Quantum Chromodynamics

Gregory Soyez

IPhT (CNRS, CEA Saclay) and CERN

CERN-FermiLab HCP Summer School 2023 CERN, August 22-31 2023

In the standard model, QCD is the fundamental theory of strong interactions

Our journey together

QCD exhibits many rich structures

QCD exhibits mand challenging strutures

reward: fun/exciting behaviours

reward: precision/accuracy

Part I: QCD basics

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}^{ extbf{a}}F^{\mu
u extbf{a}} + \sum_{ extit{f}} rac{ar{oldsymbol{q}_{ extit{f}}}}{ar{oldsymbol{q}_{ extit{f}}}} (ioldsymbol{D} - m_f)_{oldsymbol{q}_{ extit{f}}} + rac{ heta}{16\pi^2} \epsilon^{\mu
u
ho\sigma}F_{\mu
u}^{ extit{a}}F_{
ho\sigma}^{ extit{a}}$$

$$D_{\mu}=\partial_{\mu}+igT^{a}A_{\mu}^{a}$$
 $F_{\mu
u}^{a}=\partial_{\mu}A_{
u}^{a}-\partial_{
u}A_{\mu}^{a}-gf_{abc}A_{\mu}^{b}A_{
u}^{c}$

SU(3) gauge theory with fundamental d.o.f.

quarks (matter)
fundamental representation
3 colours (red, green, blue)

gluons (vectors) adjoint representation 8 **colours** (8=3²-1)

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}^{\mathsf{a}}F^{\mu
u\mathsf{a}} + \sum_{f} ar{m{q}}_{f}(im{p}-m_{f})m{q}_{f} + rac{ heta}{16\pi^{2}}\epsilon^{\mu
u
ho\sigma}F_{\mu
u}^{\mathsf{a}}F_{
ho\sigma}^{\mathsf{a}}$$

$$D_{\mu}=\partial_{\mu}+igT^{a}A_{\mu}^{a}$$
 $F_{\mu
u}^{a}=\partial_{\mu}A_{
u}^{a}-\partial_{
u}A_{\mu}^{a}-gf_{abc}A_{\mu}^{b}A_{
u}^{c}$

quarks carry a flavour index (f) + are charged (interact with photons)

q first second third
$$\frac{2}{3} \quad u \text{ (up)} \quad c \text{ (charm)} \quad t \text{ (top)}$$

$$(m \approx 0) \quad (m \approx 1.3 \text{ GeV}) \quad (m \approx 173 \text{ GeV})$$

$$-\frac{1}{3} \quad d \text{ (down)} \quad s \text{ (strange)} \quad b \text{ (bottom)}$$

$$(m \approx 0) \quad (m \approx 0) \quad (m \approx 4.2 \text{ GeV})$$

$$\mathcal{L} = -rac{1}{4}F_{\mu
u}^{\mathsf{a}}F^{\mu
u\mathsf{a}} + \sum_{f} ar{m{q}}_{f}(im{p}-m_{f})m{q}_{f} + rac{ heta}{16\pi^{2}}\epsilon^{\mu
u
ho\sigma}F_{\mu
u}^{\mathsf{a}}F_{
ho\sigma}^{\mathsf{a}}$$

$$D_{\mu}=\partial_{\mu}+i g T^a A_{\mu}^a \qquad \qquad F_{\mu
u}^a=\partial_{\mu}A_{
u}^a-\partial_{
u}A_{\mu}^a-g f_{abc}A_{\mu}^b A_{
u}^c$$

quarks carry a **flavour** index (f) + are **charged** (interact with photons)

6 quarks 3 families rich/complex structures

q first second third $\frac{2}{3}$ u (up) c (charm) t (top) $-\frac{1}{3}$ d (down) s (strange)

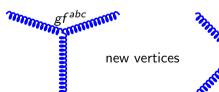
 $(m \approx 0)$ $(m \approx 1.3 \text{ GeV})$ $(m \approx 173 \text{ GeV})$ b (bottom) $(m \approx 0)$ $(m \approx 4.2 \text{ GeV})$

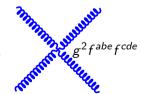
$$\mathcal{L} = -rac{1}{4}F_{\mu
u}^{\mathsf{a}}F^{\mu
u\mathsf{a}} + \sum_f ar{m{q}}_f (im{D} - m_f) m{q}_f + rac{ heta}{16\pi^2}\epsilon^{\mu
u
ho\sigma}F_{\mu
u}^{\mathsf{a}}F_{
ho\sigma}^{\mathsf{a}}$$

$$D_{\mu}=\partial_{\mu}+igT^{a}A_{\mu}^{a}$$
 $F_{\mu\nu}^{a}=\partial_{\mu}A_{\nu}^{a}-\partial_{
u}A_{\mu}^{a}-gf_{abc}A_{\mu}^{b}A_{
u}^{c}$

Non abelian theory: gluons interact! (complexity!)

extra flavour factor





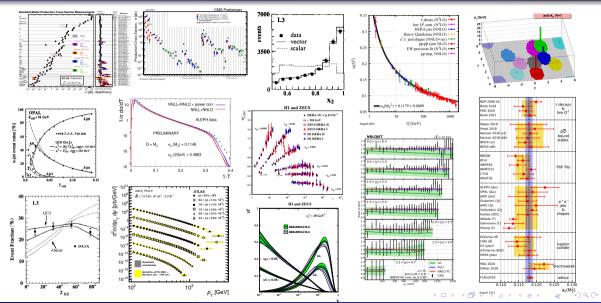
$$\mathcal{L} = -rac{1}{4}F^{a}_{\mu
u}F^{\mu
u a} + \sum_{f} ar{m{q}}_{f}(im{D} - m_{f})m{q}_{f} + rac{ heta}{16\pi^{2}}\epsilon^{\mu
u
ho\sigma}F^{a}_{\mu
u}F^{a}_{
ho\sigma}$$

$$D_{\mu}=\partial_{\mu}+igT^aA_{\mu}^a \qquad \qquad F_{\mu
u}^a=\partial_{\mu}A_{
u}^a-\partial_{
u}A_{\mu}^a-gf_{abc}A_{\mu}^bA_{
u}^c$$

$\theta F \tilde{F}$ term:

- CP violating
- corresponds to the QCD axion (link to BSM)
- experimental limit: $|\theta| \lesssim 10^{-10}$

Rich phenomenology



asymptotic freedom (UV divergences)

- asymptotic freedom (UV divergences)
- ullet ee o QCD
 - basic "validation" of QCD
 - structure of IR divergences
 - factorisation
 - IRC safety
 - resummations
 - jets

- asymptotic freedom (UV divergences)
- ullet ee o QCD
 - basic "validation" of QCD
 - structure of IR divergences
 - factorisation
 - IRC safety
 - resummations
 - jets
- QCD in deep-inelastic scattering PDFs (IR divergences)

- asymptotic freedom (UV divergences)
- ullet ee o QCD
 - basic "validation" of QCD
 - structure of IR divergences
 - factorisation
 - IRC safety
 - resummations
 - jets
- QCD in deep-inelastic scattering PDFs (IR divergences)

- pp collisions
 - collision anatomy/factorisation
 - basic kinematics
 - fixed-order complexity
 - quest for precision

- asymptotic freedom (UV divergences)
- ullet ee o QCD
 - basic "validation" of QCD
 - structure of IR divergences
 - factorisation
 - IRC safety
 - resummations
 - jets
- QCD in deep-inelastic scattering PDFs (IR divergences)

- pp collisions
 - collision anatomy/factorisation
 - basic kinematics
 - fixed-order complexity
 - quest for precision
- Monte Carlo generators
 - basic concept
 - fixed-order generators
 - parton showers
 - general-purpose generators

- asymptotic freedom (UV divergences)
- ullet ee o QCD
 - basic "validation" of QCD
 - structure of IR divergences
 - factorisation
 - IRC safety
 - resummations
 - jets
- QCD in deep-inelastic scattering PDFs (IR divergences)

- pp collisions
 - collision anatomy/factorisation
 - basic kinematics
 - fixed-order complexity
 - quest for precision
- Monte Carlo generators
 - basic concept
 - fixed-order generators
 - parton showers
 - general-purpose generators
- Outlook: "funny structures" in QCD

Before we get started...

Stop me whenever you want!

Better if you understsand even if it means not covering everything

Use your brain! (I will try to ask questions)

The philosophy to keep in mind is

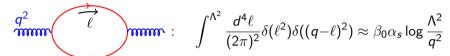
- Why is this concept important/non-trivial?
- What are the past/current/future challenges?

I am happy/available to discuss during discussion sessions (except Friday/Saturday)

Part II: asymptotic freedom

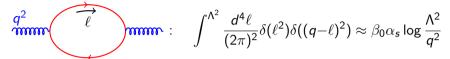
UV renormalisation

QCD (like QED) is a renormalisable gauge theory



UV renormalisation

QCD (like QED) is a renormalisable gauge theory

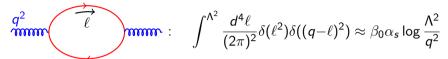


Idea: absorb the UV (short distance) divergence in the definition of the coupling

$$\alpha_s^{\text{"bare"}} \rightarrow \alpha_s(q^2) = \alpha_s^{\text{"bare"}} + \beta_0(\alpha_s^{\text{"bare"}})^2 \log \frac{\Lambda^2}{q^2} + \dots$$

UV renormalisation

QCD (like QED) is a renormalisable gauge theory



Idea: absorb the UV (short distance) divergence in the definition of the coupling

$$\alpha_s^{\text{"bare"}} \to \alpha_s(q^2) = \alpha_s^{\text{"bare"}} + \beta_0(\alpha_s^{\text{"bare"}})^2 \log \frac{\Lambda^2}{q^2} + \dots$$

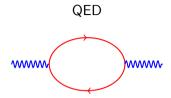
Renormalisation-group equation (consistency condition)

$$\mu^2 \partial_{\mu^2} \alpha_s(\mu^2) = -\beta_0 \alpha_s^2(\mu^2) + \dots \stackrel{\text{all orders}}{=} \beta(\alpha_s) \qquad (\beta \text{ function})$$

Generic renormalisation strategy: absorb UV divergences in physical parameters of the Lagrangian (typically coupling and masses)

QED

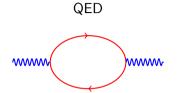
10 / 91



$$\beta_{QED} > 0$$

$$\mu^2 \nearrow \Rightarrow \alpha_{\text{elm}} \nearrow$$

vacuum fluctuations screen electric charge



QCD

$$\beta_{\rm QED} > 0$$

$$\mu^2 \nearrow \Rightarrow \alpha_{\text{elm}} \nearrow$$

vacuum fluctuations screen electric charge

10 / 91

$$\beta_{\rm QED}>0$$

$$\mu^2 \nearrow \Rightarrow \alpha_{\text{elm}} \nearrow$$

vacuum fluctuations screen electric charge

QCD

$$eta_{
m QCD} < 0 \qquad (eta_0 = rac{11C_A - 4n_f T_R}{12\pi})$$

$$\mu^2 \nearrow \Rightarrow \alpha_s \searrow$$

ASYMPTOTIC FREEDOM

QCD becomes increasingly perturbative at larger energy scales

- QCD becomes increasingly perturbative at larger energy scales
- in particular: α_s does not diverge in the UV (chance of "remaining" a fundamental theory)

- QCD becomes increasingly perturbative at larger energy scales
- in particular: α_s does not diverge in the UV (chance of "remaining" a fundamental theory)
- At 1 loop:

$$\alpha_s(\mu^2) = \frac{\alpha_s(\mu_0^2)}{1 + 2\alpha_s(\mu_0^2)\beta_0 \log \frac{\mu}{\mu_0^2}} = \frac{1}{\beta_0 \log \frac{\mu}{\Lambda_{QCD}}}$$

 $\Lambda_{\rm QCD} \equiv {\sf Landau\ pole}\ (\sim 100-200\ {\sf MeV}):\ \alpha_s\ {\sf diverges}\ {\sf in\ the\ IR}\ {\sf QCD}\ {\sf becomes\ non-perturbative}$

- QCD becomes increasingly perturbative at larger energy scales
- in particular: α_s does not diverge in the UV (chance of "remaining" a fundamental theory)
- At 1 loop:

$$\alpha_s(\mu^2) = \frac{\alpha_s(\mu_0^2)}{1 + 2\alpha_s(\mu_0^2)\beta_0 \log \frac{\mu}{\mu_0^2}} = \frac{1}{\beta_0 \log \frac{\mu}{\Lambda_{QCD}}}$$

 $\Lambda_{\rm QCD} \equiv {\rm Landau~pole}~(\sim 100-200~{\rm MeV}):~\alpha_s~{\rm diverges~in~the~IR}$ QCD becomes non-perturbative

• evaluating a process \Rightarrow choosing a renormalisation scale, μ_R^2 , to evaluate α_s typically: (commensurate with) the hardest scale in the process

- QCD becomes increasingly perturbative at larger energy scales
- in particular: α_s does not diverge in the UV (chance of "remaining" a fundamental theory)
- At 1 loop:

$$lpha_s(\mu^2) = rac{lpha_s(\mu_0^2)}{1 + 2lpha_s(\mu_0^2)eta_0 \log rac{\mu}{\mu_0^2}} = rac{1}{eta_0 \log rac{\mu}{\Lambda_{QCD}}}$$

 $\Lambda_{\rm QCD} \equiv {\rm Landau~pole}~(\sim 100-200~{\rm MeV}):~\alpha_s~{\rm diverges~in~the~IR}$ QCD becomes non-perturbative

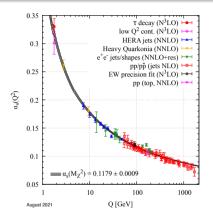
- evaluating a process \Rightarrow choosing a renormalisation scale, μ_R^2 , to evaluate α_s typically: (commensurate with) the hardest scale in the process
- if one knows $\beta(\alpha_s)$, ... to all orders the choice of μ_R^2 is irrelevant

- QCD becomes increasingly perturbative at larger energy scales
- in particular: α_s does not diverge in the UV (chance of "remaining" a fundamental theory)
- At 1 loop:

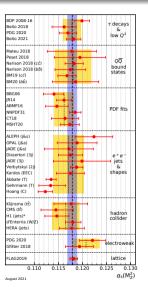
$$\alpha_s(\mu^2) = \frac{\alpha_s(\mu_0^2)}{1 + 2\alpha_s(\mu_0^2)\beta_0 \log \frac{\mu}{\mu_0^2}} = \frac{1}{\beta_0 \log \frac{\mu}{\Lambda_{QCD}}}$$

 $\Lambda_{\rm QCD} \equiv {\rm Landau~pole}~(\sim 100-200~{\rm MeV}):~\alpha_s~{\rm diverges~in~the~IR}$ QCD becomes non-perturbative

- evaluating a process \Rightarrow choosing a renormalisation scale, μ_R^2 , to evaluate α_s typically: (commensurate with) the hardest scale in the process
- if one knows $\beta(\alpha_s)$, ... to all orders the choice of μ_R^2 is irrelevant
- at a given fixed order α_s^n , leftover effects of $\mathcal{O}(\alpha_s^{n+1})$ (renormalisation scale uncertainty)



QCD β known until 5 loops (β_4) Theory gives dependence on scale Measurement needed for $\alpha_s(Q_0)$ Several ways to do this!

