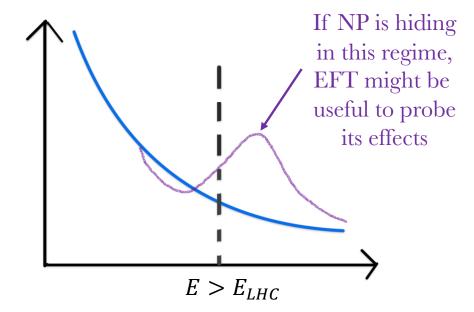


Probing EFT models using associated top quark production in multilepton final states

Top 2023, Traverse City, Michigan September 26, 2023

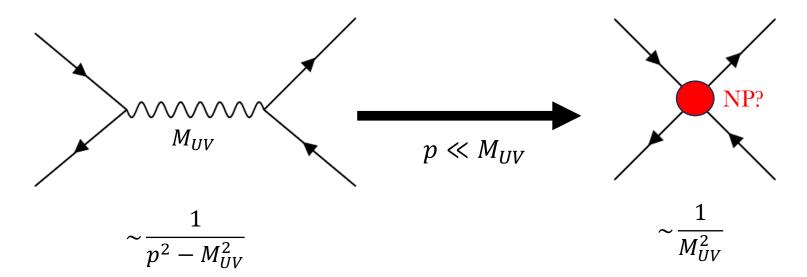
> Aashwin Basnet Ohio State University On behalf of the CMS collaboration



basnet.13@osu.edu

- Strong indications that the Standard Model (SM) is not the complete description of nature
- No clear evidence of new physics (NP) at the LHC
- What if new particles are too heavy to be produced onshell at the LHC?
 - Indirect search strategies might be useful
- Effective Field Theory (EFT) is an indirect search probe, that allows a relatively model-independent way of exploring mass scales higher than what LHC is capable of achieving

In SMEFT, the SM is treated as the lowest order term and is extended by a set of higher dimensional operators that encode the effects of new heavy particles. These operators characterize the physics at energy scale Λ
 Wilson Coefficients (strength of NP interaction)

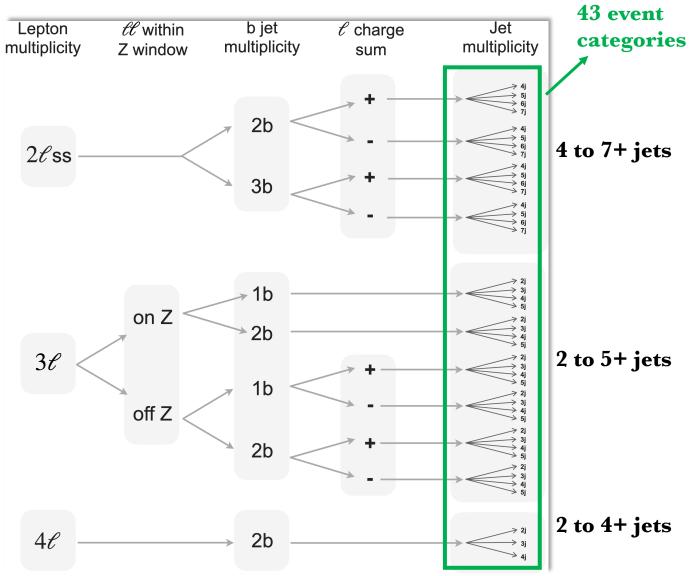

Setting all WCs = 0 gives us SM lagrangian back

$$\mathcal{L}_{EFT} = \mathcal{L}_{SM} + \sum_{i} \frac{c_{i}}{\Lambda} \mathcal{O}_{i}^{(5)} + \sum_{i} \frac{c_{i}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)} + \cdots$$

