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• The work presented here benefited from massive contributions from the ALICE and 
monolithic CMOS sensor communities
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WP1.2 Moving beyond Phase II
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WP1.2 Extension beyond Phase III: 2025-2028

• Draft proposal in progress

• Baseline programme:

• Test
• Comprehensive test of all material from ER2 and successive MLR runs

• In tight collaboration with Alice, community and EP R&D WP1.4

• Design
• Two MLR shared runs in 2025 and 2027 (MLR2 and MLR3)

• Explore radiation resistance limits, power efficient designs, scalability to large detector surfaces, …

• Establish a common framework in one technology (TPSCo-ISC65)
• Frame contract, PDK and libraries, MPW runs, Macroblocks

• Coordination with ECFA Detector R&D Theme (DRDT) on monolithic detectors

• EP R&D WP1.2 will contribute:
• With relevant parts of the baseline program highlighted above

• By possibly joining, as an opportunity to diversify, DRDT collaboration active in other promising areas
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MLR1 & ER1 Executive summary

• MLR1 submission (tapeout December 2020)

• All chips and pixel prototypes are functional

• Technology characterized for HEP

• Similar performance & radiation hardness for the transistors and CMOS circuitry as other 65nm techs

• Pixel prototypes are being characterized in detailed (Walter will discuss selected results)

• ER1 submission

• Shift of focus towards stitching

• Tapeout in November 2022

• Expecting 24 wafers to arrive end of April 2023

• Next

• Thinning, dicing and assembly of stitched chips and chiplets on carriers / test systems

• Development of HW/FW/SW for testing

• Design for ER2 submission
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MLR1 & ER1 already introduced in the last EP R&D Day, 

https://indico.cern.ch/event/1156197

https://indico.cern.ch/event/1156197


ER1 summary

• What is the ER1 submission objective?

• The goal is to prove that we can design wafer scale 
pixel detectors

• Learn stitching techniques

• Interconnects

• Learn about yield, design for manufacturing (DFM) and 
defects masking

• Study power schemes, leakage, spread, noise and speed

• Develop methodology

1010

reticule

12” wafer (30cm)

26cm length single silicon object20 Feb 2023 EP R&D Day | WP1.2 | Pedro Leitao



ER1 Executive summary

• Features two stitched sensor chips

• MOSS chip (1.4 x 26 cm, 6x per wafer)
• Conservative layout (DFM rules), Alpide-like readout scheme 

with 1/20 power segmentation

• MOST chip (0.25 x 26 cm, 6x per wafer)
• High local density with higher power gating granularity to 

mitigate faults, async hit driven readout

• Features 51/reticule chiplets for prototyping

• PLL, pixel prototypes, fast serial links, SEU test chips, ...

• Technology and support development

• New metal stack: new I/Os, PDK, DDK, DRC deck

• Custom DRC/LVS rule deck

• Custom DFM standard cell library implemented

• Setup of a legal and contractual framework

• Develop wafer assembly and signoff methodology
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ER1 testing preparation

• Significant effort by ALICE and other 
groups

• Testing developments ongoing for both 
stitched chips

• MOSS: dummy chip assembly tests

• MOST: hardware and mechanical handling

• Most chiplets are tested by their home 
institutes
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A. Junique

https://indico.cern.ch/event/1244919

Single 1.4 x 26 cm silicon die glued and 
bonded on carrier

R. Barthel/M. Rossewij

MOST testing preparation

https://indico.cern.ch/event/1244919


Towards ER2 submission

• ER2 submission will focus on a large area stitch sensor that targets the ALICE ITS3 requirements

• Build on ER1 learned lessons

• Increased dimensions (1.8 x 26 cm)

• Decreased dead area (between 6.7% - 9.5%)

• Increased readout speed (between 25.6 Gbps – 51.2 Gbps)

• On chip power regulation for power segmentation and IRdrop compensation (~0.6% active area granularity)

• Design specifications are ongoing
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Today!



Test results in 65 nm TPSCo

20230220 | EP R&D WP1.2 Report | W. Snoeys

Summary and outlook

Massive effort from many people
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Pixel optimization in 180 nm (started in 2012)
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Charge collection speed

Charge sharing

https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013
(180nm)

https://doi.org/10.1016/j.nima.2017.07.046 (180nm)

Pb- Pb 5.36 TeV
LHC22s period

18th November 2022 

16:52:47.893

ALPIDE and ITS2 in ALICE (10 m2) E. Schioppa et al, VCI 2019

efficiency loss at ~ 1015 1 MeV neq/cm2
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H. Pernegger et al., Hiroshima 2019, M. 
Dyndal et al 2020 JINST 15 P0200

https://iopscience.iop.org/article/10.1088/1748-0221/14/05/C05013
https://doi.org/10.1016/j.nima.2017.07.046
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Moving to deeper submicron CMOS
First technology selected: TPSCo 65 nm ISC

• TPSCo (joint venture TJ & Panasonic): several 65 nm flavors: high density logic, RF, and imaging (ISC)

• ISC preferred:  2D stitching experience, special sensor features, different starting materials, lower defect densities, etc

• Initially 5 metal layers, now 7 metals 

First submission: Multi Layer per Reticle MLR1

• Significant contribution from outside groups (from ALICE but not only) to design and test (!), also financially 

• Many test chips of 1.5 x 1.5 cm2 or twice that size.