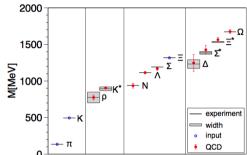


CERN-FermiLab HCP School 2023

Part III: hadrons and confinement

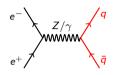
(VERY) Brief overview

- In the IR. QCD becomes non perturbative
- Confinement property: one observes colourless hadrons (mesons& baryons) not quarks and gluons
- Generally poorly understood
- Typical approach: Lattice QCD. Good for static questions, dynamics more delicate
- Some analytic models
- Some numerical (Monte-Carlo) models (more later)



Part IV: e^+e^- collisions basics

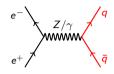
$ee ightarrow \gamma/Z ightarrow qar{q}$



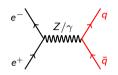
$$\sigma_{\mathrm{e^{+}e^{-}}
ightarrow qar{q}} = N_{c}\Biggl(\sum_{f}e_{f}^{2}\Biggr)\sigma_{\mathrm{e^{+}e^{-}}
ightarrow \mu^{+}\mu^{-}}$$

What do we learn from this?

$ee ightarrow \gamma/Z ightarrow qar{q}$



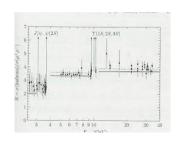
- What do we learn from this?
- factor $\sum_f e_f^2$: count the number of "active" quarks
- factor N_c : count the number of colours (for each quark)

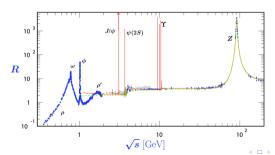


$$\sigma_{\mathrm{e^{+}e^{-}}
ightarrow qar{q}} = \mathit{N_c}\Biggl(\sum_{f}e_{f}^{2}\Biggr)\sigma_{\mathrm{e^{+}e^{-}}
ightarrow \mu^{+}\mu^{-}}$$

What do we learn from this?

- factor $\sum_f e_f^2$: count the number of "active" quarks
- factor N_c : count the number of colours (for each quark)



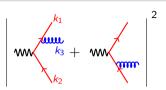


$$R \stackrel{n_f=3}{=} 2$$

$$\stackrel{n_f=4}{=} \frac{10}{3}$$

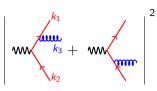
$$\stackrel{n_f=5}{=} \frac{11}{3}$$

Is this exact?



$$\left|\mathcal{M}
ight|^2 = rac{256\pi^3lpha_{ ext{elm}}}{s}\; e_q^2 N_clpha_s C_F rac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)}$$

17 / 91



$$\left|\mathcal{M}\right|^2 = \frac{256\pi^3 \alpha_{\text{elm}}}{\text{s}} \underbrace{\frac{\textbf{e}_{\textbf{q}}^2 \textbf{N}_{\textbf{c}} \alpha_{\textbf{s}} C_F}{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}_{(k_1.k_3)(k_2.k_3)}$$

• $e_q^2 N_c$: as before (electromagnetic + $N_c = 3$ flavours)

17 / 91

$$\begin{pmatrix} k_1 \\ k_3 + k_3 \end{pmatrix}$$

$$|\mathcal{M}|^2 = \frac{256\pi^3\alpha_{\mathsf{elm}}}{\mathsf{s}}\;\mathsf{e}_q^2 \mathsf{N}_{\mathsf{c}} \underbrace{\alpha_{\mathsf{s}} \mathsf{C}_{\mathsf{F}}}_{\mathsf{F}} \frac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)}$$

- $e_q^2 N_c$: as before (electromagnetic + $N_c = 3$ flavours)
- α_s : QCD interaction! We usually take $\alpha_s = \alpha_s(\sqrt{s})$

$$k_1$$
 k_3 + k_2

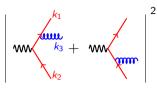
$$|\mathcal{M}|^2 = \frac{256\pi^3\alpha_{\mathsf{elm}}}{\mathsf{s}}\;\mathsf{e}_q^2 \mathsf{N}_{\mathsf{c}} \underbrace{\alpha_{\mathsf{s}} \mathsf{C}_{\mathsf{F}}}_{\mathsf{F}} \frac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)}$$

- $e_a^2 N_c$: as before (electromagnetic + $N_c = 3$ flavours)
- α_s : QCD interaction! We usually take $\alpha_s = \alpha_s(\sqrt{s})$
- C_F: fundamental SU(3) constant (Casimir)

$$C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3}$$

$$C_A = N_c = 3$$

$$(T_{AC}^aT_{CB}^a{=}C_F\delta_{AB};\,f^{abc}f^{abd}{=}C_A\delta^{cd})$$



$$\left|\mathcal{M}\right|^{2} = \frac{256\pi^{3}\alpha_{\text{elm}}}{s} e_{q}^{2}N_{c}\alpha_{s}C_{F} \frac{(p_{1}.k_{1})^{2} + (p_{1}.k_{2})^{2} + (p_{2}.k_{1})^{2} + (p_{2}.k_{2})^{2}}{(k_{1}.k_{3})(k_{2}.k_{3})}$$

- $e_a^2 N_c$: as before (electromagnetic + $N_c = 3$ flavours)
- α_s : QCD interaction! We usually take $\alpha_s = \alpha_s(\sqrt{s})$
- C_F: fundamental SU(3) constant (Casimir)

$$C_F = \frac{N_c^2 - 1}{2N_c} = \frac{4}{3}$$
 $C_A = N_c = 3$

$$C_A = N_c = 3$$

$$(T_{AC}^a T_{CB}^a = C_F \delta_{AB}; f^{abc} f^{abd} = C_A \delta^{cd})$$

• :: kinematic factor (more about this later)

$$k_1$$
 k_3 + k_2

$$\left|\mathcal{M}
ight|^2 = rac{256\pi^3lpha_{
m elm}}{s}\;e_q^2N_clpha_sC_Frac{(p_1.k_1)^2+(p_1.k_2)^2+(p_2.k_1)^2+(p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)}$$

- $e_q^2 N_c$: as before (electromagnetic + $N_c = 3$ flavours)
- α_s : QCD interaction! We usually take $\alpha_s = \alpha_s(\sqrt{s})$
- C_F: fundamental SU(3) constant (Casimir)

$$C_F=\frac{N_c^2-1}{2N_c}=\frac{4}{3}$$

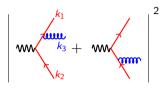
$$C_A = N_c = 3$$

$$(T_{AC}^aT_{CB}^a{=}C_F\delta_{AB};\,f^{abc}f^{abd}{=}C_A\delta^{cd})$$

Helpful rewrite:
$$x_i = \frac{2E_i}{\sqrt{s}}$$

 $x_1 + x_2 + x_3 = 2$, $0 \le x_i \le 1$

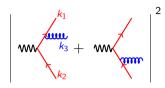
$$\frac{d^2\sigma}{dx_1dx_2} = (\sigma_{ee\to\mu\mu}) \times (e_q^2N_c) \times \frac{\alpha_s C_F}{2\pi} \frac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)}$$



$$|\mathcal{M}|^2 = rac{256\pi^3 lpha_{
m elm}}{s} \; e_q^2 N_c lpha_s C_F rac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)} \ rac{d\sigma}{dx_1 dx_2} = (\sigma_{
m ee
ightarrow \mu \mu}) (e_q^2 N_c) rac{lpha_s C_F}{2\pi} rac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$

Does anything look strange/weird/suspicious/odd?

$ee o \gamma/Z o q\bar{q}g$



$$egin{aligned} \left|\mathcal{M}
ight|^2 &= rac{256\pi^3lpha_{ ext{elm}}}{s}\;e_q^2N_clpha_sC_Frac{(p_1.k_1)^2+(p_1.k_2)^2+(p_2.k_1)^2+(p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)} \ &rac{d\sigma}{dx_1dx_2} &= (\sigma_{ ext{ee} o\mu\mu})(e_q^2N_c)rac{lpha_sC_F}{2\pi}rac{x_1^2+x_2^2}{(1-x_1)(1-x_2)} \end{aligned}$$

Does anything look strange/weird/suspicious/odd?

(logarithmic) IR divergences when

- $k_1.k_3 \rightarrow 0$ or $k_2.k_3 \rightarrow 0$
- $x_1 \rightarrow 1$ or $x_2 \rightarrow 1$

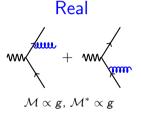
Part V: e^+e^- collisions IR behaviour

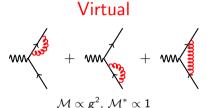
$ee \rightarrow \gamma/Z \rightarrow \mathsf{QCD}$

• We first focus on the simplest observable: the inclusive cross-section $e^+e^- o \mathsf{QCD}$

$ee \rightarrow \gamma/Z \rightarrow QCD$

- ullet We first focus on the simplest observable: the inclusive cross-section $e^+e^- o {\sf QCD}$
- Issue: we have missed some diagrams!!





$ee ightarrow \gamma/Z ightarrow \mathsf{QCD}$

- We first focus on the simplest observable: the inclusive cross-section $e^+e^- o \mathsf{QCD}$
- Issue: we have missed some diagrams!!

$$\sigma_{q\bar{q}g}^{(\text{real})} = (e_q^2 N_c) \sigma_0 \frac{\alpha_s C_F}{2\pi} T(\varepsilon) \left[\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + \frac{19}{2} + \cdots \right] \qquad \qquad \sigma_{q\bar{q}g)}^{(\text{virt})} = (e_q^2 N_c) \sigma_0 \frac{\alpha_s C_F}{2\pi} T(\varepsilon) \left[-\frac{2}{\varepsilon^2} - \frac{3}{\varepsilon} - 8 + \cdots \right]$$

$ee \rightarrow \gamma/Z \rightarrow QCD$

- We first focus on the simplest observable: the inclusive cross-section $e^+e^- o \mathsf{QCD}$
- Issue: we have missed some diagrams!!

$$\sigma_{q\bar{q}g}^{(real)} = (e_q^2 N_c) \sigma_0 \frac{\alpha_s C_F}{2\pi} T(\varepsilon) \left[\frac{2}{\varepsilon^2} + \frac{3}{\varepsilon} + \frac{19}{2} + \cdots \right] \qquad \qquad \sigma_{q\bar{q}(g)}^{(virt)} = (e_q^2 N_c) \sigma_0 \frac{\alpha_s C_F}{2\pi} T(\varepsilon) \left[-\frac{2}{\varepsilon^2} - \frac{3}{\varepsilon} - 8 + \cdots \right]$$

$$R = rac{\sigma_{ ext{ee} o ext{QCD}}}{\sigma_{ ext{ee} o \mu^+ \mu^-}} = \left(\sum_f e_f^2
ight) \, N_c \left[1 + rac{3}{4} rac{lpha_s \, \mathcal{C}_F}{\pi} + \mathcal{O}(lpha_s^2)
ight]$$

20 / 91

Fundamental property of (perturbative) QCD

KLN theorem

At each order of the perturbation theory, the divergences of the real and virtual contributions (to the squared amplitude) cancel

Kinoshita-Lee-Nauenberg (QCD) — Bloch-Nordsieck (QED)

Fundamental property of (perturbative) QCD

KLN theorem

At each order of the perturbation theory, the divergences of the real and virtual contributions (to the squared amplitude) cancel

Kinoshita-Lee-Nauenberg (QCD) — Bloch-Nordsieck (QED)

Wonderful! (given enough pen, paper, courage, ...) we can compute R at an arbitrary order in pQCD!

Can we actually compute more than a single number? (at a given \sqrt{s})

Fundamental property of (perturbative) QCD

KLN theorem

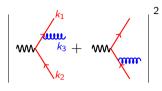
At each order of the perturbation theory, the divergences of the real and virtual contributions (to the squared amplitude) cancel

Kinoshita-Lee-Nauenberg (QCD) — Bloch-Nordsieck (QED)

Wonderful! (given enough pen, paper, courage, ...) we can compute R at an arbitrary order in pQCD!

Can we actually compute more than a single number? (at a given \sqrt{s})

Let us first give these divergences a closer look...

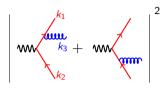


$$egin{aligned} |\mathcal{M}|^2 &= rac{256\pi^3lpha_{ ext{elm}}}{s} \; ext{e}_q^2 N_clpha_s C_F rac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)} \ &rac{d\sigma}{dx_1 dx_2} &= (\sigma_{ee o \mu\mu}) (ext{e}_q^2 N_c) rac{lpha_s C_F}{2\pi} rac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)} \end{aligned}$$

(logarithmic) IR divergences when

- ullet $k_1.k_3
 ightarrow 0$ or $k_2.k_3
 ightarrow 0$
- $x_1 \rightarrow 1$ or $x_2 \rightarrow 1$
- When does this happen?