Energy scale of new physics $\Lambda \gg \Lambda_{LHC}$

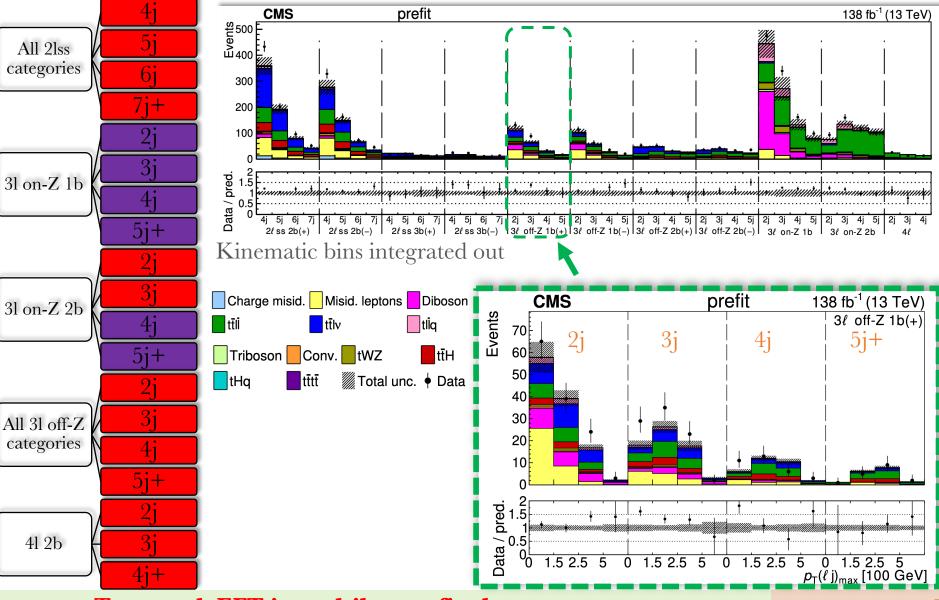
EFT operators made of SM fields and their derivatives. The numbers indicate mass dimension of the operators

We consider only dim-6 top EFT operators since they are the lowest non-LFV terms that contribute


Aashwin Basnet

Overview of the analysis

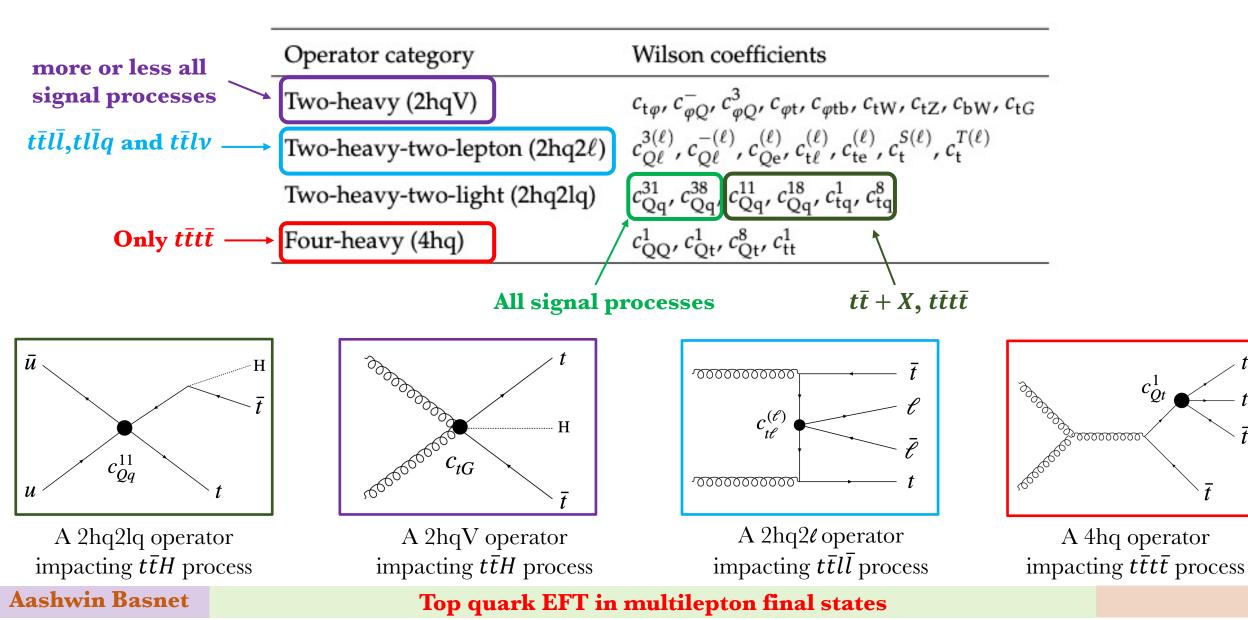
- Probes NP using global fitting approach by simultaneous fitting of the WCs to data
- Unique aspects of the analysis:
 - Models EFT effects directly at the detector level (see <u>Kelci's talk</u> for more details)
 - Studies 6 relatively rare signal processes: *ttH*, *ttlv*, *ttll*, *tllq*, *tHq*, *tttt*
 - Considers all dim-6 EFT operators involving top quarks that strongly impact the signal processes → 26 operators