• GDS submitted Dec 1, 2020, chips ready to test, Sept, 2021

Second submission: Stitched engineering run ER1 see Pedro’s  presentation

• Two stitched sensors, MOSS and MOST and many test chips of 1.5 x 1.5 cm2 or twice that size

• Back end of April

11/06/2020 W. Snoeys
20230220 | EP R&D WP1.2 Report | W. Snoeys
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Moving to 65 nm: apply same principles as in 180 nm
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Simulations by J. Hasenbichler

Different pixel flavors varying the pixel 
pitches also to larger values

Only gap maintains reasonable efficiency



55Fe: pitch dependence for different variants
See also: I. Sanna IEEE NSS 2022
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55Fe: pitch dependence for different variants
See also: I. Sanna IEEE NSS 2022
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55Fe: pitch dependence for different variants
See also: I. Sanna IEEE NSS 2022



55Fe measurements on Analog Pixel Test Structure Opamp
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Clusters of various sizes show distinct time 
and charge distributions

Illustrates impact of pixel design and process 
modifications on the charge collection

Sensor timing is at present under study with 
two APTSOA in coincidence (!). 

In 180nm better than 150 ps*, expect 
improvement in 65 nm

*Fastpix :https://www.mdpi.com/2410-390X/6/1/13
J. Braach, E. Buschmann, D. Dannheim et al.C. Ferrero et al

20230220 | EP R&D WP1.2 Report | W. Snoeys

https://www.mdpi.com/2410-390X/6/1/13


Detection efficiency/Fake hits for ITS3 

22

• Fully efficient chain of optimized sensor, analog front end, digital readout 

in 15 x 15 μm2 pixel (DPTS)

DPTS

20230220 | EP R&D WP1.2 Report | W. Snoeys

ITS3 specification



~ 99 % efficiency at 1015 neq/cm2 … at room temperature
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• Fully efficient sensor, analog front end, digital readout chain in 15 x 15 μm2 pixel (DPTS) including sensor optimization

• Circuit radiation tolerance TID in line with other 65 nm technologies (ringoscillators up to 25 % frequency degradation 
after ~800 Mrad)

DPTS

20230220 | EP R&D WP1.2 Report | W. Snoeys



Higher fluences (modified with gap)
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DPTS still efficient

20230220 | EP R&D WP1.2 Report | W. Snoeys

APTS SF

• Measuring devices up to 1016 neq/cm2 also for higher n-type implant doses, work in progress

• Studies with TCAD (C. Lemoine)
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Results fully in line with ECFA RD Goals

Multiple strands for R&D on MAPS:

• MAPS for small-pixel trackers in sub-micron node(s) for smaller pixels pitch and stitching process for large area sensors to 
reach ultimate precision and radiation length in vertex detectors;

DPTS 15 μm pixel pitch, stitched devices in ER1 18 μm and 22.5 μm

• MAPS for small-pixel trackers with radiation-hard cell designs and high hit-rate capability (sufficient charge collection after 
1015 neq/cm2 to 1016 neq/cm2 non-ionising energy loss (NIEL), single event upsets (SEU) and single event effects (SEE) tolerant 
and power-optimised logic, concepts for high data volumes handling on a sensor;

DPTS 1015 neq/cm2 at room temperature, investigating paths to 1016 neq/cm2

circuit total ionizing radiation tolerance and SEU cross-sections in line with other deep submicron CMOS 

• MAPS designs to reach ultimate timing precision in different processes; 

FASTPIX < 150 ps with small collection electrode in 180nm, studies ongoing in 65nm

• MAPS with reduced granularity and very low power consumption in very large area detectors for tracking and calorimetry
applications.

DPTS 10 – 1000 nA, sensor variant with gap designed to maintain efficiency for larger pixel pitches

20230220 | EP R&D WP1.2 Report | W. Snoeys
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Technology features

20230220 | EP R&D WP1.2 Report | W. Snoeys

Building knowledge about this technology for general interest

• Very significant contribution from the ALICE experiment

• Building on 10 year experience with 180 nm in the entire community (ALICE, ATLAS, CLIC, …)

• Towards full technology validation for our applications: full efficiency and SEU, TID according 
to expectations, further studies on sensor timing and NIEL:

NIEL: 1015 neq/cm2 at room temperature, investigating path to 1016 neq/cm2

Features

• Significantly more dense than 180 nm

• Specific imaging sensor features could still open further possibilities 

(only explored our ‘standard sensor’):

• stacked photodiode

• gain in the pixel

• …

• Possibility of wafer stacking

• Good relationship with the foundry with excellent support, results oriented.

DPTS

APTS

CE65



Many contributors to WP1.2
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THANK YOU TO ALL CONTRIBUTING PEOPLE, GROUPS 
AND INSTITUTES
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