22 / 91



$$egin{aligned} \left|\mathcal{M}
ight|^2 &= rac{256\pi^3lpha_{ ext{elm}}}{s} \, e_q^2 N_clpha_s C_F rac{(p_1.k_1)^2 + (p_1.k_2)^2 + (p_2.k_1)^2 + (p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)} \ &rac{d\sigma}{dx_1 dx_2} &= (\sigma_{ ext{ee} o \mu\mu}) (e_q^2 N_c) rac{lpha_s C_F}{2\pi} rac{x_1^2 + x_2^2}{(1-x_1)(1-x_2)} \end{aligned}$$

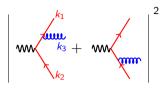
(logarithmic) IR divergences when

- $k_1.k_3 \to 0 \text{ or } k_2.k_3 \to 0$
- ullet $x_1 o 1$ or $x_2 o 1$

$$k_1.k_3 = E_1E_3(1-\cos\theta_{13})$$

$$1 - x_2 = \frac{1}{2}x_1x_3(1 - \cos\theta_{13})$$

- When does this happen?
- O Does this help?



$$egin{aligned} \left|\mathcal{M}
ight|^2 &= rac{256\pi^3lpha_{ ext{elm}}}{ ext{s}} \ e_q^2N_clpha_sC_Frac{(
ho_1.k_1)^2+(
ho_1.k_2)^2+(
ho_2.k_1)^2+(
ho_2.k_2)^2}{(k_1.k_3)(k_2.k_3)} \ &rac{d\sigma}{dx_1dx_2} &= (\sigma_{ ext{ee} o \mu\mu})(e_q^2N_c)rac{lpha_sC_F}{2\pi}rac{x_1^2+x_2^2}{(1-x_1)(1-x_2)} \end{aligned}$$

(logarithmic) IR divergences when

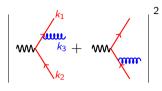
- $k_1.k_3 \to 0 \text{ or } k_2.k_3 \to 0$
- $x_1 \rightarrow 1$ or $x_2 \rightarrow 1$

$$k_1.k_3 = E_1E_3(1-\cos\theta_{13})$$

$$1 - x_2 = \frac{1}{2}x_1x_3(1 - \cos\theta_{13})$$

- When does this happen?
- O Does this help?

• $E_3 \rightarrow 0$: soft limit



$$egin{split} \left|\mathcal{M}
ight|^2 &= rac{256\pi^3lpha_{ ext{elm}}}{s}\,e_q^2N_clpha_s\,C_Frac{(p_1.k_1)^2+(p_1.k_2)^2+(p_2.k_1)^2+(p_2.k_2)^2}{(k_1.k_3)(k_2.k_3)} \ &rac{d\sigma}{dx_1dx_2} &= (\sigma_{ee o\mu\mu})(e_q^2N_c)rac{lpha_s\,C_F}{2\pi}rac{x_1^2+x_2^2}{(1-x_1)(1-x_2)} \end{split}$$

(logarithmic) IR divergences when

- ullet $k_1.k_3
 ightarrow 0$ or $k_2.k_3
 ightarrow 0$
- ullet $x_1 o 1$ or $x_2 o 1$

- $k_1.k_3 = E_1E_3(1-\cos\theta_{13})$
- $1 x_2 = \frac{1}{2}x_1x_3(1 \cos\theta_{13})$

- When does this happen?
- O Does this help?

- $E_3 \rightarrow 0$: soft limit
- θ_{13} or $\theta_{23} \rightarrow 0$: collinear limit

• One radiates an (arbitrarily) soft gluon

- One radiates an (arbitrarily) soft gluon
- The kinematics of the $q\bar{q}$ pair is unaffected by the radiation of the gluon (eikonal limit)
- In this limit:

$$|\mathcal{M}_{q\bar{q}g}|^2 = |\mathcal{M}_{q\bar{q}}|^2 \times (8\pi\alpha_s C_F) \frac{(k_1.k_2)}{(k_1.k_3)(k_3.k_2)}$$

Can be rewritten

$$d\Phi_3 |\mathcal{M}_{q\bar{q}g}|^2 pprox d\Phi_2 |\mathcal{M}_{q\bar{q}}|^2 imes rac{dE_3}{E_3} d\Omega_3 rac{(1-\cos heta_{12})}{(1-\cos heta_{13})(1-\cos heta_{23})}$$

- One radiates an (arbitrarily) soft gluon
- The kinematics of the $q\bar{q}$ pair is unaffected by the radiation of the gluon (eikonal limit)
- In this limit:

$$|\mathcal{M}_{q\bar{q}g}|^2 = |\mathcal{M}_{q\bar{q}}|^2 \times (8\pi\alpha_s C_F) \frac{(k_1.k_2)}{(k_1.k_3)(k_3.k_2)}$$

• factorisation between $ee o q \bar q$ and g radiation from $q \bar q$ (the antenna formula)

- One radiates an (arbitrarily) soft gluon
- The kinematics of the $q\bar{q}$ pair is unaffected by the radiation of the gluon (eikonal limit)
- In this limit:

$$|\mathcal{M}_{q\bar{q}g}|^2 = |\mathcal{M}_{q\bar{q}}|^2 \times (8\pi\alpha_s C_F) \frac{(k_1.k_2)}{(k_1.k_3)(k_3.k_2)}$$

- factorisation between $ee o q \bar{q}$ and g radiation from $q \bar{q}$ (the antenna formula)
- Generalises: radiation of a soft gluon from n QCD legs (q or g)

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \times \sum_{ij} 8\pi \alpha_s(\mathbf{T}_i.\mathbf{T}_j) \frac{(k_i.k_j)}{(k_i.k_{n+1})(k_{n+1}.k_j)}$$

- One radiates an (arbitrarily) soft gluon
- The kinematics of the $q\bar{q}$ pair is unaffected by the radiation of the gluon (eikonal limit)
- In this limit:

$$|\mathcal{M}_{q\bar{q}g}|^2 = |\mathcal{M}_{q\bar{q}}|^2 \times (8\pi\alpha_s C_F) \frac{(k_1.k_2)}{(k_1.k_3)(k_3.k_2)}$$

- factorisation between $ee o q\bar{q}$ and g radiation from $q\bar{q}$ (the antenna formula)
- Generalises: radiation of a soft gluon from n QCD legs (q or g)

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \times \sum_{ij} 8\pi \alpha_s(\mathbf{T}_i.\mathbf{T}_j) \frac{(k_i.k_j)}{(k_i.k_{n+1})(k_{n+1}.k_j)}$$

• Growing complexity due to colour, except at large N_c (more later)

- One radiates an (arbitrarily) soft gluon
- The kinematics of the $q\bar{q}$ pair is unaffected by the radiation of the gluon (eikonal limit)
- In this limit:

$$|\mathcal{M}_{q\bar{q}g}|^2 = |\mathcal{M}_{q\bar{q}}|^2 \times (8\pi\alpha_s C_F) \frac{(k_1.k_2)}{(k_1.k_3)(k_3.k_2)}$$

- factorisation between $ee o q \bar q$ and g radiation from $q \bar q$ (the antenna formula)
- Generalises: radiation of a soft gluon from $n \in QCD$ legs (q or g)

$$|\mathcal{M}_{n+1}|^2 = |\mathcal{M}_n|^2 \times \sum_{ij} 8\pi \alpha_s(\mathbf{T}_i.\mathbf{T}_j) \frac{(k_i.k_j)}{(k_i.k_{n+1})(k_{n+1}.k_j)}$$

- Growing complexity due to colour, except at large N_c (more later)
- Physically: a soft gluon only sees colour lines

• Change of variable: $x_{1,2} \to \theta \equiv \theta_{13}, z \equiv x_3$, and take the limit $\theta \ll 1$

- Change of variable: $x_{1,2} \to \theta \equiv \theta_{13}, z \equiv x_3$, and take the limit $\theta \ll 1$
- Result:

$$d\sigma_{ee o qar{q}g} = \sigma_{ee o qar{q}} imes rac{lpha_s C_F}{2\pi} rac{1 + (1-z)^2}{z} dz rac{d heta^2}{ heta^2}$$

- ullet Again **factorisation** between ee
 ightarrow qar q and q
 ightarrow qg
- Again a logarithmic divergence

- Change of variable: $x_{1,2} \to \theta \equiv \theta_{13}, z \equiv x_3$, and take the limit $\theta \ll 1$
- Result:

$$d\sigma_{ee o qar{q}g} = \sigma_{ee o qar{q}} imes rac{lpha_s C_F}{2\pi} rac{1 + (1-z)^2}{z} dz rac{d heta^2}{ heta^2}$$

- ullet Again **factorisation** between ee
 ightarrow qar q and q
 ightarrow qg
- Again a logarithmic divergence
- DGLAP/Altarelli-Parisi splitting function:

$$P_{gq}(z) = \frac{\alpha_s C_F}{2\pi} \frac{1 + (1-z)^2}{z}$$

represents a probability distribution for q o gq with energy sharing z and 1-z

- Change of variable: $x_{1,2} \to \theta \equiv \theta_{13}, z \equiv x_3$, and take the limit $\theta \ll 1$
- Result:

$$d\sigma_{ee o qar{q}g} = \sigma_{ee o qar{q}} imes rac{lpha_s C_F}{2\pi} rac{1 + (1-z)^2}{z} dz rac{d heta^2}{ heta^2}$$

- ullet Again **factorisation** between ee
 ightarrow qar q and q
 ightarrow qg
- Again a logarithmic divergence
- DGLAP/Altarelli-Parisi splitting function:

$$P_{gq}(z) = \frac{\alpha_s C_F}{2\pi} \frac{1 + (1-z)^2}{z}$$

represents a probability distribution for q o gq with energy sharing z and 1-z

• Physically: collinear physics is local: $q \stackrel{\theta \ll 1}{\to} qg$ does not see the rest of the process

- Change of variable: $x_{1,2} \to \theta \equiv \theta_{13}, z \equiv x_3$, and take the limit $\theta \ll 1$
- Result:

$$d\sigma_{ee o qar{q}g} = \sigma_{ee o qar{q}} imes rac{lpha_s C_F}{2\pi} rac{1 + (1-z)^2}{z} dz rac{d heta^2}{ heta^2}$$

- ullet Again **factorisation** between ee
 ightarrow qar q and q
 ightarrow qg
- Again a logarithmic divergence
- DGLAP/Altarelli-Parisi splitting function:

$$P_{gq}(z) = \frac{\alpha_s C_F}{2\pi} \frac{1 + (1-z)^2}{z}$$

represents a probability distribution for q o gq with energy sharing z and 1-z

- Physically: collinear physics is local: $q \stackrel{\theta \ll 1}{\to} qg$ does not see the rest of the process
- One recognises the soft $z \rightarrow 0$ divergence

Splendid! We understand a bit better IR divergences in QCD...

... however, we still have divergences!

Is there any hope to compute anything (other than R) in (perturbative) QCD?

Part VI: IRC safety

IRC safety: perturbative calculability

Question

can we compute an observable v in (perturbative) QCD?

Answer: IRC safety

Yes, provided it is insensitive to (arbitrarily) soft emissions and collinear branchings

IRC safety: perturbative calculability

Question

can we compute an observable v in (perturbative) QCD?

Answer: IRC safety

Yes, provided it is insensitive to (arbitrarily) soft emissions and collinear branchings

Logic

We can then apply the KLN theorem (reals and virtuals are separately infinite but finite together)

IRC safety: conditions

Say that for *n* particles, *v* is given by $v_n(\Phi_n) \equiv v_n(k_1, \dots, k_n)$

The distribution for v is therefore

$$\frac{1}{N}\frac{dN}{dv} = \sum_{n} \int d\Phi_{n} |M_{n}(\Phi_{n})|^{2} \, \delta(v - v_{n}(\Phi_{n}))$$

Works for (almost) everything (could even consider output of ML)

IRC safety means:

IRC safety: conditions

Say that for *n* particles, *v* is given by $v_n(\Phi_n) \equiv v_n(k_1, \ldots, k_n)$

The distribution for v is therefore

$$\frac{1}{N}\frac{dN}{dv} = \sum_{n} \int d\Phi_{n} |M_{n}(\Phi_{n})|^{2} \, \delta(v - v_{n}(\Phi_{n}))$$

Works for (almost) everything (could even consider output of ML)

IRC safety means:

• soft-safe/IR-safe:

$$\lim_{E_i\to 0} v_n(k_1,\ldots,k_i,\ldots,k_n) = v_{n-1}(k_1,\ldots,k_i,\ldots,k_n)$$

IRC safety: conditions

Say that for *n* particles, *v* is given by $v_n(\Phi_n) \equiv v_n(k_1, \dots, k_n)$

The distribution for v is therefore

$$\frac{1}{N}\frac{dN}{dv} = \sum_{n} \int d\Phi_{n} |M_{n}(\Phi_{n})|^{2} \, \delta(v - v_{n}(\Phi_{n}))$$

Works for (almost) everything (could even consider output of ML)

IRC safety means:

• soft-safe/IR-safe:

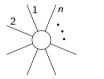
$$\lim_{E_i\to 0} v_n(k_1,\ldots,k_i,\ldots,k_n) = v_{n-1}(k_1,\ldots,k_i,\ldots,k_n)$$

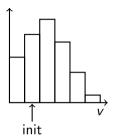
collinear-safe:

$$\lim_{\theta_{ij}\to 0} v_n(k_1,\ldots,k_i,\ldots,k_j,\ldots,k_n) = v_{n-1}(k_1,\ldots,k_i,\ldots,k_j,\ldots,k_n,k_i+k_j)$$

initial *n*-particle configuration

initial *n*-particle configuration





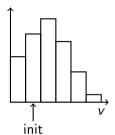
initial *n*-particle configuration

IR(real)

coll(real)

IR(virt)

coll(virt)



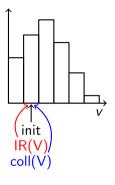
initial *n*-particle configuration

IR(real)

--!!("--!)