Going differential

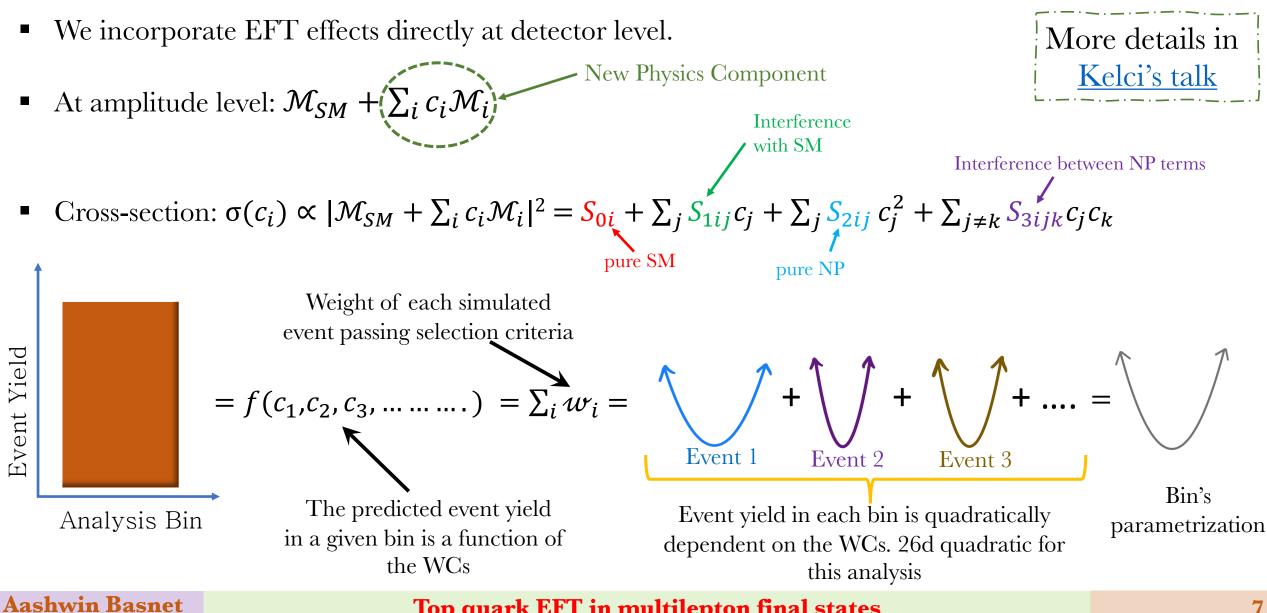
- Uses differential kinematic variables for fitting leading to 178 analysis bins:
 - $p_T(Z)$: p_T of on-shell Z boson for most 3ℓ on-shell categories
 - $p_T(\ell j)_{max}$: p_T of ٠ leading pair of leptons and/or jets for all other categories

41 2b

Up to a factor of ~ 2 improvement in sensitivity through kinematic variable binning



