

EP R&D WP3 – Summary

P. Roloff & M. Aleksa for EP R&D WP3

Sub-Workpackages – Current Status

WP3: Calorimetry + Light based

LAr

Electrodes, σ_t, high ionisation rates, feedthroughs

In/organic scint.

Tile-cal, hi segm. So fibre cal., rad hard >

Hi granularity Si

CMS HGCAL CLIC, FCC-ee/hh

- Light weight mirrors
- Low temp photosensor housing

SciFi

- Fibre light yield
- Fibre production techniques

Advanced scint.

WP3.1: Noble-Liquid Calorimetry (talk by B. François)

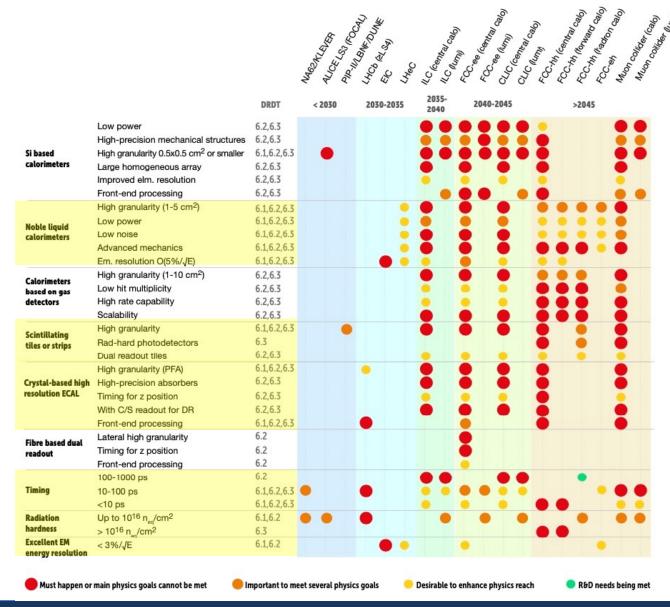
- 1 fellow since Sept. 2020 Jan. 2023, new fellow starting May 2023: Read-out electrodes, electronics, performance
- 1 summer student 2021
- 1 PhD student (Gentner programme) since Dec. 2022
- 1 fellow (shared with cryolab) March 2020 March 2022: Feedthroughs
- 1 fellow (shared with FCC) since Sept. 2022: Absorbers, test-module design
- International collaboration ~6 institutes, supported by AIDAInnova

WP3.2: Scintillator-Based Calorimetry (talk by P. Roloff)

- 1 fellow since 2020: SPACAL R&D
- 1 student since 2019: WP3.2.1: Crystal Clear
- 1 fellow (shared with ATLAS) starting 2022: FCC HCAL R&D Sci/Pb/Steel TileCal
- 1 student (based at CERN, but paid by LIP): FCC HCAL R&D
- International collaboration (LHCb, Crystal Clear), synergy with AidaInnova and quantum initiative
- Topics of WP 3.1 and 3.2 match the emerging DRD collaboration on calorimetry
- WP3.4: RICH (talk by F. Keizer)
 - 1 fellow (shared with LHCb) since 2021: LHCb RICH Upgrade R&D
 - Supported by AIDAInnova
- WP3.5: High Light Yield Scintill. Fibres (talk by S. Jakobsen)

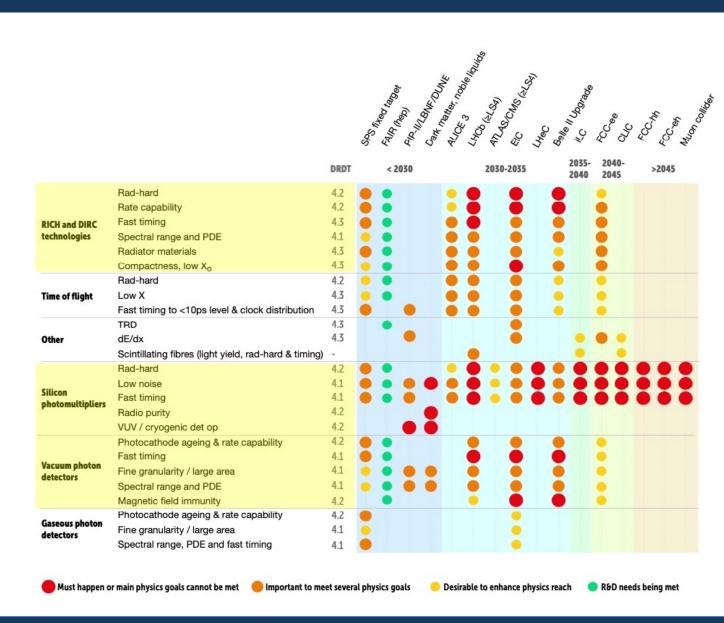
Extension Requests WP3

2024:


- Currently accepted budget for 2024: 135kCHF + 3.0 fellows = 435kCHF
- New proposal for 2024 (2nd iteration): 208kCHF + 3.5 fellows + 2 doct = 658kCHF (+223kCHF)

2025-2028:

- Latest request (second iteration): 1937kCHF + 19 fellow-years + 8 doct-years = 4237kCHF
- This is a reduction of -1070kCHF with respect to the original request (-20.2%)
- Extension requests will be discussed in the individual presentations per sub-workpackage


WP3.1, WP3.2, WP3.2.1 – ECFA Roadmap

- WP3.1 fully in line with all R&D goals on
 - Noble-liquid calorimeters
 - Radiation hardness
 - Timing (10 100ps)
- WP3.2.0, WP3.2.1 and WP3.2.2 fully in line with R&D goals on
 - Scintillating tiles or strips
 - Crystal-based high resolution ECAL
 - Radiation hardness
 - Timing
 - Excellent EM energy resolution
 - NB: photon detectors also crucial
 - → see next slide

WP3.4, WP3.5 – ECFA Roadmap

- WP3.4 fully in line with all R&D goals on
 - RICH Technologies:
 - New green-gas radiators
 - Low Xo mechanics and optics
 - Rad-hard, rate and time capabilities
 - Green-enhanced photo-sensors
 - Timing (10 100ps)
 - SiPMs and Vacuum Photo-Detectors
 - Cryogenic detector operation for low noise and rad. Hard. (SiPMs)
 - Green-enhanced photo-sensors
 - Timing
 - High PDE
 - Rad. hardness and ageing
 - New RICH Detector Designs and Concepts
- WP3.5
 - Novel High Light Yield Scintillating Fibers

This session

13:40

W	/P 3 - Calorimetry and light based deteccors	○ 40m
	Introduction	⊙ 5m
	Speaker: Philipp Roloff (CERN)	
	WG3.1	○ 10m
	Speaker: Brieuc Francois (CERN)	
	WG3.2	⊙ 10m
	Speaker: Philipp Roloff (CERN)	
	WG3.4	⊙ 10m
	Speaker: Floris Keizer (CERN)	
	WG3.5	⊙ 5m
:	Sneaker: Sune Jakohsen (CERN)	