Cherenkov detectors

So....what is Cherenkov light?

- Electromagnetic shock wave (sonic boom) emitted by charged particles
 - This is not an explanation, let's try again
- Light emitted by a charged particle going faster than the local speed of light
 - This is not an explanation, let's try again
- "Coherent response of a medium to the passage of a relativistic particle that causes the emission of radiation"
 - This is an explanation, are there any catches?
- All the above statements are true but as you get more "precise" it also becomes harder to understand....
- Some conditions turn up
 - Particle needs to go "fast enough" (explanations on later slide)
 - Medium needs to be transparent (if only for practical reasons)

19.09.2023

What do we use Cherenkov detectors for?

Detecting particles is not so easy

- Can only detect particles if they leave some kind of trace
- Only a few fundamental processes allow for this: charge deposition, scintillation, transition radiation,
 Cherenkov light (disclaimer: I may have missed some but not many)

What are the specific advantages of Cherenkov detectors?

- Light emission is instantaneous
- Light yield is highly deterministic (linear with path length)

19.09.2023

- Wide spectrum light source
- Properties of emitted light are dependent on the particle species generating it
 - If built well, Cherenkov light is an excellent method of particle identification

Any disadvantages?

- Efficiency relatively low (compared to scintillation or charge deposition)
- Needs transparent medium

Discovery

- Also known as the "Vavilov-Cherenkov" effect
 - Cherenkov was a PhD student
 - Vavilov was his professor
 - Worked also on the interpretation of the effect

19.09.2023

- Frank and Tamm found the complete theoretical description of the effect
- Nobel prize awarded in 1958
 - Vavilov was dead at this point

Pavel Cherenkov

Ilya Frank

П. А. ЧЕРЕНКОВ

видимое свечение чистых жидкостей под действием ү-РАДИАЦИИ

(Представлено академиком С. Н. Вавиловым 27 V 1934)

1. В связи с исследованием люминесценции, возбуждаемой в раствс рах ураниловых солей ү-лучами, нами найдено, что все чистые жидкости, имевшиеся в нашем распоряжении (20 жидкостей), обнаруживают при прохождении в них у-лучей слабое видимое свечение. Явление, как покавали опыты с жидкостями различной степени чистоты, не связано с примесями или загрязнениями.

2. Для количественных измерений светских у его крайней олабости и наличия в окруже Photographic plateрадиаций, мало пригоден фотографический м

метод фотометрировани раздражения для глаза им рисуSilvered mirror

Источником у-лу отеклянной упаковке. Я ним диаметром 3 см. (щей 0.5 г и толщиной

Radioactive salt in liquid

Cherenkov light

- Foundational formula for Cherenkov light
 - θ_c is the "Cherenkov angle"
 - β is the speed of the particle as a fraction of the speed of light in vacuum ($c_0 = 299792458 \text{ m/s}$)
 - c₀ is the fundamental speed barrier in the universe
 - Particles moving at speeds close to c₀ are known as "relativistic" particles
 - When you put more energy in a particle, it will come closer to (but never exceed) c₀
 - n is the (phase) refractive index of a material
 - Probably well known from your optics classes?
 - n sets the **local** speed of light
 - This explains why particles can go faster than the local speed of light

$$\beta = \frac{v}{c} = \frac{p}{E} = \frac{p}{\sqrt{p^2 + m^2}}$$

$$c_{local} = \frac{c_0}{n_g}$$

$$n_g = n_p + E \frac{dn_p}{dE}$$

Cherenkov light

- Only one angle? What about the other one?
 - Let's call this one φ
 - Turns out it is random! Light is emitted in a ring / cone at an angle to the particle passing through the medium
- Let's put in some numbers
 - n = 1.5 $\beta = 1$ $\theta_c = 0.841 \text{ rad} = 48.2 \text{ deg}$
 - This is a relativistic particle in water
 - n = 1.001 $\beta = 1$ $\theta_c = 0.0447$ rad = 2.56 deg
 - This is a relativistic particle in gas
 - n = 1.001 $\beta = 0.9$ θ_c cannot be solved for
 - Particle does not meet the speed requirement
- Important input for detector design!