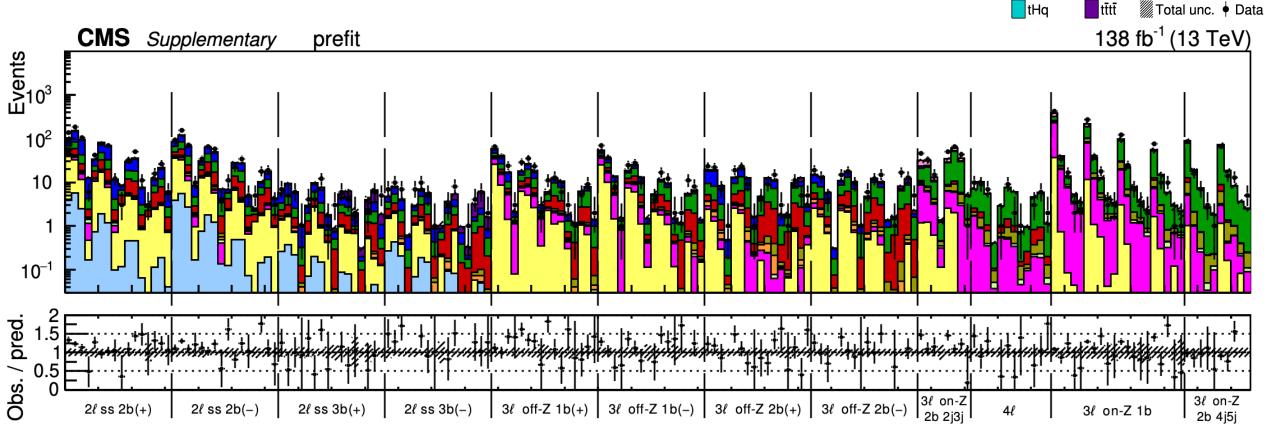
Aashwin Basnet



EFT operators

Top quark EFT in multilepton final states

Τηε Ομιο Stati UNIVERSITY

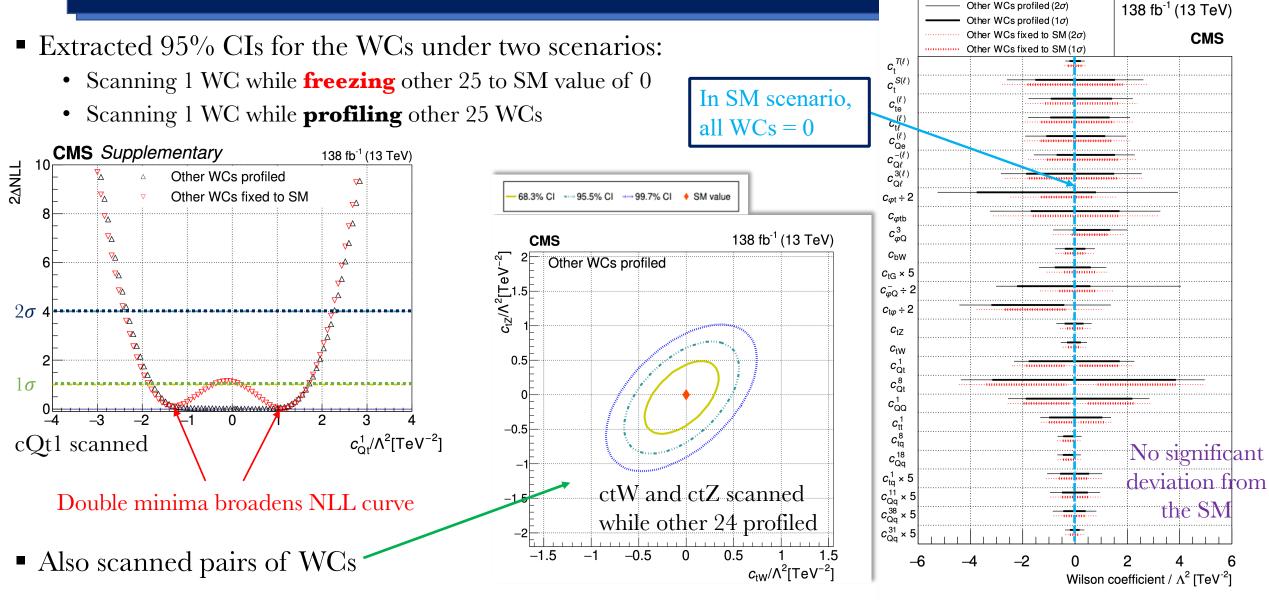

tlla

tτΗ

Charge misid. Misid. leptons Diboson

Triboson Conv. tWZ

- 43 event categories binned using kinematic variables \rightarrow 178 analysis bins
- Signal yields in each of the bins parametrized as 26d quadratics
- Perform likelihood fit with the WCs as Parameters of Interests (POIs) to extract the CIs for the WCs



CMS

Other WCs profiled (2σ)

Aashwin Basnet

- Studied the relative contribution of bins (or group of bins) to the sensitivity to each WC
- Important to emphasize that the sensitivity to a WC comes from a diverse combination of bins from several categories
- Interference and correlations among WCs are also important factors in driving yields for a given bin

Grouping of WCs	WCs	Lead categories
2hq2ℓ	$c_{Q\ell}^{3(\ell)}, c_{Q\ell}^{-(\ell)}, c_{Qe}^{(\ell)}, c_{t\ell}^{(\ell)},$	3ℓ off-Z
	$c_{ ext{te}}^{(\ell)}, c_{ ext{t}}^{S(\ell)}, c_{ ext{t}}^{T(\ell)}$	
4hq	$c_{\mathrm{QQ}}^1, c_{\mathrm{Qt}}^1, c_{\mathrm{Qt}}^8, c_{\mathrm{tt}}^1$	$2\ell ss$
2hq2lq "t $\bar{t}\ell\nu$ -like"	$c_{\mathrm{Qq}}^{11}, c_{\mathrm{Qq}}^{18}, c_{\mathrm{tq}}^{1}, c_{\mathrm{tq}}^{8}$	$2\ell ss$
2hq2lq "t $\ell \overline{\ell}$ q-like"	$c_{ m Qq}^{ m 31}, c_{ m Qq}^{ m 38}$	3ℓ on-Z
2hqV "t $\overline{t}\ell\overline{\ell}$ -like"	$c_{\mathrm{tZ}}, c_{\varphi\mathrm{t}}, c_{\varphi Q}^{-}$	3ℓ on-Z and $2\ell ss$
2hqV "tXq-like"	$c_{\varphi Q}^3, c_{\varphi { m tb}}, c_{{ m bW}}$	3ℓ on-Z
2hqV (significant impacts on many processes)	$c_{\mathrm{t}G}, c_{\mathrm{t}\varphi}, c_{\mathrm{t}W}$	3ℓ and $2\ell ss$