IR(virt)

coll(virt)

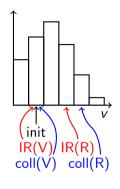


virtual corrections: same bin as initial

initial *n*-particle configuration

IR(real)

coll(real)



- virtual corrections: same bin as initial
- unsafe: real in different bin [no local KLN cancellation]

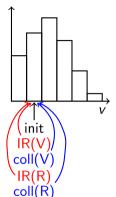
initial *n*-particle configuration

IR(real)

coll(real)

IR(virt)

coll(virt)



- virtual corrections: same bin as initial
- unsafe: real in different bin [no local KLN cancellation]
- safe: real also in same bin [local KLN cancellation]

observable IR safe collinear safe multiplicity

• multiplicity: simply count particles

observable	IR safe	collinear safe
multiplicity	X	

• multiplicity: simply count particles

observable	IR safe	collinear safe
multiplicity	X	X

• multiplicity: simply count particles

observable	IR safe	collinear safe
multiplicity	X	X
E_{max}		

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$

observable	IR safe	collinear safe
multiplicity	X	X
E_{max}	✓	

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	\checkmark	X

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$		

- multiplicity: simply count particles
- $E_{\text{max}} = \text{max}_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	

- multiplicity: simply count particles
- $E_{\text{max}} = \text{max}_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X

- multiplicity: simply count particles
- $E_{\text{max}} = \text{max}_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$		

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$	X	

- multiplicity: simply count particles
- $E_{\text{max}} = \text{max}_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$	X	✓

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$oldsymbol{\Sigma}_{ heta}$	X	×
$n_{\sf patches}$	X	✓
EEC		

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} E_i E_j \theta_{ij}^{\alpha}$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	×
$\Sigma_{ heta}$	X	×
$n_{\sf patches}$	X	✓
EEC	✓	

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- $n_{\rm patches}$: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} E_i E_j \theta_{ij}^{\alpha}$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	×
$\Sigma_{ heta}$	X	×
$n_{\sf patches}$	X	✓
EEC	\checkmark	✓

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} E_i E_j \theta_{ij}^{\alpha}$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$	X	✓
EEC	✓	✓
λ_D		

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} E_i E_j \theta_{ij}^{\alpha}$
- $\lambda_D = \sum_{i,j} E_i^2 E_j^2 \theta_{ij}$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$	X	✓
EEC	✓	✓
λ_D	✓	

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} E_i E_j \theta_{ij}^{\alpha}$
- $\lambda_D = \sum_{i,j} E_i^2 E_j^2 \theta_{ij}$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$	X	✓
EEC	✓	✓
λ_D	✓	X

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} \mathsf{E}_{i} \mathsf{E}_{j} \theta_{ij}^{\alpha}$
- $\lambda_D = \sum_{i,j} E_i^2 E_j^2 \theta_{ij}$

observable	IR safe	collinear safe
multiplicity	X	X
$E_{\sf max}$	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$	X	✓
EEC	✓	✓
λ_D	✓	X

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} E_i E_j \theta_{ij}^{\alpha}$
- $\lambda_D = \sum_{i,j} E_i^2 E_j^2 \theta_{ij}$

"IRC-safety \equiv perturbative calculability"

⇒ make it a habit to check!

observable	IR safe	collinear safe
multiplicity	X	X
E_{max}	✓	X
$\Sigma_{ heta}$	X	X
$n_{\sf patches}$	X	✓
EEC	✓	✓
λ_D	✓	X

- multiplicity: simply count particles
- $E_{\max} = \max_i E_i$
- $\Sigma_{\theta} = \sum_{i,j} \theta_{ij}$:
- n_{patches}: split sphere in fixed regions, count how many contain at least 1 particle
- $\mathsf{EEC}_{\alpha} = \sum_{i,j} E_i E_j \theta_{ij}^{\alpha}$
- $\lambda_D = \sum_{i,j} E_i^2 E_j^2 \theta_{ij}$

"IRC-safety = perturbative calculability"

⇒ make it a habit to check!

Not always 100% trivial + more complex cases $(p_{t,SoftDrop}/p_{t,jet}, \text{ old cone jets, } z_g)$

Part VII: final-state and jets

examples of standard IRC-safe observables

• Thrust:

$$T = \max_{|\vec{n}|=1} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}$$

Notes:

- the " \vec{n} " achieving the min defines the "Thrust axis", \vec{t}
- defines two "hemispheres"
- ullet radiation collimated around one axis: Tpprox 1
- ullet radiation spread uniformly: T pprox 1/2

Thrust:

$$T = \max_{|\vec{n}|=1} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}$$

• Thrust major (M), minor (m)

$$M = \max_{|\vec{n}| = 1, \vec{n}, \vec{t} = 0} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}, \quad m = \max_{|\vec{n}| = 1, \vec{n}, \vec{t} = 0, \vec{n}, \vec{t}_M = 0} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}$$

Thrust:

$$T = \max_{|\vec{n}|=1} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}$$

• Thrust major (M), minor (m)

$$M = \max_{|\vec{n}| = 1, \vec{n}, \vec{t} = 0} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}, \quad m = \max_{|\vec{n}| = 1, \vec{n}, \vec{t} = 0, \vec{n}, \vec{t}_M = 0} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}$$

Sphericity

$$S = \left(\frac{4}{\pi}\right)^2 \min_{|\vec{n}|=1} \left(\frac{\sum_i |\vec{p_i} \times \vec{n}|}{\sum_i |\vec{p_i}|}\right)^2$$

Thrust:

$$T = \max_{|\vec{n}|=1} \frac{\sum_{i} |\vec{p}_{i}.\vec{n}|}{\sum_{i} |\vec{p}_{i}|}$$

• Thrust major (M), minor (m)

$$M = \max_{|\vec{n}| = 1, \vec{n}, \vec{t} = 0} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}, \quad m = \max_{|\vec{n}| = 1, \vec{n}, \vec{t} = 0, \vec{n}, \vec{t}_M = 0} \frac{\sum_{i} |\vec{p_i}.\vec{n}|}{\sum_{i} |\vec{p_i}|}$$

Sphericity

$$S = \left(\frac{4}{\pi}\right)^2 \min_{|\vec{n}|=1} \left(\frac{\sum_i |\vec{p_i} \times \vec{n}|}{\sum_i |\vec{p_i}|}\right)^2$$

• *C*-parameter

$$C = 3(\lambda_1 \lambda_2 + \lambda_2 \lambda_3 + \lambda_3 \lambda_1) \qquad \text{with } \lambda \text{ eigenvalues of } \Theta_{\alpha\beta} = \frac{1}{\sum_i |\vec{p_i}|} \sum_i \frac{p_i^{\alpha} p_i^{\beta}}{|\vec{p_i}|}$$

Jets (1/2)

Idea

Most frequent branchings are either collinear or soft \Rightarrow expect most of the event's energy localised around a few axes \Rightarrow define jets as these few directions

Jets (1/2)

Idea

Most frequent branchings are either collinear or soft \Rightarrow expect most of the event's energy localised around a few axes \Rightarrow define jets as these few directions

(Historical) cone algorithm: find directions of energy flow

Event is n jets if all but a fraction ε of the \sqrt{s} energy is in n cones of half-opening-angle δ (and not in n-1)

[Sterman, Weinberg, 1977]

Works but geometry makes it delicate to go to high orders in pQCD

JADE

Iteratively:

- Find the pair, p_i , p_j that minimises $m_{ij}^2 = (p_i + p_j)^2 = 2E_iE_j(1 \cos\theta_{ij})$
- 2 Recombine $p_i, p_j \rightarrow p_{i+j} = p_i + p_j$ (i.e. from n to n-1 particles)

Stop when $m_{ij}^2 > y_{\text{cut}} s$

JADE

Iteratively:

- Find the pair, p_i , p_j that minimises $m_{ij}^2 = (p_i + p_j)^2 = 2E_iE_j(1 \cos\theta_{ij})$
- 2 Recombine $p_i, p_j \rightarrow p_{i+j} = p_i + p_j$ (i.e. from n to n-1 particles)

Stop when $m_{ij}^2 > y_{\text{cut}} s$

Idea

Invert the QCD branching process

small m_{ij} when soft/collinear \Rightarrow unlikely to be a new jet

JADE

Iteratively:

- Find the pair, p_i , p_j that minimises $m_{ij}^2 = (p_i + p_j)^2 = 2E_iE_j(1 \cos\theta_{ij})$
- 2 Recombine $p_i, p_j \rightarrow p_{i+j} = p_i + p_j$ (i.e. from n to n-1 particles)

Stop when $m_{ij}^2 > y_{\text{cut}} s$

Alternatives with more friendly behaviour

Durham/ k_t : Same strategy with $d_{ij}^{(k_t)} = \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$

Cambridge: $d_{ij}^{(Cam)} = (1 - \cos \theta_{ij})$ (with Durham y_{cut} as a stopping condition)

JADE

Iteratively:

- Find the pair, p_i , p_j that minimises $m_{ij}^2 = (p_i + p_j)^2 = 2E_iE_j(1 \cos\theta_{ij})$
- ② Recombine $p_i, p_j \rightarrow p_{i+j} = p_i + p_j$ (i.e. from n to n-1 particles)

Stop when $m_{ij}^2 > y_{\text{cut}} s$

Alternatives with more friendly behaviour

Durham/ k_t : Same strategy with $d_{ij}^{(k_t)} = \min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$

Cambridge: $d_{ij}^{(Cam)} = (1 - \cos \theta_{ij})$ (with Durham y_{cut} as a stopping condition)

Note: two possible modes:

- Count the number of jets for a fixed y_{cut}
- ② Study the distributino of $y_{n-1,n}$, the transition beteen n-1 and n jets

Both allow strong tests of QCD (hold on a bit more before examples)

Part VIII: fixed-order and resummations

- take $\frac{d\sigma}{dx_1 dx_2}$ from above
- show that $m_{ij}^2 = E_i E_j (1 \cos \theta_{ij}) = (1 x_k) s \ (k \neq i, j) \Rightarrow 3 \text{ jets if } 1 x_i > y_{\text{cut}}, \ \forall i$

$$f_3^{(\mathsf{JADE})} = \frac{\alpha_s C_F}{\pi} \left[\log^2 \frac{y}{1-y} + \frac{3}{2} (1-2y) \log \frac{y}{1-2y} + 2 \text{Li}_2 \frac{y}{1-y} - \frac{\pi^2}{6} + \frac{5-12y-9y^2}{4} \right]$$

What features do you recognise here?

- take $\frac{d\sigma}{dx_1 dx_2}$ from above
- show that $m_{ij}^2 = E_i E_j (1 \cos \theta_{ij}) = (1 x_k) s \ (k \neq i, j) \Rightarrow 3$ jets if $1 x_i > y_{\text{cut}}, \ \forall i$

$$f_3^{(\mathsf{JADE})} = \frac{\alpha_s C_F}{\pi} \left[\log^2 \frac{y}{1-y} + \frac{3}{2} (1-2y) \log \frac{y}{1-2y} + 2 \text{Li}_2 \frac{y}{1-y} - \frac{\pi^2}{6} + \frac{5-12y-9y^2}{4} \right]$$

What features do you recognise here?

• Proportional to $\alpha_s C_F$, i.e. probes fundamental aspects of QCD

At $\mathcal{O}\left(\alpha_s^2\right)$, we get e.g. contributions sensitive to the non-abelian nature of QCD



- take $\frac{d\sigma}{dx_1dx_2}$ from above
- show that $m_{ij}^2 = E_i E_j (1 \cos \theta_{ij}) = (1 x_k) s \ (k \neq i, j) \Rightarrow 3 \text{ jets if } 1 x_i > y_{\text{cut}}, \ \forall i$

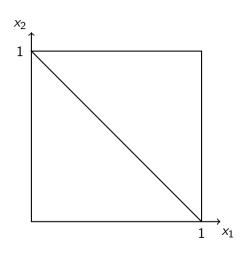
$$f_3^{(\text{JADE})} = \frac{\alpha_s C_F}{\pi} \left[\log^2 \frac{y}{1-y} + \frac{3}{2} (1-2y) \log \frac{y}{1-2y} + 2 \text{Li}_2 \frac{y}{1-y} - \frac{\pi^2}{6} + \frac{5-12y-9y^2}{4} \right]$$

What features do you recognise here?

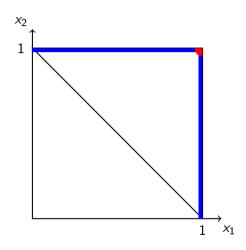
- Proportional to $\alpha_s C_F$, i.e. probes fundamental aspects of QCD
- When $y_{\rm cut} \ll 1$:

$$f_3^{(\mathsf{JADE})} pprox rac{lpha_s C_F}{\pi} \left[\log^2 y + rac{3}{2} \log y
ight]$$

Traces of the (logarithmic) IR behaviour of QCD

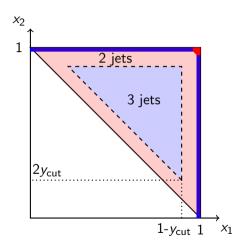


• Consider the x_1, x_2 phase-space Recall: $0 \le x_i \le 1, x_1 + x_2 + x_3 = 2$



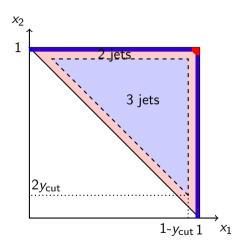
- Consider the x_1, x_2 phase-space Recall: $0 < x_i < 1, x_1 + x_2 + x_3 = 2$
- Soft and collinear divergences $x_{1,2} \rightarrow 1$ IRC-safe observables should not get there!

