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Introduction
We apply gradient boosting machine learning techniques to the prob-
lem of hadronic jet substructure recognition using classical subjet-
tiness variables available within a common parameterized detector
simulation package DELPHES. Per-jet tagging classification is being
explored. Jets produced in simulated proton-proton collisions are
identified as consistent with the hypothesis of coming from the decay
of a top quark or a W boson and are used to reconstruct the mass
of a hypothetical scalar resonance decaying to a pair of top quarks
in events where in total four top quarks are produced. Results are
compared to the case of a simple cut-based tagging technique for the
stacked histograms of a mixture of a Standard Model as well as the
new physics process Machine learning (ML) techniques are getting
growing applications in many research areas, one of them being the
events classification in high energy physics (HEP).

1 Objects
Using the MADGRAPH5 version 2.6.4 simulation toolkit [1],
proton-proton collision events at

√
s = 14 TeV were generated

for the SM process pp → tt̄ in the all-hadronic tt̄ decay channel
at next-to-leading order (NLO) in QCD in production, using the
MLM matching [2, 3], i.e. with additional processes with extra
light-flavoured jets produced in the matrix element, matched and
resolved for the phase-space overlap of jets generated by the parton
shower using MADGRAPH5 defaults settings. The parton shower
and hadronization were simulated using PYTHIA8 [4].

As a train BSM model, the resonant s-channel tt̄ production via an
additional narrow-width (sub-GeV) vector boson Z ′ as pp→ Z ′→
tt̄ using the model [5, 6, 7] were generated, to provide a sample of
top quarks with large transverse momenta, enhancing the boosted
regime.

As a representative model of a BSM process for testing, the produc-
tion of a scalar resonance decaying to a pair of top quarks y0→ tt̄
was adopted [6] at the leading-order (LO) in the tt̄ production with
the gluon-gluon fusion loop , with inclusive tt̄ decays, selecting the
all-hadronic channel later in the analysis.

1.1 Parameterized detector simulation
Using the DELPHES (version 3.4.1) detector simulation [8] with
the ATLAS card, jets with distance parameters of R = 1.0 (dubbed
as large-R jets) were reconstructed using the anti-kt algorithm using
the FastJet package [9] at both particle and detector levels.

The trimming jet algorithm [10] as part of the DELPHES pack-
age was used to obtain jets with removed soft components, using
the parameter of Rtrim = 0.2 and modified pT fraction parameter
f
pT
trim = 0.03 (originally 0.05). The trimming algorithm was chosen

over the standard non-groomed jets, soft-dropped [11] and pruned
jets [12], with parameters varied, in terms of the narrowness of the
mass peaks.

1.2 Objects of interest
The interest is the identification of large-R hadronic jets coming from
the hadronic decays of top quarks andW bosons. In the naïve picture
of the hadronic decays of W → qq̄′ and t → Wb → bqq̄′, these
three and two prong decays, respectively. Different jet substructure
is thus expected for such t and W jets.

1.3 Cut-based tagging
As input variables to both cut-based as well as ML-based tag-
ging we utilize simple yet powerful “classical” variable called n-
subjettiness [13], τN , which is related to the consistency of a jet
with the hypothesis of containing N subjets. These variables are
combined into ratios τ32 and τ21, defined as τij ≡ τi

τj
.

In order to identify jets coming from the hadronic decays of the W
boson or a top quark by a simple cut-based algorithm, large-R jets
were tagged as
•W -jets if 0.10 < τ21 < 0.60 ∧ 0.50 < τ32 < 0.85 ∧ mJ ∈

[70, 110] GeV;
• top-jets if 0.30 < τ21 < 0.70 ∧ 0.30 < τ32 < 0.80 ∧ mJ ∈

[140, 215] GeV.
Shapes of the variables used as input to the ML classifier are shown

in Figure 1 for the individual samples. One can observe the enhance-
ment in the Z ′ samples at the place of the expected top quark mass
peak, the larger the higher the mass of the Z ′ particle, while the

lower mass Z ′ sample provides enhanced region at the W boson
mass. The various tt̄ samples exhibit a large continuum of masses,
with non-resonant bulk contribution below 60 GeV of different sizes
due to different jet pT kinematics cut for the samples.
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Figure 1: Shapes of the large-R jet mass variables in the five samples for training
and testing.