Aashwin Basnet

- SMEFT is a relatively model-independent and systematic framework to characterize NP effects
- We search for NP impacting associated top production in multilepton final states using SMEFT framework
 - Modeled EFT effects at detector level and performed global fitting of 26 EFT operators that strongly impact 6 relatively rare signal processes
 - Results consistent with the SM
 - For more details: <u>arXiv:2307.15761</u> (Submitted to JHEP)
- Many improvements in progress for the analysis:
 - More statistics
 - Optimizations of event categorizations and kinematic variables used for fitting
 - Including more signal processes and other final states
 - Combinations with other Top EFT analyses (paving path towards combination between different CMS EFT groups like Higgs and Electroweak sectors)

Exciting times ahead!

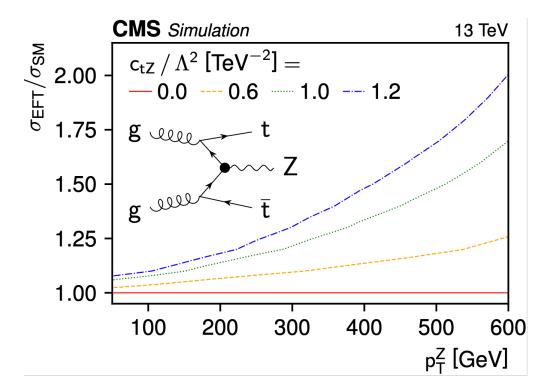
Thank you!

Aashwin Basnet

Top quark EFT in multilepton final states

12

BACKUP


Aashwin Basnet

Top quark EFT in multilepton final states

13

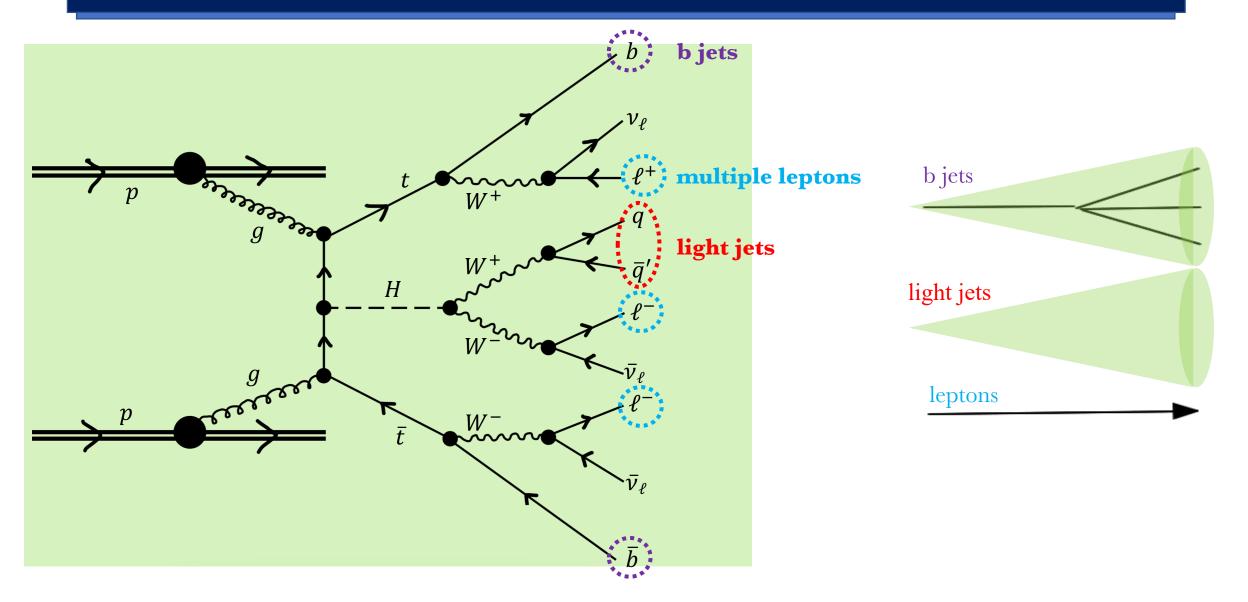
Sensitivity to EFT effects

Ratio of ttZ cross-section in SMEFT scenario vs. SM scenario as a function of ctZ and Z-boson pT. Taken from Fig. 2a) <u>PhysRevD.108.032008</u>