37 / 91

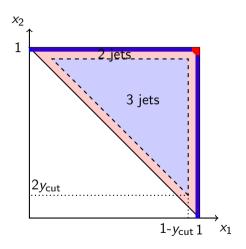


- Consider the x_1, x_2 phase-space Recall: $0 < x_i < 1, x_1 + x_2 + x_3 = 2$
- Soft and collinear divergences $x_{1,2} \rightarrow 1$ IRC-safe observables should not get there!
- Jade f_3 : $1 x_i \ge y_{\text{cut}}$ \Rightarrow IRC-safe

37 / 91



- Consider the x_1, x_2 phase-space Recall: $0 < x_i < 1, x_1 + x_2 + x_3 = 2$
- Soft and collinear divergences $x_{1,2} \rightarrow 1$ IRC-safe observables should not get there!
- Jade f_3 : $1 x_i \ge y_{\text{cut}}$ \Rightarrow IRC-safe
- However, when $y_{\rm cut} \ll 1$ one gets close to the log divergence



- Consider the x_1, x_2 phase-space Recall: $0 < x_i < 1, x_1 + x_2 + x_3 = 2$
- Soft and collinear divergences $x_{1,2} \rightarrow 1$ IRC-safe observables should not get there!
- Jade f_3 : $1 x_i \ge y_{\text{cut}}$ \Rightarrow IRC-safe
- However, when $y_{\rm cut} \ll 1$ one gets close to the log divergence
- Result: logs in observables double logs (log² y_{cut}): both soft and collinear single logs (log y_{cut}): collinear

'Finite"
$$y_{\text{cut}}$$
 $(\alpha_s \log y_{\text{cut}} \ll 1, \alpha_s \ll 1)$

$$y_{
m cut} \ll 1$$
 $(lpha_s L \equiv lpha_s \log y_{
m cut} \sim 1, \ lpha_s \ll 1)$

'Finite"
$$y_{\text{cut}}$$
 $y_{\text{cut}} \ll 1$ $(\alpha_s \log y_{\text{cut}} \ll 1, \alpha_s \ll 1)$ $(\alpha_s L \equiv \alpha_s \log y_{\text{cut}} \sim 1, \alpha_s \ll 1)$ $f_2 = 1 + \alpha_s f^{(1)}(y) + \alpha_s^2 f^{(2)}(y) + \alpha_s^3 f^{(3)}(y) + \dots$ $f_2 = (1 + C(\alpha_s))e^{g_1(\alpha_s L)L + g_2(\alpha_s L) + g_3(\alpha_s L)\alpha_s + \dots}$

'Finite"
$$y_{\text{cut}}$$
 $(\alpha_s \log y_{\text{cut}} \ll 1, \ \alpha_s \ll 1)$

$$f_2 = 1 + \underbrace{\alpha_s f^{(1)}(y)}_{\text{LO}} + \underbrace{\alpha_s^2 f^{(2)}(y)}_{\text{NLO}} + \underbrace{\alpha_s^3 f^{(3)}(y)}_{\text{NNLO}} + \dots$$

"standard" perturbation theory

$$y_{
m cut} \ll 1$$
 $(lpha_s L \equiv lpha_s \log y_{
m cut} \sim 1, \ lpha_s \ll 1)$ $\underbrace{g_1(lpha_s L)}_{
m NL} L + \underbrace{g_2(lpha_s L)}_{
m NNL} + \underbrace{g_3(lpha_s L)}_{
m NNLL} lpha_s + ...$ $f_2 = (1 + C(lpha_s))e^{-LL}$

"resummed" perturbation theory

'Finite"
$$y_{\text{cut}}$$
 $(\alpha_s \log y_{\text{cut}} \ll 1, \ \alpha_s \ll 1)$

$$f_2 = 1 + \underbrace{\alpha_s f^{(1)}(y)}_{\mathsf{LO}} + \underbrace{\alpha_s^2 f^{(2)}(y)}_{\mathsf{NLO}} + \underbrace{\alpha_s^3 f^{(3)}(y)}_{\mathsf{NNLO}} + \dots$$

"standard" perturbation theory

Statue-of-the-art: NLO Increasingly many NNLO A few N³LO

$$egin{aligned} y_{ ext{cut}} \ll 1 \ & (lpha_s L \equiv lpha_s \log y_{ ext{cut}} \sim 1, \ lpha_s \ll 1) \ & \underbrace{g_1(lpha_s L)}_{ ext{NLL}} L + \underbrace{g_2(lpha_s L)}_{ ext{NLL}} + \underbrace{g_3(lpha_s L)}_{ ext{NNLL}} lpha_s + ... \end{aligned}$$

"resummed" perturbation theory

Statue-of-the-art: NLL Increasingly many NNLL A few N³LL

'Finite"
$$y_{\text{cut}}$$

$$(\alpha_s \log y_{\text{cut}} \ll 1, \ \alpha_s \ll 1)$$

$$f_2 = 1 + \underbrace{\alpha_s f^{(1)}(y)}_{\text{LO}} + \underbrace{\alpha_s^2 f^{(2)}(y)}_{\text{NLO}} + \underbrace{\alpha_s^3 f^{(3)}(y)}_{\text{NNLO}} + \dots$$

"standard" perturbation theory

Statue-of-the-art: NLO Increasingly many NNLO A few N³LO

$$egin{aligned} y_{\mathsf{cut}} \ll 1 \ &(lpha_{\mathsf{s}} \mathsf{L} \equiv lpha_{\mathsf{s}} \log y_{\mathsf{cut}} \sim 1, \ lpha_{\mathsf{s}} \ll 1) \ &g_1(lpha_{\mathsf{s}} \mathsf{L}) \mathsf{L} + g_2(lpha_{\mathsf{s}} \mathsf{L}) + g_3(lpha_{\mathsf{s}} \mathsf{L}) lpha_{\mathsf{s}} + \dots \end{aligned}$$

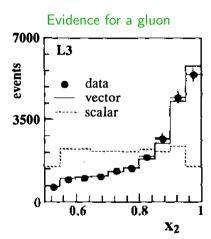
"resummed" perturbation theory

Statue-of-the-art: NLL Increasingly many NNLL A few N³LL

If only one thing to remember

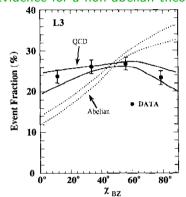
Calculations are valid (i) up to a given accuracy, (ii) in certain limits

Examples at LEP: testing QCD



The gluon was discovered through 3-jet events

Evidence for a non-abelian theory

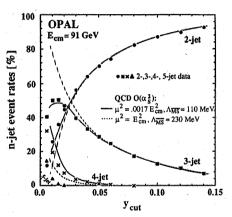


$$\frac{N_c}{C_F} = 2.55 \pm 0.55 \pm 0.4 \pm 0.2$$
 exp.:2.25 abelian:0

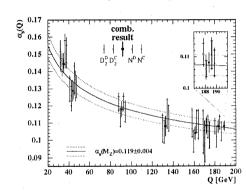
$$\frac{R}{R} = 0.1 \pm 2.4$$
 exp.:1.875 abelian:15

Examples at LEP: testing QCD

JADE jet rates at OPAL



α_s from $k_t/\text{Durham jet rates}$



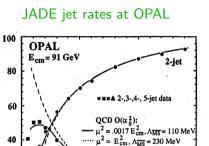
Examples at LEP: testing QCD

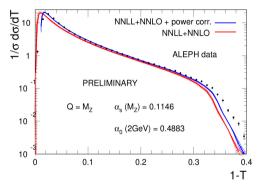
4-iet

0.05

0.10

y_{cut}





Improved through the years
High accuracy requires (non-perturbative)
power corrections

n-jet event rates [%]

20

0.15

Part IX: DIS and PDFs

Hadrons in the initial state

2 cases to consider:

ep collisions (Deep Inelastic Scattering (DIS)): HERA, EIC, ...
 can also do eA (not covered here)

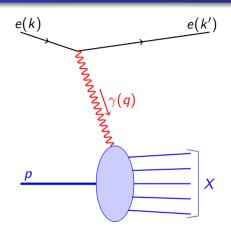
• *pp* collisions: LHC, Tevatron, FCC-*hh*, etc... can also do *pA* or *AA* (not covered here)

Hadrons in the initial state

2 cases to consider:

- ep collisions (Deep Inelastic Scattering (DIS)): HERA, EIC, ...
 can also do eA (not covered here)
 We will use this to discuss the basic physics of hadronic beams
- pp collisions: LHC, Tevatron, FCC-hh, etc...
 can also do pA or AA (not covered here)
 We will use this to discuss a few aspects of LHC physics and future challenges

DIS kinematics: $ep \rightarrow eX$ ($X \equiv anything$)



Kinematic variables:

$$s = (p+k)^{2}$$

$$V = p.q$$

$$W = (p+q)^{2}$$

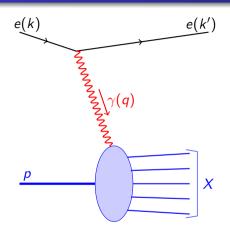
$$V = \frac{p.q}{p.k} = \frac{2\nu}{s}$$

$$Q^{2} = -q^{2}(>0)$$

$$X = \frac{Q^{2}}{2\nu}$$

Idea: use the photon to probe the proton large $Q^2 \Rightarrow$ small distance $\sim 1/Q$

DIS kinematics: $ep \rightarrow eX$ ($X \equiv anything$)



Kinematic variables:

$$s = (p+k)^{2}$$

$$V = p \cdot q$$

$$W = (p+q)^{2}$$

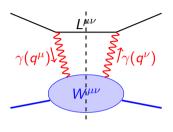
$$V = \frac{p \cdot q}{p \cdot k} = \frac{2\nu}{s}$$

$$Q^{2} = -q^{2}(>0)$$

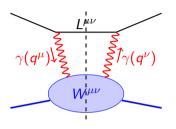
$$X = \frac{Q^{2}}{2\nu}$$

2 degrees of freedom (negleting azimuth): energy (E') and angle (θ) of outgoing electron

$$Q^{2} = 4EE'\cos^{2}(\theta/2)$$
$$x = \frac{EE'\cos^{2}(\theta/2)}{P(E - E'\sin^{2}(\theta/2))}$$

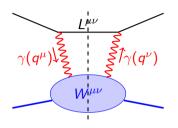


$$egin{aligned} \left|\mathcal{M}
ight|^2 &= L_{\mu
u} W^{\mu
u} \end{aligned} \qquad & ext{(generic Lorentz structure)} \ L_{\mu
u} &\equiv ext{lepton tensor} \end{aligned} \qquad & ext{(calculable from first principles)} \ W^{\mu
u} &\equiv ext{hadron tensor} \end{aligned} \qquad & ext{(contains the proton structure)} \ &= - \left(g^{\mu
u} + rac{q^{\mu} q^{
u}}{Q^2}
ight) F_1 + \left(p^{\mu} + rac{q^{\mu}}{2 x}
ight) \left(p^{
u} + rac{q^{
u}}{2 x}
ight) rac{F_2}{
u} \end{aligned}$$



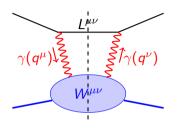
$$egin{aligned} \left|\mathcal{M}
ight|^2 &= L_{\mu
u} W^{\mu
u} \end{aligned} \qquad & ext{(generic Lorentz structure)} \ L_{\mu
u} &\equiv ext{lepton tensor} \end{aligned} \qquad & ext{(calculable from first principles)} \ W^{\mu
u} &\equiv ext{hadron tensor} \end{aligned} \qquad & ext{(contains the proton structure)} \ &= -\left(g^{\mu
u} + rac{q^{\mu} q^{
u}}{Q^2}
ight) F_1 + \left(p^{\mu} + rac{q^{\mu}}{2x}
ight) \left(p^{
u} + rac{q^{
u}}{2x}
ight) rac{F_2}{
u} \end{aligned}$$

• $F_{1,2}(x, Q^2)$ are the **proton structure functions** (also $F_L = F_2 - 2xF_1$)



$$egin{aligned} \left|\mathcal{M}
ight|^2 &= L_{\mu
u} W^{\mu
u} \end{aligned} \qquad & ext{(generic Lorentz structure)} \ L_{\mu
u} &\equiv ext{lepton tensor} \end{aligned} \qquad & ext{(calculable from first principles)} \ W^{\mu
u} &\equiv ext{hadron tensor} \end{aligned} \qquad & ext{(contains the proton structure)} \ &= - \left(g^{\mu
u} + rac{q^{\mu} q^{
u}}{Q^2}
ight) F_1 + \left(p^{\mu} + rac{q^{\mu}}{2 x}
ight) \left(p^{
u} + rac{q^{
u}}{2 x}
ight) rac{F_2}{\mu} \end{aligned}$$

- $F_{1,2}(x, Q^2)$ are the **proton structure functions** (also $F_L = F_2 2xF_1$)
- One can also have the exchange of a Z boson (neutral currents)



$$|\mathcal{M}|^2 = L_{\mu\nu} W^{\mu\nu}$$
 (generic Lorentz structure) $L_{\mu\nu} \equiv$ lepton tensor (calculable from first principles) $W^{\mu\nu} \equiv$ hadron tensor (contains the proton structure) $= -\left(g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{Q^2}\right)F_1 + \left(p^{\mu} + \frac{q^{\mu}}{2x}\right)\left(p^{\nu} + \frac{q^{\nu}}{2x}\right)\frac{F_2}{V}$

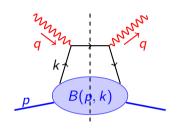
- $F_{1,2}(x, Q^2)$ are the **proton structure functions** (also $F_L = F_2 2xF_1$)
- ullet One can also have the exchange of a Z boson (neutral currents)
- One can also have charged currents with a W^{\pm} exchange (e.g. $e^{\pm}p \rightarrow \nu X$) This introduces a 3rd structure function $F_3(x,Q^2)$

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

$$p \equiv (0, 0, P, P)$$
 $n \equiv (0, 0, \frac{1}{2P}, \frac{1}{2P})$
 $k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$

large
$$Q^2 \Rightarrow \delta\left((q+k)^2\right) pprox rac{1}{2
u} \delta(\xi-x)$$
 and $F_2 = e_q^2 x q(x)$

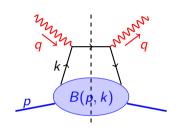


$$(q(x)=\int rac{d^4k}{(2\pi)^4}\operatorname{tr}(\not h B(p,k))\delta(\xi-x))$$

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

$$p \equiv (0, 0, P, P)$$
 $n \equiv (0, 0, \frac{1}{2P}, \frac{1}{2P})$
 $k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$



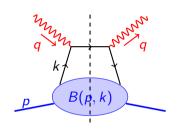
large
$$Q^2 \Rightarrow \delta\left((q+k)^2\right) \approx \frac{1}{2\nu}\delta(\xi-x)$$
 and $F_2 = e_q^2 \times q(x)$ $(q(x) = \int \frac{d^4k}{(2\pi)^4} \operatorname{tr}(\hbar B(p,k))\delta(\xi-x))$

ullet Photon scatters on a "quark" carrying a fraction x of the proton's longitudinal momentum

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

$$p \equiv (0, 0, P, P)$$
 $n \equiv (0, 0, \frac{1}{2P}, \frac{1}{2P})$
 $k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$



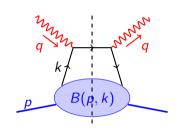
large
$$Q^2 \Rightarrow \delta\left((q+k)^2\right) \approx \frac{1}{2\nu}\delta(\xi-x)$$
 and $F_2 = e_q^2 x q(x)$ $(q(x) = \int \frac{d^4k}{(2\pi)^4} \operatorname{tr}(\hbar B(p,k))\delta(\xi-x))$

- ullet Photon scatters on a "quark" carrying a fraction x of the proton's longitudinal momentum
- $q(x) \equiv Parton Distribution Function$: density of quarks q with momentum fraction x

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

$$p \equiv (0, 0, P, P)$$
 $n \equiv (0, 0, \frac{1}{2P}, \frac{1}{2P})$
 $k^{\mu} = \xi p^{\mu} + \frac{k^2 + k_{\perp}^2}{2\xi} n^{\mu} + k_{\perp}^{\mu}$

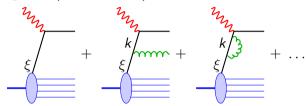


large
$$Q^2 \Rightarrow \delta\left((q+k)^2\right) \approx \frac{1}{2\nu}\delta(\xi-x)$$
 and $F_2 = e_q^2 \times q(x)$ $(q(x) = \int \frac{d^4k}{(2\pi)^4} \operatorname{tr}(pB(p,k))\delta(\xi-x))$

- ullet Photon scatters on a "quark" carrying a fraction x of the proton's longitudinal momentum
- $q(x) \equiv Parton Distribution Function$: density of quarks q with momentum fraction x
- Bjorken scaling: $F_2(x,Q^2) \equiv F_2(x)$, independent of Q^2 ((very) roughly true)
- Callan-Gross relation: $F_L = F_2 2xF_1 = 0$ (in practice: $\ll F_2$) means quarks are spin $\frac{1}{2}$

QCD effects

The quark can radiate gluons (real or virtual):



Explicit calculation gives:

$$F_2 = e_q^2 x \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left[\delta \left(1 - \frac{x}{\xi} \right) + \frac{\alpha_s}{2\pi} P_{qq} \left(\frac{x}{\xi} \right) \int^{Q^2} \frac{d|k^2|}{|k^2|} \right] \equiv e_q^2 x q_0(\xi) \left[1 + \frac{\alpha_s}{2\pi} (\text{divergent}) \right]$$

How do we proceed?

