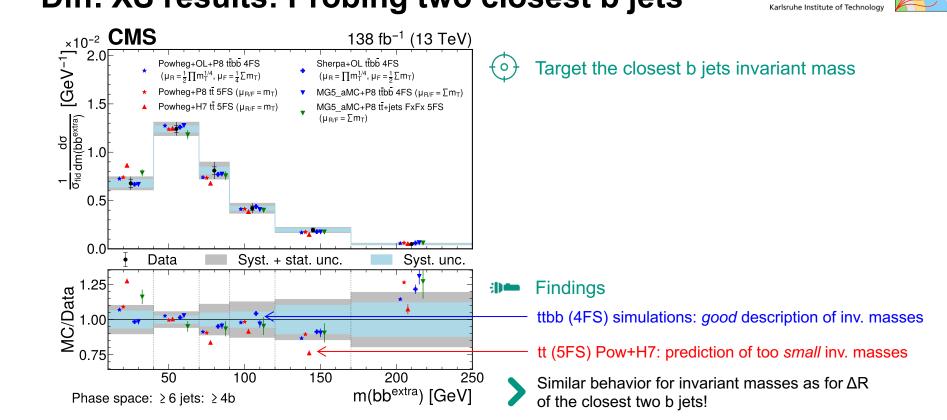
Emanuel Pfeffer – Inclusive and differential cross section measurements of ttbb production in the lepton+jets channel at  $\sqrt{s}$  = 13 TeV

# Cherry-picked differential cross section results

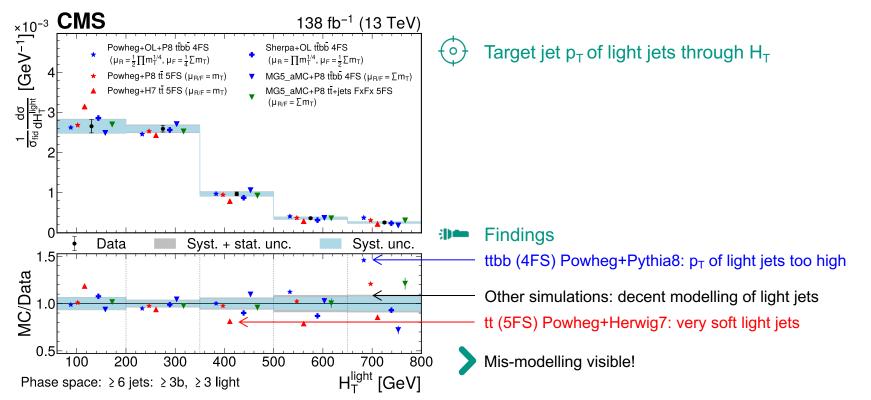

### **Diff. XS results: Probing two closest b jets**



Emanuel Pfeffer – Inclusive and differential cross section measurements of ttbb production in the lepton+jets channel at  $\sqrt{s}$  = 13 TeV

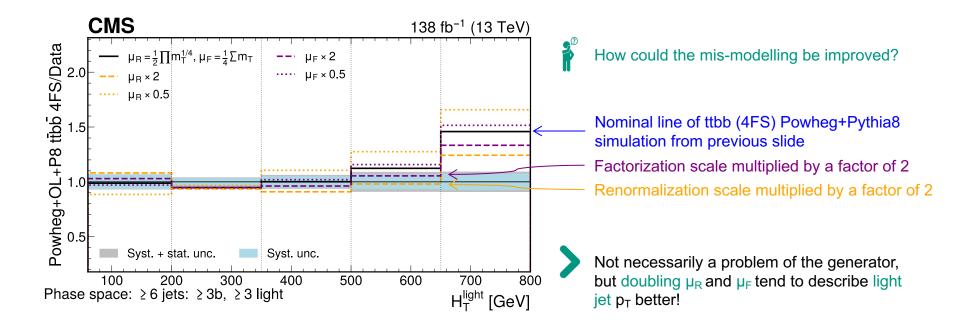

# **Diff. XS results: Probing spatial relations**






Emanuel Pfeffer – Inclusive and differential cross section measurements of ttbb production in the lepton+jets channel at  $\sqrt{s}$  = 13 TeV