Aashwin Basnet

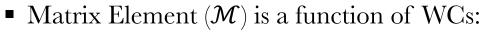
Top quark EFT in multilepton final states

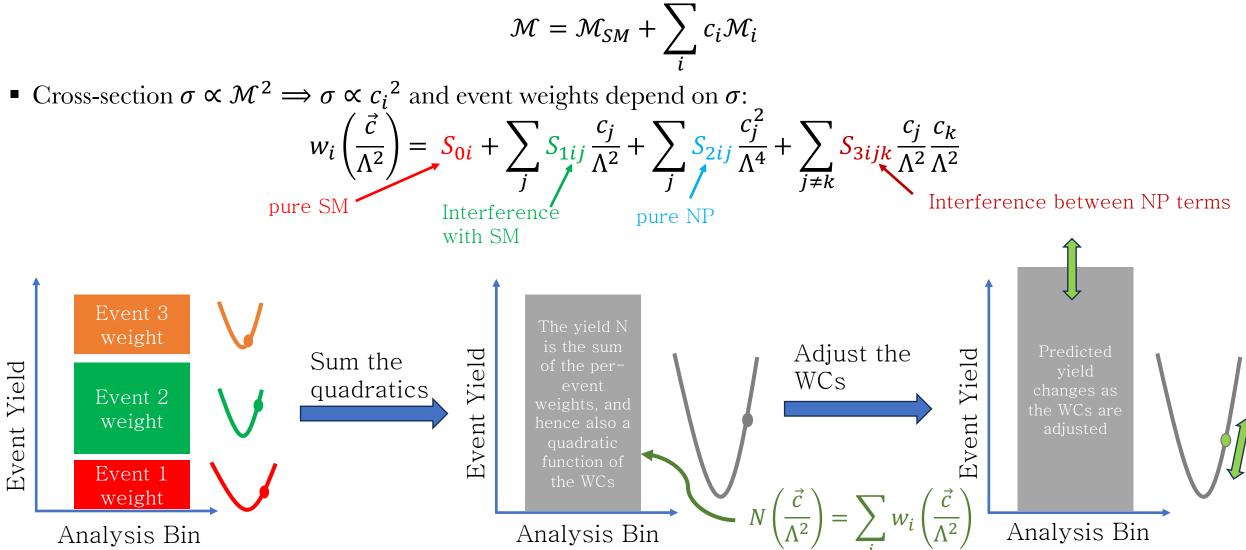
THE OHIO STATE UNIVERSITY



Event category	Leptons	$m_{\ell\ell}$	b tags	Lepton charge sum	Jets	Kinematical variable
2ℓss 2b	2	No requirement	2	>0, <0	$4, 5, 6, \ge 7$	$p_{\rm T}(\ell j)_{\rm max}$
2ℓss 3b	2	No requirement	≥ 3	>0, <0	$4, 5, 6, \ge 7$	$p_{\rm T}(\ell j)_{\rm max}$
3ℓ off-Z 1b	3	$ m_{\rm Z}-m_{\ell\ell} >10{\rm GeV}$	1	>0, <0	$2, 3, 4, \ge 5$	$p_{\rm T}(\ell j)_{\rm max}$
3ℓ off-Z 2b	3	$ m_{\rm Z}-m_{\ell\ell} >10{\rm GeV}$	≥ 2	>0, <0	$2, 3, 4, \ge 5$	$p_{\rm T}(\ell j)_{\rm max}$
3ℓ on-Z 1b	3	$ m_{\rm Z}-m_{\ell\ell} <10{\rm GeV}$	1	No requirement	$2, 3, 4, \ge 5$	$p_{\mathrm{T}}(Z)$
3ℓ on-Z 2b	3	$ m_{\rm Z}-m_{\ell\ell} <10{\rm GeV}$	≥ 2	No requirement	$2, 3, 4, \ge 5$	$p_{\rm T}(Z)$ or $p_{\rm T}(\ell j)_{\rm max}$
4ℓ	≥ 4	No requirement	≥ 2	No requirement	2, 3, ≥4	$p_{\rm T}(\ell j)_{\rm max}$