QCD evolution

$$F_2 = e_q^2 x \int_x^1 \frac{d\xi}{\xi} q_0(\xi) \left[\delta \left(1 - \frac{x}{\xi} \right) + \frac{\alpha_s}{2\pi} P_{qq} \left(\frac{x}{\xi} \right) \int^{Q^2} \frac{d|k^2|}{|k^2|} \right] \equiv e_q^2 x q_0(\xi) \left[1 + \frac{\alpha_s}{2\pi} (\text{divergent}) \right]$$

Idea:

- introduce a regulator μ^2
- ② absorb the divergence in the PDF: the "bare" $q_0(x)$ becomes $q(x, \mu^2)$

We get:

$$F_2 = e_q^2 x \int_x^1 \frac{d\xi}{\xi} q(\xi, \mu^2) \left[\delta \left(1 - \frac{x}{\xi} \right) + \frac{\alpha_s}{2\pi} P_{qq} \left(\frac{x}{\xi} \right) \log \frac{Q^2}{\mu^2} \right] \equiv e_q^2 x q(x, Q^2)$$

$$F_2 = e_q^2 x \int_x^1 \frac{d\xi}{\xi} q(\xi, \mu^2) \left[\delta \left(1 - \frac{x}{\xi} \right) + \frac{\alpha_s}{2\pi} P_{qq} \left(\frac{x}{\xi} \right) \log \frac{Q^2}{\mu^2} \right] \equiv e_q^2 x q(x, Q^2)$$

Important consequences:

$$F_2 = e_q^2 x \int_x^1 \frac{d\xi}{\xi} q(\xi, \mu^2) \left[\delta \left(1 - \frac{x}{\xi} \right) + \frac{\alpha_s}{2\pi} P_{qq} \left(\frac{x}{\xi} \right) \log \frac{Q^2}{\mu^2} \right] \equiv e_q^2 x q(x, Q^2)$$

Important consequences:

• F_2 does depend on Q^2 (Bjorken scaling violated by QCD)

$$F_2 = e_q^2 x \int_x^1 \frac{d\xi}{\xi} q(\xi, \mu^2) \left[\delta \left(1 - \frac{x}{\xi} \right) + \frac{\alpha_s}{2\pi} P_{qq} \left(\frac{x}{\xi} \right) \log \frac{Q^2}{\mu^2} \right] \equiv e_q^2 x q(x, Q^2)$$

Important consequences:

- F_2 does depend on Q^2 (Bjorken scaling violated by QCD)
- ② require that $F_2(x, Q^2)$ does not depend on the specific choice of μ^2 yields

$$Q^2 \partial_{Q^2} q(x, Q^2) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} P_{qq} \left(\frac{x}{\xi}\right) q(\xi, Q^2) \qquad P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

$$F_2 = e_q^2 x \int_x^1 \frac{d\xi}{\xi} q(\xi, \mu^2) \left[\delta \left(1 - \frac{x}{\xi} \right) + \frac{\alpha_s}{2\pi} P_{qq} \left(\frac{x}{\xi} \right) \log \frac{Q^2}{\mu^2} \right] \equiv e_q^2 x q(x, Q^2)$$

Important consequences:

- F_2 does depend on Q^2 (Bjorken scaling violated by QCD)
- ② require that $F_2(x, Q^2)$ does not depend on the specific choice of μ^2 yields

$$\boxed{Q^2 \partial_{Q^2} q(x,Q^2) = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} P_{qq} \left(\frac{x}{\xi}\right) q(\xi,Q^2)} \qquad P_{qq}(z) = C_F \left(\frac{1+z^2}{1-z}\right)_+$$

 \odot PDFs remain essentially non-perturbative but their Q^2 dependence is predicted by QCD

In practice: all flavour combinations

$$P_{qq} = C_F \frac{1+z^2}{1-z}$$

$$P_{gq} = C_F \frac{1+(1-z)^2}{z}$$

$$P_{gg} = 2C_A \left[\frac{z}{1-z} + \frac{1-z}{z} + z(1-z) \right] \text{ (+virt)}$$

$$P_{qg} = \frac{1}{2} [z^2 + (1-z)^2]$$

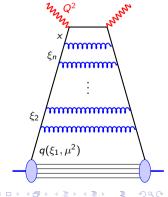
$$\mu^2 \partial_{\mu^2} \begin{pmatrix} q(x,\mu^2) \\ g(x,\mu^2) \end{pmatrix} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \begin{pmatrix} P_{qq}(\xi) & P_{qg}(\xi) \\ P_{gq}(\xi) & P_{gg}(\xi) \end{pmatrix} \begin{pmatrix} q(\frac{x}{\xi},\mu^2) \\ g(\frac{x}{\xi},\mu^2) \end{pmatrix}$$

Comments:

- This is the DGLAP equation
- ullet $\mu \equiv \mu_{\it F}$ is the factorisation scale
- "P"'s are the Altarelli-Parisi (or DGLAP) splitting functions
- Trace of the soft divergence at z=0,1 (other equations to handle them: BFKL,...)

- we had a (IR) divergence; we absorbed it in the PDFs; we are left with $\log(Q^2/\mu^2)$
- DGLAP is an all-order treatment (resummation) of $(\alpha_s \log(Q^2/\mu^2))^n$:

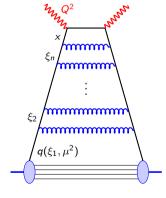
$$q(x,Q^2) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{2\pi} \log \frac{Q^2}{\mu^2}\right)^n \int_{x}^{1} \frac{d\xi_n}{\xi_n} P(\frac{x}{\xi_n}) \int_{\xi_n}^{1} \frac{d\xi_{n-1}}{\xi_{n-1}} P(\frac{\xi_n}{\xi_{n-1}}) \cdots \int_{\xi_2}^{1} \frac{d\xi_1}{\xi_1} P(\frac{\xi_1}{\xi_2}) q(\xi_1,\mu^2)$$



- we had a (IR) divergence; we absorbed it in the PDFs; we are left with $\log(Q^2/\mu^2)$
- DGLAP is an all-order treatment (resummation) of $(\alpha_s \log(Q^2/\mu^2))^n$:

$$q(x,Q^2) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{2\pi} \log \frac{Q^2}{\mu^2}\right)^n \int_{x}^{1} \frac{d\xi_n}{\xi_n} P(\frac{x}{\xi_n}) \int_{\xi_n}^{1} \frac{d\xi_{n-1}}{\xi_{n-1}} P(\frac{\xi_n}{\xi_{n-1}}) \cdots \int_{\xi_2}^{1} \frac{d\xi_1}{\xi_1} P(\frac{\xi_1}{\xi_2}) q(\xi_1,\mu^2)$$

• What we did here is the "leading logarithmic" order Often also referred to as the "strongly ordered limit" $\alpha_s^n log \frac{Q^2}{\sigma^2}$ comes from $\mu^2 \ll |k_1^2| \ll \cdots \ll Q^2$



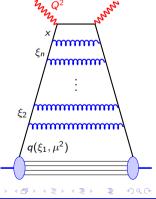
- we had a (IR) divergence; we absorbed it in the PDFs; we are left with $\log(Q^2/\mu^2)$
- DGLAP is an all-order treatment (resummation) of $(\alpha_s \log(Q^2/\mu^2))^n$:

$$q(x,Q^2) = \sum_{n=0}^{\infty} \left(\frac{\alpha_s}{2\pi} \log \frac{Q^2}{\mu^2}\right)^n \int_x^1 \frac{d\xi_n}{\xi_n} P(\frac{x}{\xi_n}) \int_{\xi_n}^1 \frac{d\xi_{n-1}}{\xi_{n-1}} P(\frac{\xi_n}{\xi_{n-1}}) \cdots \int_{\xi_2}^1 \frac{d\xi_1}{\xi_1} P(\frac{\xi_1}{\xi_2}) q(\xi_1,\mu^2)$$

- What we did here is the "leading logarithmic" order
- Fundamental factorisation theorem: this remains true at all orders

$$\mu^{2} \partial_{\mu^{2}} \begin{pmatrix} q(x,\mu^{2}) \\ g(x,\mu^{2}) \end{pmatrix} = \int_{x}^{1} \frac{d\xi}{\xi} \begin{pmatrix} P_{qq}(\xi,\alpha_{s}) & P_{qg}(\xi,\alpha_{s}) \\ P_{gq}(\xi,\alpha_{s}) & P_{gg}(\xi,\alpha_{s}) \end{pmatrix} \begin{pmatrix} q(\frac{x}{\xi},\mu^{2}) \\ g(\frac{x}{\xi},\mu^{2}) \end{pmatrix}$$

$$P(z,\alpha_{s}) = \underbrace{\frac{\alpha_{s}}{2\pi} P^{(1)}(z)}_{\text{LL/LO}} + \underbrace{\left(\frac{\alpha_{s}}{2\pi}\right)^{2} P^{(2)}(z)}_{\text{NLL/NLO}} + \underbrace{\left(\frac{\alpha_{s}}{2\pi}\right)^{3} P^{(3)}(z)}_{\text{NNLL/NNLO}} + \dots$$



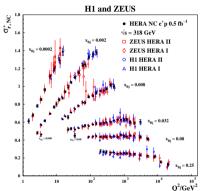
• State-of-the-art: NNLL known, N³LL almost known (in moment space)

- State-of-the-art: NNLL known, N³LL almost known (in moment space)
- Practical approach:
 - **1** Take an initial condition for all quarks and gluons at an initial scale Q_0 : $q_f(x, Q_0^2; \vec{a})$, $g(x, Q_0^2; \vec{a})$ (with \vec{a} a set of free parameters)
 - Solve DGLAP to get $q_f(x, Q^2; \vec{a})$, $g(x, Q^2; \vec{a})$ at all Q^2
 - **3** Fit the free parameters \vec{a} to experimental data $(F_2, F_2^{c,b}, F_L, pp \text{ jets, } pp \ t\bar{t}, ...)$

- State-of-the-art: NNLL known, N³LL almost known (in moment space)
- Practical approach:
 - **1** Take an initial condition for all quarks and gluons at an initial scale Q_0 : $q_f(x, Q_0^2; \vec{a})$, $g(x, Q_0^2; \vec{a})$ (with \vec{a} a set of free parameters)
 - Solve DGLAP to get $q_f(x, Q^2; \vec{a})$, $g(x, Q^2; \vec{a})$ at all Q^2
 - **③** Fit the free parameters \vec{a} to experimental data $(F_2, F_2^{c,b}, F_L, pp \text{ jets, } pp \ t\bar{t}, ...)$
- Several subtleties: form of the init cdt, treatment of heavy quarks, data included, treatment of uncertainties, ...

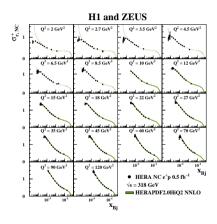
- State-of-the-art: NNLL known, N³LL almost known (in moment space)
- Practical approach:
 - **1** Take an initial condition for all quarks and gluons at an initial scale Q_0 : $q_f(x, Q_0^2; \vec{a})$, $g(x, Q_0^2; \vec{a})$ (with \vec{a} a set of free parameters)
 - Solve DGLAP to get $q_f(x, Q^2; \vec{a})$, $g(x, Q^2; \vec{a})$ at all Q^2
 - **③** Fit the free parameters \vec{a} to experimental data $(F_2, F_2^{c,b}, F_L, pp \text{ jets, } pp \ t\bar{t}, ...)$
- Several subtleties: form of the init cdt, treatment of heavy quarks, data included, treatment of uncertainties, ...
- Effort (still ongoing!!) from several groups: CTEQ/CT, MRST/MSTW/MMHT/MSHT, NNPDF, ...
 1438 PDF sets available from LHAPDF (link)

$$\sigma_{\rm red} = F_2 + y^2 [1 + (1 - y)^2] F_L$$



- \bullet Rapid rise at small x
- flatter at large x (Bj. scaling)

[HERAPDF2.0]



Well reproduced by DGLAP fit $(Q^2 \ge 10 \text{ GeV}^2)$

0.2

$$\sigma_{\text{red}} = F_2 + y^2 [1 + (1 - y)^2] F_L$$
H1 and ZEUS

• HERANC c'p 0.5 fb⁻¹

$$v_{\text{s}_1} = 0.0002$$
• HERANC c'p 0.5 fb⁻¹

$$v_{\text{s}_2} = 3.18 \text{ GeV}$$
• ZEUS HERA II
• HIERA II
• HIERA II
• HIERA II
• MI HERA II
• MI HER

FIF Phababaa is

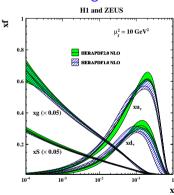
104

O²/GeV²

- \bullet Rapid rise at small x
- flatter at large x (Bj. scaling)

[HERAPDF2.0]

Resulting PDFs



Gluon (and sea quarks) rise at small x

Part X: recap divergences in QCD

UV divergences:

IR divergences in the initial state:

3 IR divergences in the final state:

- UV divergences: absorbed in parameters of the QCD Lagrangian QCD is renormalisable Renormalisation Group Equation for the dependence of α_s and masses on the renormalisation scale
- IR divergences in the initial state:

IR divergences in the final state:

- UV divergences: absorbed in parameters of the QCD Lagrangian QCD is renormalisable Renormalisation Group Equation for the dependence of α_s and masses on the renormalisation scale
- IR divergences in the initial state: absorbed in PDFs Depencence on the factorisation scale through the DGLAP equation
- IR divergences in the final state:

- UV divergences: absorbed in parameters of the QCD Lagrangian QCD is renormalisable Renormalisation Group Equation for the dependence of α_s and masses on the renormalisation scale
- IR divergences in the initial state: absorbed in PDFs Depencence on the factorisation scale through the DGLAP equation
- IR divergences in the final state: cancel between "real" and "virtual" contributions as long as the observable is infrared-and-collinear safe

Comments:

- All divergences are logarithmic
- Intimately connected to calculability in perturbative QCD:
 - kernels of the RGE and PDFs calculable order by order
 - IRC-safe observables calculable up to non-perturbative corrections $\propto \left(\frac{\Lambda_{\rm QCD}}{Q}\right)^{\#}$
- For a hard scale Q, perturbative expansion in powers of $\alpha_s(Q)$ (LO, NLO, NNLO, ...)
- For disparate scales, say Q and vQ ($v \ll 1$), perturbative expansion in powers of $\alpha_s(Q)\log^2 v$ or $\alpha_s(Q)\log v$ (LL, NLL, NNLL, ...)

