

Uncovering New Higgs Bosons in the ATLAS Analysis of Differential $t\bar{t}$ Cross-sections

Sumit Banik

(In collaboration with A. Crivellin, G. Coloretti, B. Mellado)

- Based on *arXiv.2308.07953*

September 26, 2023

- 1. Motivation
- 2. Benchmark Model
- 3. Results
- 4. Conclusions

Deviations in differential *tt* cross-section

Normalised differential cross-sections as a function of the invariant mass of $e - \mu$ system from ATLAS [arXiv:2303.15340].

- SM predictions using six combinations of MC simulators.
- Significant deviations from the SM at low $m^{e\mu}$.

Deviations in differential tt cross-section

Normalised differential cross-sections as a function of the angle between the leptons ($\Delta \phi^{e\mu}$) from ATLAS [arXiv:2303.15340].

"No model can describe all measured distributions within their uncertainties."-ATLAS

Mismodelling of SM at the LHC or new physics effects?

Higgs boson at \approx 95 GeV?

Figure 1: CMS: $H \rightarrow \gamma \gamma$ (2.9 σ) Figure 2: ATLAS: $H \rightarrow \gamma \gamma$ (1.7 σ)

Figure 3: LEP: $H \rightarrow b\bar{b}$ (2 σ)

Figure 4: CMS+ATLAS (4.1 σ)

Higgs boson at \approx 150 GeV?

[arXiv:2306.17209] by S. Bhattacharya, G. Coloretti, A. Crivellin, S. Dahbi, Y. Fang, M. Kumar, B. Mellado

Global significance of 4.9σ obtained for a simplified model.

Benchmark Model

- NP model should have opposite-sign different-flavour di-leptons with one or more *b*-jets.
- We consider a simplified model with three Higgs bosons [arXiv:2308.07953].

- Fixed the masses of S and S' by hints for 95 GeV and 150 GeV resonances. Fixed mass of H to 270 GeV, no effects by varying.
- Assumption: $Br[S \rightarrow WW] = 100\%$ and $Br[S' \rightarrow b\bar{b}] = 100\%$.

Benchmark Model

- Focus on the $m^{e\mu}$ and $|\Delta \phi^{e\mu}|$ distributions due to significant deviations. (Other observables consistent)
- Extract experimental data by digitizing the ATLAS plots: $x_i = \frac{MC_i}{data_i}$.
- Correlation matrix (ρ_{ij}) between $m^{e_{\mu}} |\Delta \phi^{e_{\mu}}|$ and within single distribution by simulating 1600k events of $pp \rightarrow t\bar{t}$ in SM.
- Add normalized NP physics contribution r_i obtained from MadGraph5aMC@NLO+Pythia.
- Treating NP linearly as a small perturbation

$$\chi^2_{\rm NP} = \sum_{i,j=1} (ax_i + \varepsilon_{\rm NP}r_i - 1) \rho_{ij}^{-1} (ax_j + \varepsilon_{\rm NP}r_j - 1)$$

• For best-fit, minimize $\chi^2_{\rm NP}$ with respect to $\varepsilon_{\rm NP}$ and a.

The solid lines are the predictions of our NP model for the best fit to data, and the dashed lines depict the SM.

	$m^{e\mu}$				$\Delta \phi^{e\mu}$				$m^{e\mu} + \Delta \phi^{e\mu}$				
	$\chi^2_{\rm SM}$	$\chi^2_{\rm NP}$	$\sigma_{\rm NP}$	Sig.	$\chi^2_{\rm SM}$	$\chi^2_{\rm NP}$	$\sigma_{\rm NP}$	Sig.	$\chi^2_{\rm SM}$	$\chi^2_{\rm NP}$	$\sigma_{\rm NP}$	Sig.	$m_S[\text{GeV}]$
Powheg+Pyhtia8	146	50	$10 \mathrm{pb}$	9.8σ	183	73	11pb	10.5σ	213	102	9pb	10.5σ	143 - 156
aMC@NLO+Herwig7.1.3	31	13	$4\mathrm{pb}$	4.2σ	96	38	$8\mathrm{pb}$	7.6σ	102	68	$5\mathrm{pb}$	5.8σ	
aMC@NLO+Pythia8	89	14	$9\mathrm{pb}$	8.7σ	277	83	$15 \mathrm{pb}$	14.0σ	291	163	$10 \mathrm{pb}$	11.3σ	148 - 157
Powheg+Herwig7.1.3	138	32	$10 \mathrm{pb}$	10.3σ	245	93	$13 \mathrm{pb}$	12.3σ	261	126	$10 \mathrm{pb}$	11.6σ	149 - 156
Powheg+Pythia8 (rew)	40	12	$5\mathrm{pb}$	5.3σ	54	26	$6\mathrm{pb}$	5.3σ	69	35	$5\mathrm{pb}$	5.8σ	
Powheg+Herwig7.0.4	186	41	$12 \mathrm{pb}$	12.0σ	263	99	$14 \mathrm{pb}$	12.8σ	294	126	$12 \mathrm{pb}$	13.0σ	149 - 156
Average	93	23	8pb	8.4σ	172	63	11pb	10.4σ	182	88	9pb	9.6σ	143-157

- $\chi^2_{\rm NP}$ is for the benchmark point $m_{\rm S} \approx 150$ GeV.
- $m_{\rm S}$ gives the preferred range from the fit.
- Averaging the six different SM predictions $\sigma(pp \rightarrow H \rightarrow SS' \rightarrow WWb\bar{b}) \approx 9pb$ is preferred.
- NP preferred over the SM hypothesis by atleast 5.8σ .

- Assuming S'(95) is SM-like, i.e Br[S' $\rightarrow b\bar{b}$] = 86%, and Br[S \rightarrow WW] = 100%
- Red region preferred by $t\bar{t}$ distribution.
- Blue region preferred by $\gamma\gamma$ signal strength at 95 GeV.

NP explanation of $t\bar{t}$ distributions compatible with 95 $\rightarrow \gamma\gamma$ excess

10

Summary

- Significant deviations in differential lepton distribution $m^{e\mu}$ and $\Delta \phi^{e\mu}$ suggests mismodelling of the SM or new physics effects.
- Possibility of a new particle at the electroweak scale.
- Considered a simplified model with three Higgs that gives a NP background process $pp \rightarrow H \rightarrow SS' \rightarrow WWb\bar{b}$.
- Assuming S(152) is from a triplet and S'(95) is from a singlet, our simplified model is compatible with di-photon excess at 95 GeV.
- NP model can also explain the excess in W mass.
- Emergence of a new model with multiple scalars in a singlet(95)-doublet(125)-doublet(270)-triplet(150) pattern (future work).

• For η and $E^e + E^{\mu}$

• For $p^e + p^{\mu}$ and $p^{e\mu}$