Experimental signatures


Challenges faced



- Even though multilepton signatures are relatively cleaner, thus providing several advantages, there are also many challenges:
 - Multiple signal processes and WCs can contribute to the same final states
 - Analysis needs dedicated private EFT samples generation
 - Computationally expensive
 - No reinterpretation in terms of cross section measurement possible

Top quark EFT in multilepton final states

Aashwin Basnet

Example: N = 1
$$\rightarrow$$
 K = 3:
For N = 26, K = 378

$$K = \frac{(N+1).(N+1)-(N+1)}{2} + (N+1)$$
Interference with SM
 $\sigma \propto s_0 + s_1c_1 + s_2c_1^2$
Pure SM

- In theory, we could extract these 378 structure constants if we knew the xsec at 378 points in the 26d WC space.
 - Requires generating 378 unique simulated samples. Not feasible
- Instead use MG reweighting technique.
 - Generate event under a certain theoretical scenario corresponding to a particular point in 26d WC space. Call it "starting point"
 - Compute event weights at alternative points in the WC space. We need event weights at least 378 such points
 - Extract 378 structure constants. We know full parametrization of the event weight in terms of the WCs!

THE OHIO STAT UNIVERSITY

- Background contribution dominated by diboson production (WZ and ZZ)
 - Subleading contribution from triboson and tWZ processes
 - Estimated using simulations
- Nonprompt leptons (e.g., from b hadrons decay) also another important background
 - Estimated using data-driven methods
- Other sources of background:
 - charge flips
 - photon conversion

Systematic uncertainty	Average change in the yields
Integrated luminosity	1.6%
Jet energy scale and resolution	1%
b jet tagging scale factors	1%
Theoretical cross section	1–4% (QCD) 1% (PDF)
Renormalization and factorization scales	3%
Parton shower	1–2%
Additional radiation	7%
Electron and muon identification and isolation	2% (electron) 1% (muon)
Trigger efficiency	$\leq 1\%$
Pileup	1%
L1 prefiring	1%
Misidentified-lepton rate	3%
Charge misreconstruction rate	1%
Jet mismodeling	7%