Part XI: QCD at hadronic colliders

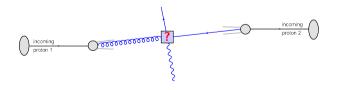
Foreword

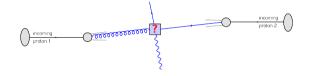
- Most of the fundamental concepts are as in ee and DIS
- More busy environment due to hadronic beams
- Simply discuss the main differences with what we discussed earlier

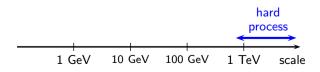
Colliders study fundamental interactions at high energy

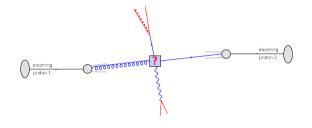
Master formula:

$$\sigma = \int dx_1 dx_2 \underbrace{f_a(x_1, Q)f_b(x_2, Q)}_{\text{PDFs}} \underbrace{\hat{\sigma}(x_1, x_2, Q)}_{\text{partonic x-sect.}}$$

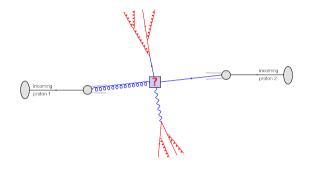




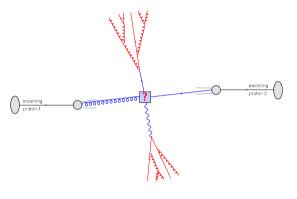






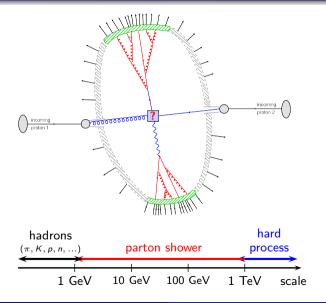






Hard + branchings

- perturbative QCD
- under solid control
- predictive, systematically improvable theory with genuine uncertainty estimates



Hard + branchings

- perturbative QCD
- under solid control
- predictive, systematically improvable theory with genuine uncertainty estimates

Hadronisation and UE/MPI

- NON-perturbative
- needs modelling
- model-dependent

The "partonic" collision can (usually) happen for a range of x_1 , x_2 \Rightarrow the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions

$$p^{\mu} \equiv (p_{x}, p_{y}, p_{z}, E)$$

$$\equiv (p_{t} \cos \phi, p_{t} \sin \phi, m_{t} \sinh y, m_{t} \cosh y)$$

$$\stackrel{m=0}{\equiv} p_{t}(\cos \phi, \sin \phi, \sinh y, \cosh y)$$

Use cylindrical coordinates: p_t , y, ϕ

$$m_t = \sqrt{p_t^2 + m^2} \qquad y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$

ee collisions

$$p^{\mu} \equiv (p_{x}, p_{y}, p_{z}, E)$$

$$\equiv (p \sin \theta \cos \varphi, p \sin \theta \sin \varphi, p \cos \theta, E)$$

$$\stackrel{m=0}{\equiv} p(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta, 1)$$

Use spherical coordinates: E, θ , φ

The "partonic" collision can (usually) happen for a range of x_1 , x_2 \Rightarrow the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions

$$p^{\mu} \equiv (p_{x}, p_{y}, p_{z}, E)$$

$$\equiv (p_{t} \cos \phi, p_{t} \sin \phi, m_{t} \sinh y, m_{t} \cosh y)$$

$$\stackrel{m=0}{\equiv} p_{t}(\cos \phi, \sin \phi, \sinh y, \cosh y)$$

Use cylindrical coordinates: p_t , y, ϕ

$$m_t = \sqrt{p_t^2 + m^2} \qquad y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$

 p_t is the transverse momentum (m_t is the transverse mass)

The "partonic" collision can (usually) happen for a range of x_1 , x_2 \Rightarrow the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions

$$p^{\mu} \equiv (p_{x}, p_{y}, p_{z}, E)$$

$$\equiv (p_{t} \cos \phi, p_{t} \sin \phi, m_{t} \sinh y, m_{t} \cosh y)$$

$$\stackrel{m=0}{\equiv} p_{t}(\cos \phi, \sin \phi, \sinh y, \cosh y)$$

$$m_t = \sqrt{p_t^2 + m^2} \qquad y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$

- p_t is the transverse momentum (m_t is the transverse mass)
- y is the rapidity

The "partonic" collision can (usually) happen for a range of x_1 , x_2 \Rightarrow the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions

$$p^{\mu} \equiv (p_{x}, p_{y}, p_{z}, E)$$

$$\equiv (p_{t} \cos \phi, p_{t} \sin \phi, m_{t} \sinh y, m_{t} \cosh y)$$

$$\stackrel{m=0}{\equiv} p_{t}(\cos \phi, \sin \phi, \sinh y, \cosh y)$$

$$m_t = \sqrt{p_t^2 + m^2} \qquad y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$

- p_t is the **transverse momentum** (m_t is the transverse mass)
- y is the rapidity
- "energy-like" and geometrical

The "partonic" collision can (usually) happen for a range of x_1 , x_2 \Rightarrow the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions

$$p^{\mu} \equiv (p_{x}, p_{y}, p_{z}, E)$$

$$\equiv (p_{t} \cos \phi, p_{t} \sin \phi, m_{t} \sinh y, m_{t} \cosh y)$$

$$\stackrel{m=0}{\equiv} p_{t}(\cos \phi, \sin \phi, \sinh y, \cosh y)$$

$$m_t = \sqrt{p_t^2 + m^2} \qquad y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$

- p_t is the **transverse momentum** (m_t is the transverse mass)
- y is the rapidity
- "energy-like" and geometrical
- transverse and longitudinal

The "partonic" collision can (usually) happen for a range of x_1 , x_2 \Rightarrow the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions

$$p^{\mu} \equiv (p_x, p_y, p_z, E)$$

$$\equiv (p_t \cos \phi, p_t \sin \phi, m_t \sinh y, m_t \cosh y)$$

$$\stackrel{m=0}{\equiv} p_t(\cos \phi, \sin \phi, \sinh y, \cosh y)$$

$$m_t = \sqrt{p_t^2 + m^2} \qquad y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$

- p_t is the transverse momentum (m_t is the transverse mass)
- y is the rapidity
- "energy-like" and geometrical
- transverse and longitudinal
- Pseudo-rapidity $\eta = -\log \tan \theta/2$

The "partonic" collision can (usually) happen for a range of x_1 , x_2 \Rightarrow the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions

$$p^{\mu} \equiv (p_x, p_y, p_z, E)$$

$$\equiv (p_t \cos \phi, p_t \sin \phi, m_t \sinh y, m_t \cosh y)$$

$$\stackrel{m=0}{\equiv} p_t(\cos \phi, \sin \phi, \sinh y, \cosh y)$$

$$m_t = \sqrt{p_t^2 + m^2} \qquad y = \frac{1}{2} \log \frac{E + p_z}{E - p_z}$$

- p_t is the **transverse momentum** (m_t is the transverse mass)
- y is the rapidity
- "energy-like" and geometrical
- transverse and longitudinal
- Pseudo-rapidity $\eta = -\log \tan \theta/2$
 - $y = \eta \Leftrightarrow m = 0$
 - Δy boost invariant, not $\Delta \eta$
 - Prefer y over $\eta!$

Jets

Strategy similar to ee except for:

- choice of kinematic variables
- UE/MPI
 - ⇒ extra hadronic activity
 - \Rightarrow jet radius R limiting the spatial extent of jets

Strategy similar to ee except for:

- choice of kinematic variables
- UE/MPI
 - ⇒ extra hadronic activity
 - ⇒ jet radius R limiting the spatial extent of jets

Pairwise recombination algorithms

Repeat the following until everything is clustered

Ompute distances between all particles

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \left[\Delta y_{ij}^2 + \Delta \phi_{ij}^2\right]$$

 $d_{iB} = p_{ti}^{2p} R^2$

- Find smallest of all distances
- If d_{ij} : remove p_i and p_j and replace by $p_i + p_j$ If d_{iB} : call i a jet

Strategy similar to ee except for:

- choice of kinematic variables
- UE/MPI
 - ⇒ extra hadronic activity
 - ⇒ jet radius R limiting the spatial extent of jets

Pairwise recombination algorithms

Repeat the following until everything is clustered

Compute distances between all particles

$$d_{ij} = \min(p_{ti}^{2p}, p_{tj}^{2p}) \left[\Delta y_{ij}^2 + \Delta \phi_{ij}^2 \right] \ d_{iB} = p_{ti}^{2p} R^2$$

- Find smallest of all distances
- **1** If d_{ij} : remove p_i and p_j and replace by $p_i + p_j$ If d_{iB} : call i a jet

3 typical cases:

- p = 0: Cambridge/Aachen algorithm (cf. ee)

CERN-FermiLab HCP School 2023

Strategy similar to ee except for:

- choice of kinematic variables
- UE/MPI
 - ⇒ extra hadronic activity
 - ⇒ jet radius R limiting the spatial extent of jets

For completeness: cone algorithms

- Idea of "dominant directions of energy flow" in the event
- Extensively used at the Tevatron (CDF MidPoint, D0 MidPoint, JetClu, ...)
- All the cone algorithms used at the Tevatron are IRC unsafe!
- One IRC-safe option: SISCone (not extensively used in practice)

Pairwise recombination algorithms

Repeat the following until everything is clustered

Compute distances between all particles

$$egin{aligned} d_{ij} &= \min(p_{ti}^{2p}, p_{tj}^{2p}) \left[\Delta y_{ij}^2 + \Delta \phi_{ij}^2
ight] \ d_{iB} &= p_{ti}^{2p} R^2 \end{aligned}$$

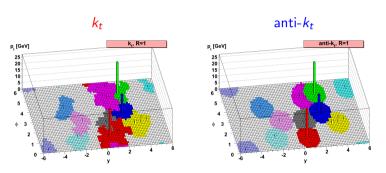
- Find smallest of all distances
- If d_{ij} : remove p_i and p_j and replace by $p_i + p_j$ If d_{iB} : call i a jet

3 typical cases:

- p = 1: k_t algorithm (cf. ee)
- p = 0: Cambridge/Aachen algorithm (cf. ee)
- **3** p = -1: anti- k_t algorithm (default at the LHC)

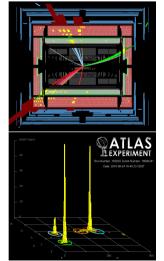
CERN-FermiLab HCP School 2023

compared to others, hard anti- k_t are circles



One typically uses R=0.4 (R up to 0.8-1 in specific cases)

Example event at the LHC



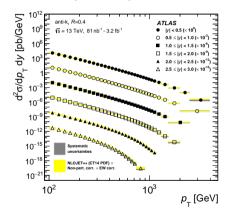
$Jet \equiv parton$

(At leat in the context of hadron colliders)

Jets are IRC-safe proxies to "hard partons" from the initial collision

- Ubiquitous at colliders: used in almost all measurements and searches
- Only well defined if one specifies
 - Which jet definition is used
 - Which cuts are applied

Example: (inclusive) jet cross-section



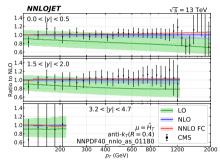
$Jet \equiv parton$

(At leat in the context of hadron colliders)

Jets are IRC-safe proxies to "hard partons" from the initial collision

- Ubiquitous at colliders: used in almost all measurements and searches
- Only well defined if one specifies
 - Which jet definition is used
 - Which cuts are applied

Example: (inclusive) jet cross-section comparison to NNLO QCD



LO \rightarrow NLO \rightarrow NNLO: reduction of the uncertainties

[thanks to A.Huss]

QCD challenges

The LHC takes us through an amazing journey at the forefront of our knowledge This implies a series of challenges

Things (briefly) discussed

- precision needed! (Including $\hat{\sigma}$, PDFs, α_s ,...)
- large range of processes and multiplicities challenge for precision
- large range of scales ⇒ requires resummations
- Need for good non-perturbative models

Things not (really) discussed

- A vast and rich heavy-ion program
- Everything amplified at future colliders Valid for both FCC-ee (+ee friends) and FCC-hh!

QCD challenges

The LHC takes us through an amazing journey at the forefront of our knowledge This implies a series of challenges

Things (briefly) discussed

- precision needed! (Including $\hat{\sigma}$, PDFs, α_s ,...)
- large range of processes and multiplicities challenge for precision
- large range of scales ⇒ requires resummations
- Need for good non-perturbative models

Things not (really) discussed

- A vast and rich heavy-ion program
- Everything amplified at future colliders Valid for both FCC-ee (+ee friends) and FCC-hh!