2 ML-based top and W tagging

2.1 General data structure
Three samples corresponding to the SM tt̄ production were gen-
erated, with different cuts at the generator level on the transverse
momentum of the jets, in order to cover regions with various frac-
tions of t, W as well as non-resonant (light) jets. These have been
used as both training and testing data sets.

The two Z ′ samples with the Z ′ masses of 1000 and 1250 GeV
provide a tt̄ sample with enhanced boosted top quarks, thus leading
to events with enhanced fractions of t and W jets.
Variables defined and used for each jet in the classification are as
follows
•∆R(J,W ), the minimal distance of the jet to the nearest W 1;
•∆R(J, t), the minimal distance of the jet to the nearest top parton;
• Jet tr. momentum pJT and jet four-vector invariant mass mJ .
• η and φ of the jet.
• Jet substructure variables τ32 and τ21.

The true type jets labels are based on the following criteria
1. truth t-jets: ∆R(J, t)< 0.25 ∧ 150 GeV ≤ mJ ≤ 210 GeV;
2. truth W -jets; ∆R(J,W )< 0.25 ∧ 60 GeV ≤ mJ ≤ 110 GeV;
3. truth light jets: otherwise.
For the predictions we used the machine learning (ML) model based
on the Gradient Boosting technique, which is a popular and widely
used algorithm for supervised learning, see e.g. [14]. This classifier
is one of the two most used types of ensemble methods, which are
methods combining multiple simple predictors (esp. decision trees)
in order to create a more powerful model. The method does not work
with weights but it tries to fit the predictor to the residual errors
made by the previous predictor. The new prediction is made by
simply adding up the predictions of all the predictors. We decided to
test per-jet predicting of t-, W- or l-jets.

2.2 Results
Figure 2 displays the jet mass distribution, where the red filled areas
represent top-tagged jets using both the cut-based (dark red) and
ML approach (light red). Although the cut-based method exhibits
higher tagging efficiency, it is evident that it suffers from a significant
mistagging of light jets as tops. In contrast, the ML method appears
to tag top jets with higher purity, and the boundary of the red filled
area aligns with the background of light jets. To further support this
argument, the real tagging efficiencies as a function of jet pT are
presented in Figure 3, where the ML approach demonstrates lower
efficiency in all bins (solid red) compared to the cut-based approach
(dashed red). Additionally, the ML method exhibits lower fake ef-
ficiency in the QCD background (blue lines). Figure 4 showcases
the invariant mass of leading and subleading top-tagged jets for the
Standard Model tt̄tt̄ process, alongside the stacked invariant mass of
leading and subleading jets from the y0tt̄→ tt̄tt̄ process (scaled by a
factor of 0.075). The light filled areas and dashed lines represent the
top-tagged jets that are matched to the parton top within ∆R < 0.15.
The efficiencies, as indicated in the legend of Figure 4, are provided
for each set of histograms as

ε =
top tagged jets && matched to parton level

top tagged jets
. (1)
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Figure 2: Jets mass of Standard Model tt̄tt̄ (left) and y0tt̄ → tt̄tt̄ (right) with
cut-based and maching learning tagging of W boson (green) and top (red).
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Figure 3: Real efficiencies of the top-tagging using cat-based (dashed red line)
and ML approach (solid red line) and QCD background fake efficiencies using
cut-based (dashed blue lines) and ML (solid blue line) .
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Figure 4: Invariant mass of leading and subleading jets of Standard Model tt̄tt̄
and y0tt̄→ tt̄tt̄ (my0 = 1.5 TeV) tagged as top quark. The light red / blue filled
areas and dashed lines represent matched jets to top quark within ∆R < 0.15.

Conclusion
The ML approach demonstrates a higher tagging efficiency compared
to top-tagged jets matched at the parton level, with an improvement
of 14.6% for the Standard Model tt̄tt̄ process and 3.8% for the
y0tt̄ → tt̄tt̄ process (with my0 = 1.5 TeV) when compared to the
cut-based selection.
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1The angular distance between two objects is defines as ∆R ≡
√

(∆φ)2 + (∆η)2 where the pseudorapidity η ≡ − ln tan θ
2 is related to the standard azimuthal angle θ of the spherical coordinates, where the beam axis coincides with the z axis, and φ is the polar angle in the xy plane.
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