

Uncovering New Higgs Bosons in the ATLAS Analysis of Differential tit Cross-sections

Sumit Banik
(In collaboration with A. Crivellin, G. Coloretti, B. Mellado)

- Based on arXiv.2308.07953

September 26, 2023

Outline

1. Motivation
2. Benchmark Model
3. Results
4. Conclusions

Motivation

Deviations in differential $t \bar{t}$ cross-section

Normalised differential cross-sections as a function of the invariant mass of $e-\mu$ system from ATLAS [arXiv:2303.15340].

- SM predictions using six combinations of MC simulators.
- Significant deviations from the SM at low $m^{e \mu}$.

Motivation

Deviations in differential $t \bar{t}$ cross-section

Normalised differential cross-sections as a function of the angle between the leptons ($\Delta \phi^{e \mu}$) from ATLAS [arXiv:2303.15340].

Mismodelling of SM at the LHC or new physics effects?

Motivation

Higgs boson at $\approx 95 \mathrm{GeV}$?

Figure 1: CMS: $H \rightarrow \gamma \gamma(2.9 \sigma) \quad$ Figure 2: ATLAS: $H \rightarrow \gamma \gamma(1.7 \sigma)$

Figure 3: LEP: $H \rightarrow b \bar{b}(2 \sigma)$

Figure 4: CMS+ATLAS (4.1 $)$

Motivation

Higgs boson at $\approx 150 \mathrm{GeV}$?

[arXiv:2306.17209] by S. Bhattacharya, G. Coloretti, A. Crivellin, S. Dahbi, Y. Fang, M. Kumar, B. Mellado

Global significance of 4.9σ obtained for a simplified model.

Benchmark Model

- NP model should have opposite-sign different-flavour di-leptons with one or more b-jets.
- We consider a simplified model with three Higgs bosons [arXiv:2308.07953].

- Fixed the masses of S and S^{\prime} by hints for 95 GeV and 150 GeV resonances. Fixed mass of H to 270 GeV , no effects by varying.
- Assumption: $\operatorname{Br}[S \rightarrow W W]=100 \%$ and $\operatorname{Br}\left[S^{\prime} \rightarrow b \bar{b}\right]=100 \%$.

Benchmark Model

- Focus on the $m^{e \mu}$ and $\left|\Delta \phi^{e \mu}\right|$ distributions due to significant deviations. (Other observables consistent)
- Extract experimental data by digitizing the ATLAS plots: $x_{i}=\frac{\mathrm{MC}_{i}}{\text { data }_{i}}$.
- Correlation matrix $\left(\rho_{i j}\right)$ between $m^{e \mu_{-}}\left|\Delta \phi^{e \mu}\right|$ and within single distribution by simulating 1600k events of $p p \rightarrow t \bar{t}$ in SM.
- Add normalized NP physics contribution r_{i} obtained from MadGraph5aMC@NLO+Pythia.
- Treating NP linearly as a small perturbation

$$
\chi_{\mathrm{NP}}^{2}=\sum_{i, j=1}\left(a x_{i}+\varepsilon_{\mathrm{NP}} r_{i}-1\right) \rho_{i j}^{-1}\left(a x_{j}+\varepsilon_{\mathrm{NP}} r_{j}-1\right)
$$

- For best-fit, minimize χ_{NP}^{2} with respect to $\varepsilon_{\mathrm{NP}}$ and a.

Results

The solid lines are the predictions of our NP model for the best fit to data, and the dashed lines depict the SM.

Results

	$m^{e \mu}$				$\Delta \phi^{e \mu}$				$m^{e \mu}+\Delta \phi^{e \mu}$				
	χ_{SM}^{2}	χ_{NP}^{2}	$\sigma_{\text {NP }}$	Sig.	$\chi_{\text {SM }}^{2}$	χ_{NP}^{2}	$\sigma_{\text {NP }}$	Sig.	$\chi_{\text {SM }}^{2}$	χ_{NP}^{2}	σ_{NP}	Sig.	$m_{S}[\mathrm{GeV}]$
Powheg+Pyhtia8	146	50	10 pb	9.8σ	183	73	11 pb	10.5σ	213	102	9 pb	10.5σ	143-156
aMC@NLO+Herwig7.1.3	31	13	4 pb	4.2σ	96	38	8pb	7.6σ	102	68	5pb	5.8σ	--
aMC@NLO+Pythia8	89	14	9 pb	8.7σ	277	83	15 pb	14.0σ	291	163	10 pb	11.3σ	148-157
Powheg+Herwig7.1.3	138	32	10 pb	10.3σ	245	93	13 pb	12.3σ	261	126	10 pb	11.6σ	149-156
Powheg + Pythia8 (rew)	40	12	5 pb	5.3σ	54	26	6 pb	5.3σ	69	35	5 pb	5.8σ	--
Powheg+Herwig7.0.4	186	41	12 pb	12.0σ	263	99	14 pb	12.8σ	294	126	12 pb	13.0σ	149-156
Average	93	23	8 pb	8.4σ	172	63	11 pb	10.4σ	182	88	9 pb	9.6σ	143-157

- χ_{NP}^{2} is for the benchmark point $m_{s} \approx 150 \mathrm{GeV}$.
- m_{s} gives the preferred range from the fit.
- Averaging the six different SM predictions $\sigma\left(p p \rightarrow H \rightarrow S S^{\prime} \rightarrow W W b \bar{b}\right) \approx 9 \mathrm{pb}$ is preferred.
- NP preferred over the SM hypothesis by atleast 5.8 8 .

Results

- Assuming $S^{\prime}(95)$ is SM -like, i.e $\mathrm{Br}\left[S^{\prime} \rightarrow b \bar{b}\right]=86 \%$, and $\mathrm{Br}[\mathrm{S} \rightarrow \mathrm{WW}]=100 \%$
- Red region preferred by $t \bar{t}$ distribution.
- Blue region preferred by $\gamma \gamma$ signal strength at 95 GeV .

NP explanation of $t \bar{t}$ distributions compatible with $95 \rightarrow \gamma \gamma$ excess

Summary

- Significant deviations in differential lepton distribution $m^{e \mu}$ and $\Delta \phi^{e \mu}$ suggests mismodelling of the SM or new physics effects.
- Possibility of a new particle at the electroweak scale.
- Considered a simplified model with three Higgs that gives a NP background process pp $\rightarrow H \rightarrow S S^{\prime} \rightarrow W W b \bar{b}$.
- Assuming S(152) is from a triplet and $S^{\prime}(95)$ is from a singlet, our simplified model is compatible with di-photon excess at 95 GeV .
- NP model can also explain the excess in W mass.
- Emergence of a new model with multiple scalars in a singlet(95)-doublet(125)-doublet(270)-triplet(150) pattern (future work).

Results

- For η and $E^{e}+E^{\mu}$

Results

- For $p^{e}+p^{\mu}$ and $p^{e \mu}$