Cherenkov light

Light is a funny thing

- Wave/particle duality a photon is both a wave and a particle
- The particle is a packet of energy E and has a wavelength λ
 - Fundamental unit of energy: electron volt (eV)
 - Energy acquired by one electron accelerated by 1 Volt
- These two numbers are linked by a simple proportionality

•	For example:	Red light	700nm	1.77 eV
	•	Green light	550nm	2.25 eV
		Blue light	450nm	2.76 eV
		UV light	250nm	4.96 eV

Note that it also says that there is only light for charged particles

So how much light do we get?

• The Frank-Tamm relation expresses the number of photons emitted per unit energy (spectrum)

$$E(eV) = \frac{1240}{\lambda(nm)}$$

$$\frac{d^2N}{dEdx} = \frac{\alpha}{\hbar c_0} Z^2 \left(1 - \frac{1}{n^2 \beta^2} \right)$$

$$\frac{dN}{dE} = 370L \left(1 - \frac{1}{n_p^2 \beta^2} \right)$$

So what's the use of all of this?

Let's have a look at how we can use this in reality!

19.09.2023

Projecting a Cherenkov angle

- The relativistic factor β is dependent on the particle mass
 - Pick a typical momentum for T10
 5 GeV/c

Particle	Mass	Relativistic β
Electron	0.000511 GeV/c ²	1
Muon	0.104 GeV/c ²	0.99978
Pion	0.135 GeV/c ²	0.99964
Kaon	0.494 GeV/c ²	0.9952
Proton	0.938 GeV/c ²	0.983

- This is then FINALLY what can give us particle ID!
 - Different particles give different Cherenkov angles!
- Particle identification through two methods
 - Ring Image Cherenkov
 - Threshold Cherenkov counters

$$\beta = \frac{p}{\sqrt{p^2 + m^2}}$$

Refractive index is the name of the game

Refractive index is the key to Cherenkov light

- It sets the angle of emission
- It sets the quantity of light you get

Different properties for different media

- Gas 1.000-1.005
- Aerogel 1.01-1.05
- Solid 1.40-1.70

- Some cm of solid can be equivalent to a few meters of gas
- But the behaviour of the emitted Cherenkov light is quite different

Ring Imaging Cherenkov – RICH

 The core idea of the RICH technique is to project the ring forward so that the angle of the photons can be measured

- Use gaseous medium (Č angle ~few degrees)
- Cherenkov angle + momentum = PID
- Gathering enough light takes O(1m) of gas
- Example case: LHCb RICH
 - LHCb has two RICH detectors
 - Filled with two different refractive index gases
 - Used for particle identification
 - Different from beamline: mix of different momenta so needs external information

Super Kamiokande

Neutrino detection experiment in Japan

- Giant tank of pure water (41.4m high, 39.3m Ø)
- So, uses liquid medium (Č angle ~45 deg)
- Light detectors around and on top and bottom

- Radiation from space
- "Disk" event indicates track passing through
- "Ring" event indicates track stopping in tank
- Center and orientation of ring / disk gives point of impact and direction of track
- Different shapes and sizes give more information about event

What's up with the blue glow?

- Why does a nuclear reactor glow blue?
 - Take the Frank-Tamm relation and plot it for water
 - In energy space (eV) and in wavelength space (nm)

- Still where does the blue glow come from?
 - After all, a nuclear reactor produces neutrons?

$$\frac{dN}{dE} = 370L \left(1 - \frac{1}{n_p^2 \beta^2} \right)$$

Red light Green light Blue light UV light

700nm 1.77 eV 550nm 2.25 eV 450nm 2.76 eV

4.96 eV

250nm

Controlling the refractive index

Gas	k-value
Helium	3.50×10^{-5}
CO_2	4.50×10^{-4}

- In the previous examples, the refractive index of the medium was fixed
 - However, in the beamline we can play with it
- Refractive index of a gas is dependent on its absolute pressure
 - The refractive index is linear with pressure
 - Dependency is: $n = 1 + k \cdot P$ (bar)
 - Different gases have different k values
 - This gives rise to the idea of a Cherenkov threshold – as a pressure
 - It is defined as the threshold at which a particle starts emitting light
 - For example, CO₂ with a beam of 3 GeV/c has a pion threshold of 2.4 bar