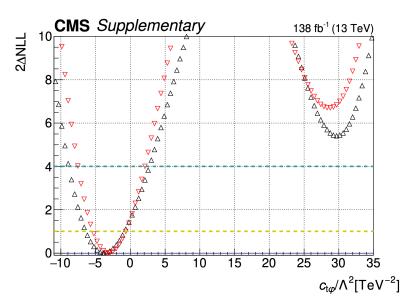
Aashwin Basnet

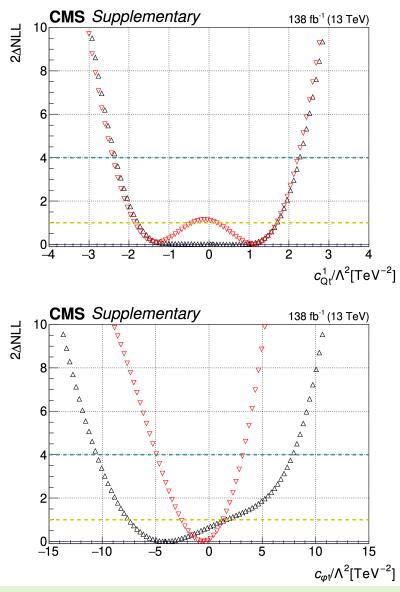
Observed 2σ CIs

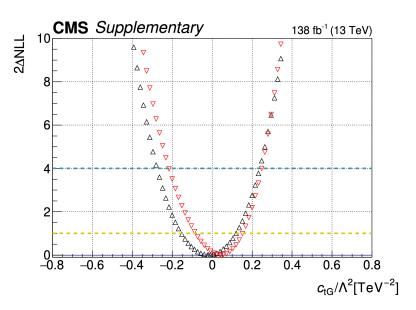
WC/Λ^2 [TeV ⁻²]	2σ CI (other WCs profiled)	2σ CI (other WCs fixed to SM)
WC category 2hq2ℓ		
$c_{\mathrm{t}}^{T(\ell)}$	[-0.37, 0.37]	[-0.40, 0.40]
$c_{\mathrm{t}}^{S(\ell)}$	[-2.60, 2.62]	[-2.80, 2.80]
$c_{ m te}^{(\ell)}$	[-1.78, 2.21]	[-1.91, 2.39]
$c_{\mathrm{t}\ell}^{(\ell)}$	[-1.80, 2.11]	[-2.02, 2.20]
$c_{Qe}^{(\ell)}$	[-1.91, 1.96]	[-2.04, 2.12]
WC category 2hqV		
$c_{Q\ell}^{-(\ell)}$	[-1.58, 2.28]	[-1.80, 2.33]
$c_{Q\ell}^{3(\ell)}$	[-2.84, 2.55]	[-2.69, 2.58]
c_{qt}	[-10.52, 7.87]	[-4.93, 3.18]
$c_{arphi \mathrm{tb}}$	[-3.25, 3.26]	[-3.14, 3.18]
$c_{\varphi Q}^3$	[-0.84, 2.00]	[-0.85, 1.89]
c _{bW}	[-0.76, 0.76]	[-0.75, 0.75]
c_{tG}	[-0.28, 0.24]	[-0.22, 0.25]
$c_{\varphi Q}^{-}$	[-6.06, 8.12]	[-2.68, 2.94]
$c_{t\varphi}$	[-8.85, 2.75]	[-7.54, 2.11]
c_{tZ}	[-0.71, 0.64]	[-0.58, 0.59]
$c_{\rm tW}$	[-0.55, 0.46]	[-0.47, 0.41]
WC category 4hq		
c_{Qt}^{1}	[-2.34, 2.27]	[-2.41, 2.22]
c_{Qt}^{8}	[-4.37, 4.97]	[-4.45, 4.96]
c_{QQ}^{1}	[-2.56, 2.84]	[-2.57, 2.89]
$c_{ m tt}^1$	[-1.33, 1.38]	[-1.31, 1.43]
WC category 2hq2lq		
c_{tq}^{8}	[-0.68, 0.25]	[-0.68, 0.24]
c_{Qq}^{18}	[-0.68, 0.22]	[-0.67, 0.21]
c_{tq}^{1}	[-0.21, 0.21]	[-0.22, 0.20]
$c_{\rm Qq}^{11}$	[-0.19, 0.19]	[-0.19, 0.20]
c_{Qq}^{38}	[-0.17, 0.16]	[-0.17, 0.16]
c_{Qq}^{31}	[-0.08, 0.07]	[-0.08, 0.07]

THE OHIO STATE UNIVERSITY

Aashwin Basnet

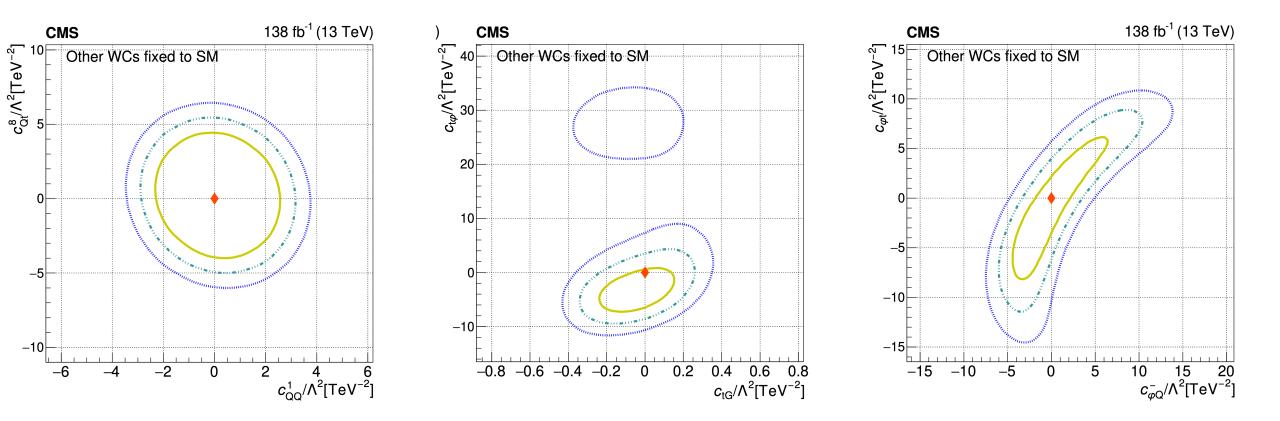



Selected 1D Scans



Other WCs fixed to SM

--- 68.3% CI ---- 95.5% CI ---- 99.7% CI + SM value



Top quark EFT in multilepton final states

THE OHIO STATE UNIVERSITY

- 68.3% CI ---- 95.5% CI ----- 99.7% CI + SM value

Top quark EFT in multilepton final states

THE OHIO STATE UNIVERSITY