### **Diff. XS results: Probing two closest b jets**




# **Diff. XS results: Probing additional light jets**



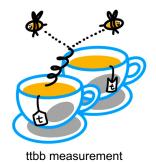
### **Diff. XS results: Probing additional light jets**





### Summary

Measurements of cross sections of ttbb production in the lepton+jets channel at  $\sqrt{s}$  = 13 TeV with 138 fb<sup>-1</sup>:


- Results compared to the predictions of several event generators and settings
- None of them simultaneously describe all measured distributions in various phase space regions
- ✓ ≥6 jets: ≥4 b jets: predictions compatible with the data within larger experimental uncertainties
- ✓ Other phase spaces: mis-modelling in predictions visible
- ✓ Rivet routine available to test generators!



Measurement helps tune and refine theoretical predictions and better assess theoretical uncertainties estimated from various ttbb event generators.

Measurement available at https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-22-009









import tensorflow as tf logger.dbug(tf.\_file\_) tf.set\_random\_seed(int(config("seed"))) from koras import set\_session tfconfig.gpu\_options.allow\_growth = True set\_session(tf.Session(config=tfconfig))

# Extract list of variables variables = config["variables" classes = config["classes"] logger.debug("Use variables:") for v in variables: logger.debug("%s", v)

# Load training dataset
if args.conditional:
 args.balanced\_batches = Tru
 eras = ['2016','2017','2018
else:

eras = ['any']





14 26.09.23

Emanuel Pfeffer – Inclusive and differential cross section measurements of ttbb production in the lepton+jets channel at  $\sqrt{s}$  = 13 TeV

# Sources of uncertainty



|         | -                                      | Relative uncertainty (%) |        |      |        |
|---------|----------------------------------------|--------------------------|--------|------|--------|
|         | Uncertainty source                     | 5j3b                     | 6j3b3l | 6j4b | 7j4b3l |
|         | Integrated luminosity                  | 1.6                      | 1.6    | 2.0  | 1.8    |
| Exp.    | Pileup reweighting                     | 0.2                      | 0.8    | 0.4  | 0.5    |
|         | Lepton and trigger                     | 1.1                      | 0.9    | 1.9  | 1.8    |
|         | JES, JER                               | 2.1                      | 1.6    | 3.5  | 5.7    |
|         | b tagging                              | 4.5                      | 3.9    | 7.0  | 9.1    |
| l neory | $\mu_{\rm R}$ and $\mu_{\rm F}$ scales | 2.8                      | 6.8    | 8.2  | 12     |
|         | Top quark $p_{\rm T}$ modelling        | 0.3                      | 1.0    | 0.6  | 1.3    |
|         | PDF                                    | 0.2                      | 0.7    | 1.0  | 1.9    |
|         | PS scales                              | 2.8                      | 2.7    | 2.4  | 1.5    |
|         | ME-PS matching $(h_{damp})$            | 0.4                      | 0.9    | 1.3  | 2.8    |
|         | Underlying event                       | 0.4                      | < 0.1  | 0.4  | 0.4    |
|         | Colour reconnection                    | 1.1                      | 1.5    | 1.9  | 4.5    |
|         | b quark fragmentation                  | 0.3                      | 0.4    | 0.4  | 0.4    |
|         | Inclusive $t\bar{t}C$ cross section    | 0.5                      | 0.3    | 1.9  | 2.6    |
|         | MC statistical                         | 0.8                      | 1.6    | 2.4  | 2.8    |
|         | Total systematic uncertainty           | 6.0                      | 8.7    | 13   | 17     |
|         | Statistical uncertainty                | 0.6                      | 1.2    | 2.2  | 3.3    |
|         | Total uncertainty                      | 6.0                      | 8.8    | 13   | 17     |