WG 3.1 Noble Liquid Calorimetry

Brieuc François (CERN) on behalf of the Noble Liquid Calorimetry group

> EP R&D Day 2023-1 Feb. 20th, 2023

Introduction

- Noble Liquid calorimeters have been used in many HEP experiments and are proposed for several future facilities
 - > FCC-hh, FCC-ee, LHeC, ...
- Goal of WG 3.1: design and prototype the next generation for this technology
 - Further squeeze its performance
 - Complement its very good conventional calorimetry properties with imaging capabilities (Particle Flow calorimeter)
 - Increase by a factor 10-15 the granularity w.r.t. the state of the art ATALS implementation

Particle Flow calorimetry

Noble Liquid Calorimetry

Brieuc François

High Granularity Readout Electrodes

- High granularity readout electrode design
 - > Challenge: analog signal extraction with high S/N and low x-talk
 - > 7-layer PCB with signal extraction on a different layer as the signal pick-up pads + ground shields to mitigate x-talk

Noble Liquid Calorimetry

Noise and X-talk

≻

- X-talk studied with FEM tools
 - Simulation show that one can easily reach sub-percent peak-to-peak x-talk values with ground shields and signal shaping
- Noise estimated from analytical description of readout chain + detector capacitance from FEM
 - Implemented in full-sim
 - Negligible impact on energy resolution > 1 GeV
 - > MIP S/N > 5 achievable

Readout Electrode Prototype

- CERN
- Readout electrode prototype produced with the CERN PCB Design Office
 - > X-talk measured with simple electrical tests
 - Confirmed that sub-percent x-talk is easy to reach
 - Good measurement/simulation qualitative agreement
 - Working on improving quantitative agreement

Noble Liquid Calorimetry

Mechanical Studies

- Mechanical engineering campaign started
 - > Future calorimeter is bigger \rightarrow analysis of the external rings support
 - > Design a solution for module assembly
 - Mechanical stability of straight absorbers (instead of accordion as in ATLAS)
 - > G10 pre-sampler, spacers, ...

AE: 1D external rings Bottom support study

Directional Deformation R Type: Directional Deformation(X Axis) CER

WG 3.1 Extension

Upcoming activities

- > Further study granularity needs for e+e- experiments: π^0/γ identification, axion search, particle flow
 - Gentner PhD student that has started in Dec. 2022
- Re-optimize readout electrodes (noise/x-talk) for the defined granularity
 - > Prepare for 'mass' production in view of a test beam module
- Together with external collaborators (IJCLab, BNL) define best-suited frontend electronics based on existing developments (HGCROC, DUNE)
- Mechanical design and production of a full depth (22 X₀: 1m x 0.5m x 0.5m) module for test beam
- Adaptation of existing cryostat being studied but not covered by this
 extension → use carbon fibre prototype from WP4.1b or external fundings

CERN

Noble Liquid Calorimetry

Noble Liquid Calorimetry

WG 3.1 Extension – ECFA Roadmap

Brieuc François

- ▶ WG 3.1 fully in-line with ECFA Detector R&D (DRD) Roadmap on
 - Noble liquid calorimeters
 - Radiation hardness
 - → Timing (10 100 ps)
 - Low noise
 - EM resolution optimization
- ECFA DRD on Calorimetry (TF6)
 - Divided into 3 (4) tracks
 - > Track 2: "Liquified Noble Gas Calorimeter"
- International collaboration
 - CERN (CH), IJCLab (FR), BNL (US),
 Charles Univ. Prague (CZ), Copenhagen (DK) + potential new comers

		DRDT	< 2030	2030-2035	2035- 2040	2040-2045	>2045
Si based calorimeters	Low power	6.2,6.3					
	High-precision mechanical structures	6.2,6.3			ŏŏ		
	High granularity 0.5x0.5 cm ² or smaller	6.1,6.2,6.3					ě ěě
	Large homogeneous array	6.2,6.3			ě Č		ă ăĭ
	Improved elm. resolution	6.2,6.3					
	Front-end processing	6.2,6.3					
Noble liquid calorimeters	High granularity (1-5 cm ²)	6.1.6.2.6.3		•	•		
	Low power	6.1,6.2,6.3			ě i	i i	
	Low noise	6.1,6.2,6.3			•		
	Advanced mechanics	6.1,6.2,6.3		•	ŏ	ŏŏ	
	Em. resolution O(5%/JE)	6.1,6.2,6.3					
Calorimeters based on gas detectors	High granularity (1-10 cm ²)	6.2,6.3			•		
	Low hit multiplicity	6.2,6.3			ē		
	High rate capability	6.2,6.3			•		
	Scalability	6.2,6.3			•		ěěě ě
Scintillating tiles or strips	High granularity	6.1,6.2,6.3			ŏ	ð ð	
	Rad-hard photodetectors	6.3					ě ě ě
	Dual readout tiles	6.2,6.3			•	• •	
Crystal-based high resolution ECAL	High granularity (PFA)	6.1,6.2,6.3			•		• •
	High-precision absorbers	6.2,6.3			ě (ŌŌ	ě ě
	Timing for z position	6.2,6.3					
	With C/S readout for DR	6.2,6.3			•		ě •
	Front-end processing	6.1,6.2,6.3					ě ě
Fibre based dual readout	Lateral high granularity	6.2					The second second
	Timing for z position	6.2				Š.	
	Front-end processing	6.2					
Timing	100-1000 ps	6.2					•
	10-100 ps	6.1,6.2,6.3	•	•			
	<10 ps	6.1,6.2,6.3			•		
Radiation hardness	Up to 10 ¹⁶ n _{ed} /cm ²	6.1,6.2		•	•	• •	
	> 10 ¹⁶ n_/cm ²	6.3					
Excellent EM energy resolution	< 3%/√E	6.1,6.2		• •		•	•

Thank you!