Designing, Building and Testing a Multi Wire Proportional Chamber

By Leon Verreijt, Cas van Rossum, Victor Souljé, Sela Hoeijmans, Tijmen de Graaf

Introduction team members

- Victor Souljé
- Leon Verreijt
- Sela Hoeijmans
- Tijmen de Graaf
- Cas van Rossum
- Tim Bouchée (mentor)
- Hans van Luijtelaar (mentor)

Goal

- Designing, building and testing a homemade particle detector.
- Why do we find this interesting?

3D model of our first design in Tinkercad

Types of particle detectors

- Gaseous ionisation
- Construction
- Spark & Cloud

Detector of choice

• MWPC because the MWPC is a versatile detector that can be constructed from relatively easy to get materials. It's also a highly customizable detector and can collect data well (as it can give information about the particle track and energy if used properly)

Preparation

- Construction of various prototypes
- First signals in operational mode

Building the second version

Fourth version

Sixth version in operational mode

Method

• Experimental setup

Design

 Key features of the most recent version

DAQ

- Amplification
- Conversion

Analysis

Visualisation

- 3. Draw a plane on the wires of chambers 2&4.
- 4. Draw both planes, and let them intersect.
- 5. Draw a line on the intersection.

The particle's path is now visualised.

What we hope to get from DESY

Assistance

Facilities

Timetable

Task\Day	1	2	3	4	5	6	7	8	9	10
T1	×	×								
T2	×	×	×							
Т3			×	×						
T4				×	×	×				
T5					×	×	×			
Т6								×	×	×

Task 1: Developing reliable amplification circuits

Task 2: Developing a program that will visualize the particles

Task 3: Setting up the detector

Task 4: Reviewing and improving/calibrating our setup

Task 5: Processing data

Community contribution

- Social media
- Teacher network??

Questions

