Discussion about tT production at threshold

Alexander Mitov

Cavendish Laboratory
당․ UNIVERSITYOF
(1) CAMBRIDGE

A typical representation of top pair production at the LHC

At threshold, things simplify

At threshold, things simplify

\checkmark But what changed?

\checkmark Very close to threshold, the pair acts as a "package";
\checkmark We have exchanges between t and T within the "package"
\checkmark The "package" as a whole can interact with the outside world
\checkmark Physically, the t and T start forming a bound state (toponium?)

At threshold, things simplify

\checkmark Of interest are the interactions within the "package". Denoted by J.
\checkmark These are Coulomb-like exchanges that make the bound-state

At threshold, things simplify

The above expansion is non-convergent - all diagrams need to be summed up!

At threshold, things simplify

We can sum up:
leading power (LP)
$\left(\frac{\alpha_{s}}{\beta}\right)^{n}$
next to leading power (NLP) $\quad \alpha_{s}\left(\frac{\alpha_{s}}{\beta}\right)^{n}$

This results in a complicated function (Sommerfeld factor): $J \sim \frac{\alpha_{s} / \beta}{e^{\pi \frac{\alpha_{s}}{\beta}}-1}=1+\frac{\alpha_{s}}{\beta}+\ldots$

tT at threshold: current state of the art

Tremendous amount of work in the past; first for e+e-, then for LHC.
The most recent pheno-oriented work is
Ju, Wang, Wang, Xu, Xu and Li Lin Yang arXiv:2004.0308
Relates and extends previous work:
A. Petrelli, M. Cacciari, M. Greco, F. Maltoni and M. L. Mangano, Nucl. Phys. B 514, 245 (1998) [hep-ph/9707223].
K. Hagiwara, Y. Sumino and H. Yokoya, Phys. Lett. B 666, 71 (2008) [arXiv:0804.1014 [hep-ph]].
Y. Kiyo, J. H. Kuhn, S. Moch, M. Steinhauser and P. Uwer, Eur. Phys. J. C 60, 375 (2009) [arXiv:0812.0919 [hep-ph]].
M. Beneke, P. Falgari and C. Schwinn, Nucl. Phys. B 842, 414 (2011) [arXiv:1007.5414 [hep-ph]].
M. Beneke, P. Falgari, S. Klein and C. Schwinn, Nucl. Phys. B 855, 695 (2012) [arXiv:1109.1536 [hep-ph]].

A pure parton-level calculation (with stable tops) which:

- resums LP and NLP
- matched to differential NNLO ttbar
- emphasis on m_{t} determination from the threshold region

tT at threshold: current state of the art

Ju, Wang, Wang, Xu, Xu and Li Lin Yang arXiv:2004.0308

Resummation of Coulomb corrections makes the x-section well-behaved
The region below threshold has non-negligible contribution

Can these corrections be included in calculations?

Yes! (see plot to the right :)
Beyond this, they must be included at higher orders:

$$
\begin{array}{ll}
\int \frac{1}{\beta} d \Phi & \text { (at NLO): finite } \\
\int \frac{1}{\beta^{2}} d \Phi & \text { (at NNLO): integrable } \\
\int \frac{1}{\beta^{3}} d \Phi & \text { (at N3LO): not integrable anymore (but in tT- the coefficient vanishes) }
\end{array}
$$

(at N4LO): severe problems
Any future calculation at yet higher order must resum these effects
Their effect on the total x-section is small - could be larger differentially

tT spin correlations

W. Bernreuther et al arXiv:1508.05271, ...

Czakon, Mitov, Poncelet arXiv:2008.11133

The calculation closest to what we are discussing today is:

- at NNLO in fixed order perturbation theory
- includes top decay through NNLO but in the narrow-width approximation (tops are produced and decayed exactly on-shell)

CMS arXiv:1907.03729

Note: fully integrated over M_{tt} above threshold