Cherenkov Threshold Counters

- Device also known as XCET
 - Key beamline equipment for PID
 - Both the T9 and T10 beamlines have two
 - High pressure (<16 bar, XCET040) and low pressure (<4.2 bar, XCET043)

- Combination of signals from two XCETs lets experiments take one species of particles from the beam
 - 1. Calculate thresholds for different particles
 - 2. Set one just below threshold of desired particle, the other above
 - 3. Combine what you need to see in the two detectors

19.09.2023

- a. No signal in detector set below threshold
- b. Signal in detector set above threshold
- This combination gives the users the flexibility to select (tag) a desired particle species

Under pressure

- We use a small trick: we use the coincidence of the scintillators before and after the XCET to normalize the XCET: definition of XCET efficiency!
 - Technically, we use the coincidence of the XCET with the trigger divided by the trigger
- What do we expect to find when we do a pressure scan?
 - Let's put in an expected beam of 20% of all five particles (e, μ, π, K, p) and label the thresholds

Under pressure

- Add some more reality: remember Drs Frank and Tamm?
 - At the threshold pressure, $n\beta = 1$ (this is the definition!)
 - So....we get no light at all at the Cherenkov threshold!
 - Light yield scales linearly with (P P_{thr})

$$\frac{dN}{dE} = 370L \left(1 - \frac{1}{n_p^2 \beta^2} \right)$$

Under pressure

- Keeping the momentum stable, and then scanning the pressure should eventually show all particles
 - However, limited in practice by the maximum pressure of the vessel
 - For example, for particles at 10 GeV/c shown in table

Reality is not always nice to physicists!

- Cannot see all with one gas
 - If threshold is over the maximum cannot see it!
 - If thresholds too close together, cannot see difference!
- We can pick one gas to go up to 16 bar and one to 4.2 bar
- Helium and CO₂ have complementary properties
- We picked for you (for now) CO2 to high pressure and helium to low pressure – the detector is still being worked on

Thresholds for 10 GeV/c particles

Particle	Threshold (bar) in helium	Threshold (bar) in CO ₂
Electron	3.73 × 10 ⁻⁵	2.90 × 10 ⁻⁶
Muon	1.60×10^{0}	1.24×10^{-1}
Pion	2.78×10^{0}	2.17×10^{-1}
Kaon	3.54×10^{1}	2.75×10^{0}
Proton	1.25 × 10 ²	9.76 x 10 ⁰

Finally, some actual data!

Let's interpret the plot!

Data taken at +10 GeV/c with CO₂

Particle	Threshold (bar) in CO ₂
Electron	2.90 × 10 ⁻⁶
Muon	1.24×10^{-1}
Pion	2.17×10^{-1}
Kaon	2.75×10^{0}
Proton	9.76 x 10 ⁰

Finally, some actual data!

Let's interpret the plot!

Data taken at +2 GeV/c with CO₂

Particle	Threshold (bar) in CO ₂
Electron	7.25×10^{-5}
Muon	3.10×10^{0}
Pion	5.41×10^{0}
Kaon	6.78×10^{1}
Proton	2.32 x 10 ²

Some further hints for the data analysis

- Muons are very strange creatures
 - The beam contains a mixture of different momenta of muons (!!!!)
 - I expect you to figure out for yourself (and with Berare and Martin, of course!) to figure out what the impact of this is on the Cherenkov scans
- Behavior of the low-pressure XCET with helium not yet well understood!
 - Discuss as things go on with Berare, Martin and me!
- · If the threshold pressures are close together, be careful about saying you know!
- What is the difference between the negative and the positive beam?
- Can we see if the XCET is fully efficient at any point?
 - Is it possible that, for example, we miss some 5% of particles always?
 - How would we know this?
 - If protons are the only particle left we cannot see, can we still estimate their number?

What do we know at the moment?

- All preliminary in other words, not finished, and needs verification
 - This is also an open invitation to CHECK these numbers with the available data!

Conclusions

- Cherenkov light has many applications in particular it is excellent for PID
 - Used in the secondary beamlines in Cherenkov Threshold counters

- The goal (for the Particular Perspective!) is to use *all* techniques to fill the particle identification plot
 - XCET counters, calorimeters, time of flight,?

19.09.2023

We very much look forward to see how much of this plot we can finish!

