Beamline for Schools 2023

Particle Physics and CERN: more than meets the eye

Prof. Dr. Freya Blekman

- From Amsterdam, NL
- Ph.D. at Nikhef (NL), the Netherlands' national particle physics institute
 - Largely based at Fermilab in Chicago (USA)
- Postdoc Imperial College London (UK)
- Postdoc Cornell University (USA)
- Up to recently: Professor at Vrije Universiteit Brussel, Brussels (BE)
- Presently: Professor at University of Hamburg & Lead scientist at DESY
 - Distinguished Researcher Fermilab
 - Visiting prof Univ. of Oxford & VUB

As a job: Travel Variation Colleagues Science

In school: Liked science, also art, history

University: Experimental Computers Mathematics For my PhD: Exciting Doing things first See the world

freyablekman Freya Blekman - DESY & UHH

9

Colliders!

The Standard Model!

freyablekman Freya Blekman

13

Physicists are world citizens

- Live in many different countries
- Travel to even more places for work
- Working with people from all over the world

Example: DESY where you are now

Many particle accelerators and research projects at DESY

- Globally unique research possibilities
- Interdisciplinary research
- Close cooperation between DESY and UHH
- International cooperation
- Approx. 3500 people on campus
- Second campus in Zeuthen

An ambitious research programme Scientific challenges that DESY addresses

How can we **control the function of materials** on the level of individual electrons and spins?

How can we film chemical reactions in real time?

How can we **understand infections** on the molecular level?

What does **physics beyond the Standard Model** look like? What can astroparticles tell us about **the early universe**?

What do the accelerators of the future look like?

What do we do at DESY?

Create a knowledge base that is needed to solve challenges in society, science, and the economy.

Accelerators

We develop and operate high-tech and large-scale particle accelerators

Photon Science

X-ray radiation from accelerators allows us investigate the atomic structures

Particle Physics

With particle accelerators, we explore the smallest particles of the universe and their interactions

Astroparticle Physics

We investigate high-energy processes in the universe using telescopes and detectors

The Helmholtz Association

DESY is a member of the largest scientific organisation in Germany

18 research centres

More than 43 000 employees 4.5 billion euro budget

Six research areas

Aerospace and transport

Earth and environment

Energy

Health

Key technologies

Structure of matter

Other example: CERN

- 3000 people employed by CERN
 - Physicists, engineers, computer scientists, mathematicians, firemen, cooks, builders, technicians, secretaries, security, etc
- >7500 physicists associated with CERN
 - Including yours truly

Who works at CERN?

ASSOCIATE MEMBER STATES ASSOCIATE MEMBERS IN THE PRE-STAGE TO MEMBERSHIP OBSERVERS OTHER STATES

9

Who visits CERN

- CERN is an open laboratory
- Anyone is welcome to visit, ask questions, take photographs, etc
- In 2019, 75,000 people visit CERN
 - Anyone is welcome <u>http://www.cern.ch/</u> <u>visits</u>
 - CERN is TripAdvisor top Geneva destination :)
 - New visitor centre just opened, increasing capacity (now 300,000 people can visit)

Problems with the Standard Model experimentalist perspective

- Matter vs antimatter asymmetry
 - Standard Model cannot provide enough CP violation to explain dominance of matter
- Dark Matter
 - if it exists, it is very likely not described by the Standard Model
 - Neither is dark energy
- Standard Model neutrinos are massless
 - The 2015 Nobel Prize (Kajita and McDonald) was for neutrino oscillations, directly proving that neutrinos have mass
- Structure is not really explained

Basic Questions

- What is everything around us made of?
- How does matter stick together?
- What, really, is mass?
 - Now that we have a particle that could possibly create mass, what is it and what does it do?
- Are there really only 3 spatial dimensions?
- Are the smallest particles we know fundamental?
- Where did the anti-matter go?
- Where's the rest of the matter anyway?

 Anti-matter: discovered in 1923
 Predicted by theory

 Almost same as matter... But oppositely charged

 Problem: at big bang there was just as much matter as anti-matter... Where did it go?

The four fundamental forces

Electro-magnetic force

Weak force

@freyablekman

Strong force

The Dark Matter Puzzle

src: G. Watts ↑ ←src: JWST

Detecting collisions

25

Compared to the ATLAS experiment CMS is much smaller
CMS weighs 12,000 tons *vs.* 7,500 tons for ATLAS

 ATLAS has a toroidal magnetic field for their muon system

How do we know all this?

Accelerator experiments Radioactivity experiments And about 100 years of hard work by many people...

Overall view of the LHC experiments.

CMS

Compact
Muon
Solenoid

• "Compact" is relative...

More open questions

- Are the quarks and leptons elementary particles?
- Are there other particles we have not seen yet?
- Why are the masses of particles different?
 - And is that connected to the Higgs Boson/field?
- Matter/Antimatter asymmetry in universe?
- What about gravity? Or superstrings? Or extra dimensions?
- Properties of the neutrino?

Answering any one of these questions will get you a Nobel Prize!

LHC: search engine

Basic vs applied research

- Two types of science research
 - Basic research (how do things work)
 - Applied research (how do I make...)
- CERN only does basic research
 - But usually we need to build things that do not exist yet...
- Applied research needs basic research

<u>CERN - where the web was born</u>

But also...

- PET scans
- Touch screen
- Radiation therapy

Loads of computing/ internet development
GRID

Normaal werk?

- Samenwerken met team
 - samen analyseren
- Programmeren
- Wiskunde/ natuurkunde
- Nieuwe dingen bouwen
- Dingen opschrijven
- Reizen

Vragen?

the 'periodic table' of modern physics

Little Hierarchy problem, Naturalness

Little Hierarchy problem, Naturalness

Little Hierarchy problem, Naturalness

If fine tuning <=10%: Restrictions: $\Lambda_{quarks} \sim < 2 \text{ TeV}$ $\Lambda_{gauge} \sim < 5 \text{ TeV}$

Strings, Supersymmetry/SUSY and the LHC

