

BERGISCHE UNIVERSITÄT WUPPERTAL

ATLAS

TOP2023

Measurement of the t-channel single top-quark production cross-section in proton-proton collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector

Joshua Reidelstürz on behalf of the ATLAS Collaboration 25.09.2023 page 2

05.06.2023

ATLAS-CONF-2023-026

$13\,\mbox{TeV}$ t-channel single top quark production

Measurement of the inclusive t-channel top quark and top anti-quark cross section and their ratio $R_t = \sigma_{tq} / \sigma_{\bar{t}q}$

- Precision measurement of the largest single top production channel
- Using the full Run 2 dataset (previous ATLAS result used 3.2 fb⁻¹)
- Testing PDFs (particularly using R_t)
- Sensitive to new physics
- Effective field theory interpretation
- Directly constrain |V_{tx}| CKM matrix elements

ATLAS-CONF-2023-026

Event Selection

- exactly one charged lepton *ℓ* with *p*_T > 28 GeV and |η| < 2.5
- veto events with additional loose leptons
- exactly two jets with $p_{\rm T} > 30 \,{\rm GeV}$ and $|\eta| < 4.5$
- exactly one jet with a b-tag
- $E_{\rm T}^{\rm miss} > 30 \, {\rm GeV}$
- ▶ $m_{\rm T}(\ell E_{\rm T}^{\rm miss}) > 50 \,{\rm GeV}$
- $\blacktriangleright p_{\mathsf{T}}(\ell) > 40 \cdot |\Delta \Phi(j_1, \ell) / \pi|$
- ▶ *m*(ℓ*b*) < 160 GeV

- Orthogonal regions for multijet normalization:
 - *E*_T^{miss} < 30 GeV for electron multijet
 - $p_{\mathsf{T}}(\ell) >$ 40 · $|\Delta \Phi(j_1, \ell)/\pi|$ for muon multijet

Event yields

Signal separated into 2 signal regions based on charge of lepton

Negative ℓ channel

	SR plus	SR minus	
tq	$169000\pm\ 6000$	150 ± 150	
$\overline{t}q$	90 ± 90	109000 ± 5000	
$tW + \overline{t}W, t\overline{b} + \overline{t}b$	50700 ± 3400	48800 ± 3400	
tī	264000 ± 14000	264000 ± 13000	
$W + b\overline{b}$, light	202000 ± 19000	162000 ± 16000	
$W+c(\bar{c})$	60000 ± 13000	49000 ± 11000	
Z+jets,diboson	$20000\pm~4000$	19000 ± 4000	
Multijet	48000 ± 10000	$\textbf{47000}\pm\textbf{10000}$	
Total	814 000 \pm 2100	$698800\pm\ 2000$	

Neural network used for signal separation

ATLAS-CONF-2023-026

Neural Network Input Variables

ATLAS-CONF-2023-026

Modeling of Neural Network Input Variables

Input variables are modeled well in data

 $\eta(j)$: pseudorapidity of light jet

Neural Network discriminant (D_{nn}) shape

One NN used for both the positive and negative lepton channel

05.06.2023

Good separation of signal and background processes

ATLAS-CONF-2023-026

Fit results

Signal region ℓ^+

Signal region ℓ^-

	$\sigma_t [pb]$	$\sigma_{\overline{t}} [pb]$	$\sigma_{\rm tch}[{\rm pb}]$	R_t
Value	137 ± 8	84^{+6}_{-5}	221 ± 13	$1.636\substack{+0.036\\-0.034}$
Relative Uncertainty	$^{+5.9\%}_{-5.5\%}$	$^{+6.6\%}_{-6.2\%}$	$\pm 5.9\%$	$^{+2.2\%}_{-2.1\%}$
Predicted	134.2 ± 2.2	80.0 ± 1.6	214.2 ± 2.7	$1.677\substack{+0.010\\-0.014}$

ATLAS-CONF-2023-026

Results

- Agreement with almost all PDF predictions
- EFT interpretation yields 95% confidence interval: -0.29 < C^(1,3)_{qQ} < 0.07
- $|f_{\rm LV} \cdot V_{tb}| = 1.016 \pm 0.031$
- Currently best determination of this quantity

•
$$|V_{tb}| > 0.95$$
 at the 95% CL

≥ 5

Scan Vtb Vts

- 2D scans of CKM matrix elements
- Remaining CKM matrix element assumed to be constant
- Small dependence of |V_{tb}| on |V_{ts}| and |V_{td}|

Summary

- First single top t-channel measurement using full run 2 dataset
- Most precise measurement of these cross sections and R_t
- Largest uncertainty sources are signal modeling uncertainties for the cross sections and background modeling for R_t
- EFT interpretation constraining $C_{aQ}^{(1,3)}$
- Setting constraints on CKM matrix elements
- Most precise direct measurement of $|f_{LV} \cdot V_{tb}|$

Backup

ATLAS-CONF-2023-026

Prefit Plots

- Neural network used for signal separation
- Maximum LH fit of neural network output distribution is used to measure the cross section

Impact of uncertainty groups

Impact of different groups of systematic uncertainties on $\sigma(tq)$, $\sigma(tq)$, $\sigma(tq + tq)$ and R_t given in %

Uncertainty group	$\sigma(tq)$	$\sigma(\bar{t}q)$	$\sigma(tq+\bar{t}q)$	R_t
Data statistical	+0.4 / -0.4	+0.5 / -0.5	+0.3 / -0.3	+0.6 / -0.6
Signal modelling	+4.9 / -4.5	+5.2 / -4.7	+5.0 / -4.6	+0.9 / -0.9
Background modelling	$+1.8 \ / \ -1.6$	+2.1 / -1.9	+1.8 / -1.6	+1.5 / -1.4
MC statistical	$+1.1 \ / \ -1.0$	$+1.4 \ / \ -1.3$	$+1.2 \ / \ -1.1$	+0.8 / -0.8
PDFs	+0.4 / -0.4	$+1.2 \ / \ -1.0$	+0.7 / -0.6	$+0.9 \ / \ -0.8$
Jets	+2.2 / -2.0	+3.0 / -2.7	+2.5 / -2.3	$+1.0 \ / \ -0.9$
<i>b</i> -tagging	$+1.6 \ / \ -1.5$	$+1.7 \ / \ -1.5$	$+1.6 \ / \ -1.5$	+0.2 / -0.1
Leptons	$+1.1 \ / \ -1.0$	$+1.1 \ / \ -1.0$	$+1.1 \ / \ -1.0$	$+0.1 \ / \ -0.1$
Luminosity	$+0.9 \ / \ -0.8$	$+0.9 \ / \ -0.9$	$+0.9 \ / \ -0.8$	< 0.1
Total	+5.9/-5.5	+6.6 / -6.2	+5.9/-5.9	+2.2 / -2.1