If only one message to take home

A top-notch knowledge/understanding of QCD is

- interesting per se! (part of a physicist's job to understand fundamental interactions) If time left: examples of fun structures emerging from QCD
- primordial for the whole programme of collider physics

Fixed-order calculations: Amplitudes

Two main ingredients/difficulties:

- The amplitude $\mathcal M$ itself
- Cancelling the divergences between real and virtual emissions

Complexity increases with:

- The number of loops (LO, NLO, NNLO, ...)
- The number of external (coloured) legs Including initial-state ones

tree-level	n	#diagrams
<i>n</i> -gluon	4	4
amplitude	5	25
ኒ 1 £n	6	220
,2 E , , , , , , , , , , , , , , , , , ,	7	2485
in in the second	8	34300
mm 3 3 mm	9	559405
3 ³ M	10	10525900

Rough estimate:

1 extra loop pprox 2 extra legs

[thanks to S.Abreu and B.Page]

Fixed-order calculations: Amplitudes

Two main ingredients/difficulties:

- The amplitude $\mathcal M$ itself
- Cancelling the divergences between real and virtual emissions

Complexity increases with:

- The number of loops (LO, NLO, NNLO, ...)
- The number of external (coloured) legs Including initial-state ones

tree-level	n	#diagrams
<i>n</i> -gluon	4	4
amplitude	5	25
ኒ 1 <i>Է</i> n	6	220
2 rece ft.	7	2485
www.	8	34300
mm 3 3 mm	9	559405
33 m	10	10525900

Rough estimate:

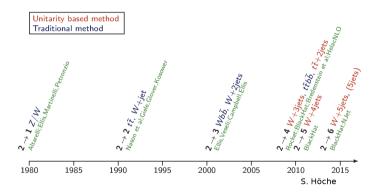
1 extra loop pprox 2 extra legs

[thanks to S.Abreu and B.Page]

Field of **amplitudes** (born \sim 15 years ago) meant to study and compute amplitudes without going through Feynman graphs

The NLO revolution

About 10 years ago: NLO made (almost) automated The NLO revolution



Many core tools developed:

- Spinor-helicity formalism
 ⇒ compact expressions
- Example: Parke-Taylor

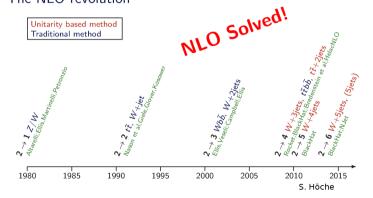
$$\frac{\sum_{i=3}^{2^{+}}\sum_{j=1}^{E^{+}}\sum_{j=1}^{E^{+}}}{\sum_{j=1}^{e^{+}}\sum_{j=1}^{e^{+}}} = \frac{\langle ij \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$

- Generalised unitarity
 Loops from trees and cuts
- ... and many others
 BCFW, double-copy, bootstrap,
 alphabet&symbols,...

CERN-FermiLab HCP School 2023

The NLO revolution

About 10 years ago: NLO made (almost) automated
The NLO revolution



Many core tools developed:

- Spinor-helicity formalism⇒ compact expressions
- Example: Parke-Taylor

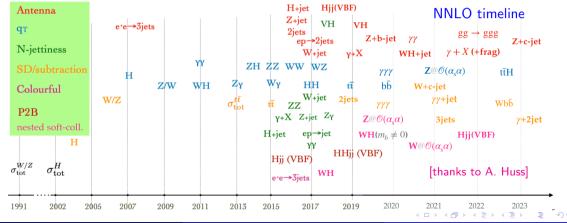
$$\frac{2^{+}}{\sum_{i=3}^{k+1}} \underbrace{k^{i}}_{i}^{k} \cdot \cdot \cdot = \frac{\langle ij \rangle^{4}}{\langle 12 \rangle \langle 23 \rangle \cdots \langle n1 \rangle}$$

- Generalised unitarity Loops from trees and cuts
- ... and many others
 BCFW, double-copy, bootstrap,
 alphabet&symbols,...

CERN-FermiLab HCP School 2023

Amplitudes: towards NNLO and beyond

- Deep understanding on the structure of amplitudes, rooted in field theory
- Often developed in N=4 SUSY which has a higher degree of symmetry than QCD
- Now extending to NNLO (even N³LO): current state-of-the-art: $2 \rightarrow 3$ at 2 loops



Two main approaches

- "direct" calculation in QCD
- effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high accuracy); direct calculation often nice to highlight underlying physics mechanisms

Two main approaches

- "direct" calculation in QCD
- effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high accuracy); direct calculation often nice to highlight underlying physics mechanisms

State-of-the-art

- NLL (almost) automated
- for ee, NNLL (almost) automated
- N³LL for specific cases
- Collinear physics easier than soft emissions

Two main approaches

- "direct" calculation in QCD
- effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high accuracy); direct calculation often nice to highlight underlying physics mechanisms

State-of-the-art

- NLL (almost) automated
- for ee, NNLL (almost) automated
- N³LL for specific cases
- Collinear physics easier than soft emissions

Soft emissions

- complicated geometrical and colour structures
- Field-theory progress (webs,...); connected to amplitudes
- Some observables (like a jet veto for jets with |y| < y_{cut} in H studies) are only sensitive to a part of the (geometrical) phase-space
 ⇒ "non-global" logs difficult to resum
- Usually appear at NLL: OK at large N_c, tough beyond Recent progress: subleading correction at large N_c

Two main approaches

- "direct" calculation in QCD
- effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high accuracy); direct calculation often nice to highlight underlying physics mechanisms

State-of-the-art

- NLL (almost) automated
- for ee, NNLL (almost) automated
- N³LL for specific cases
- Collinear physics easier than soft emissions

Matching

Quite often include **matched** predictions $N^pLO + N^qLL$

Idea: get the best of both limits:

- exact $N^pLO \alpha_s$ expansion (when logs are small)
- N^qLL resummation when logs are large
- avoiding double counting requires log expansion at fixed order; several "matching" schemes

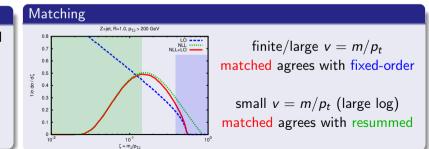
Two main approaches

- "direct" calculation in QCD
- effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high accuracy); direct calculation often nice to highlight underlying physics mechanisms

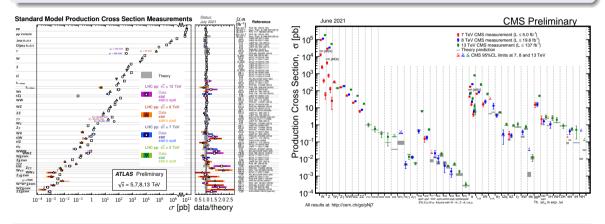
State-of-the-art

- NLL (almost) automated
- for ee, NNLL (almost) automated
- N³LL for specific cases
- Collinear physics easier than soft emissions



Contributed to big achievements at the LHC

Long list of standard-model measuirements



Also played a critical role in BSM searches

Challenges at HL-LHC/FCC-ee/FCC-hh

Highly challenging perspective

From a pheno QCD standpoint (i.e. besides experimental aspects/challenges)

- ullet requires more precise determination of $lpha_s$
- requires high fixed-order accuracy (likely at least N³LO)
- requires high resummation accuracy (likely at least N³LL)
- requires mixed QCD+EW corrections with high accuracy
- requires excellent control over non-perturbative effects

Part XII: Monte Carlo event generators

Generic approach

Typical calculations take the following form:

$$\mathcal{O} = \sum_{n} \int d\Phi_{n} \left| \mathcal{M}(k_{1}, \ldots, k_{n}) \right|^{2} \mathcal{O}_{n}(k_{1}, \ldots, k_{n})$$

Even if we have the amplitudes analytically, this is still highly complex:

- real-virtual cancellations
- PDFs for hadronic beams
- often complex observables and cuts
- resummations sensitive to all n
- one can have non-perturbative hadronisation/MPI or detector simulations

Generic approach

Typical calculations take the following form:

$$\mathcal{O} = \sum_{n} \int d\Phi_n \left| \mathcal{M}(k_1, \dots, k_n) \right|^2 \underbrace{\mathcal{O}_n(k_1, \dots, k_n)}_{\text{end-user's}}$$
Monte Carlo sampling

Even if we have the amplitudes analytically, this is still highly complex:

- real-virtual cancellations
- PDFs for hadronic beams
- often complex observables and cuts
- resummations sensitive to all n
- one can have non-perturbative hadronisation/MPI or detector simulations

Idea of Monte Carlo generators

- Provide a numerical sampling of the phase-space and amplitudes
- 2 hand over k_1, \ldots, k_n to the end user
- Iet the end user compute the obserable

Generic approach

Typical calculations take the following form:

$$\mathcal{O} = \sum_{n} \int d\Phi_n \left| \mathcal{M}(k_1, \dots, k_n) \right|^2 \underbrace{\mathcal{O}_n(k_1, \dots, k_n)}_{\text{end-user's}}$$
Monte Carlo sampling

Even if we have the amplitudes analytically, this is still highly complex:

- real-virtual cancellations
- PDFs for hadronic beams
- often complex observables and cuts
- resummations sensitive to all n
- one can have non-perturbative hadronisation/MPI or detector simulations

Idea of Monte Carlo generators

- Provide a numerical sampling of the phase-space and amplitudes
- 2 hand over k_1, \ldots, k_n to the end user
- Iet the end user compute the obserable

Key gain: works with any observable

CERN-FermiLab HCP School 2023

$$\mathcal{O} = \sum_{n} \int d\Phi_n \left| \mathcal{M}(k_1, \dots, k_n) \right|^2 \mathcal{O}_n(k_1, \dots, k_n)$$
Monte Carlo sampling

$$\mathcal{O} = \sum_{\substack{n \in \mathbb{N}^k \text{LO} \\ \text{finite sum}}} \int d\Phi_n \left| \mathcal{M}(k_1, \dots, k_n) \right|^2 \ \mathcal{O}_n(k_1, \dots, k_n)$$

Fixed order

$$\mathcal{O} = \sum_{\substack{\mathsf{all} \; n \ \mathsf{infinite} \; \mathsf{sum}}} \int d\Phi_n \left| \mathcal{M}(k_1, \ldots, k_n) \right|^2 \; \mathcal{O}_n(k_1, \ldots, k_n)$$

Fixed order or all orders

$$\mathcal{O} = \sum_{n} \underbrace{\int d\Phi_{n}}_{\text{sampled}} \underbrace{|\mathcal{M}(k_{1}, \dots, k_{n})|^{2}}_{\text{weight}} \mathcal{O}_{n}(k_{1}, \dots, k_{n})$$

- Fixed order or all orders
- Weighted

$$\mathcal{O} = \sum_{n} \underbrace{\int d\Phi_{n} \left| \mathcal{M}(k_{1}, \dots, k_{n}) \right|^{2}}_{\text{sampled}} \mathcal{O}_{n}(k_{1}, \dots, k_{n})$$

- Fixed order or all orders
- Weighted or unweighted

- Require a finite range of multiplicities
 E.g. dijets:
 - LO $\equiv \mathcal{O}(\alpha_s^2)$: 2 \rightarrow 2 (tree level)
 - NLO $\equiv \mathcal{O}(\alpha_s^3)$: 2 \rightarrow 3 (tree level), 2 \rightarrow 2 (1-loop)
 - NNLO $\equiv \mathcal{O}(\alpha_s^4)$: 2 \rightarrow 4 (tree level), 2 \rightarrow 3 (1-loop), 2 \rightarrow 2 (2-loops)

- Require a finite range of multiplicities
- Main challenge: each *n* is separately infinite

$$\frac{d\sigma_{\mathsf{pure \ NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} |\mathcal{M}_{\mathsf{real}}|^2 \mathcal{O}_{n+1} + \int d\Phi_{n} |\mathcal{M}_{\mathsf{virt}}|^2 \mathcal{O}_{n} = \mathsf{finite}$$

- Require a finite range of multiplicities
- Main challenge: each *n* is separately infinite

$$rac{d\sigma_{\mathsf{pure \ NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} |\mathcal{M}_{\mathsf{real}}|^2 \mathcal{O}_{n+1} + \int d\Phi_n |\mathcal{M}_{\mathsf{virt}}|^2 \mathcal{O}_n = \mathsf{finite}$$

ullet Overall finite but the $|\mathcal{M}_{\mathsf{real}}|^2$ integration diverges and $|\mathcal{M}_{\mathsf{virt}}|^2$ has poles (in arepsilon)

- Require a finite range of multiplicities
- Main challenge: each *n* is separately infinite

$$rac{d\sigma_{\mathsf{pure \ NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} |\mathcal{M}_{\mathsf{real}}|^2 \mathcal{O}_{n+1} + \int d\Phi_n |\mathcal{M}_{\mathsf{virt}}|^2 \mathcal{O}_n = \mathsf{finite}$$

- ullet Overall finite but the $|\mathcal{M}_{\mathsf{real}}|^2$ integration diverges and $|\mathcal{M}_{\mathsf{virt}}|^2$ has poles (in arepsilon)
- Common idea: factorise the phase space $d\Phi_{n+1} = d\Phi_n d\Phi_1$
- and introduce a subtraction term S $(I = \int d\Phi_1 S)$

$$\frac{d\sigma_{\mathsf{pure\;NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} (|\mathcal{M}_{\mathsf{real}}|^2 + S) \mathcal{O}_{n+1} + \int d\Phi_{n} (|\mathcal{M}_{\mathsf{virt}}|^2 - I) \mathcal{O}_{n}$$

such that each term is separately finite

- Require a finite range of multiplicities
- Main challenge: each *n* is separately infinite

$$rac{d\sigma_{\mathsf{pure \ NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} |\mathcal{M}_{\mathsf{real}}|^2 \mathcal{O}_{n+1} + \int d\Phi_n |\mathcal{M}_{\mathsf{virt}}|^2 \mathcal{O}_n = \mathsf{finite}$$

- Overall finite but the $|\mathcal{M}_{\text{real}}|^2$ integration diverges and $|\mathcal{M}_{\text{virt}}|^2$ has poles (in ε)
- Common idea: factorise the phase space $d\Phi_{n+1} = d\Phi_n d\Phi_1$
- and introduce a subtraction term S $(I = \int d\Phi_1 S)$

$$rac{d\sigma_{\mathsf{pure\;NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} (|\mathcal{M}_{\mathsf{real}}|^2 + S) \mathcal{O}_{n+1} + \int d\Phi_{n} (|\mathcal{M}_{\mathsf{virt}}|^2 - I) \mathcal{O}_{n}$$

such that each term is separately finite

• Many methods: Catani-Seymour, FKS, slicing, projection to Born, sector decomposition,...

- Require a finite range of multiplicities
- Main challenge: each *n* is separately infinite

$$\frac{d\sigma_{\mathsf{pure\ NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} |\mathcal{M}_{\mathsf{real}}|^2 \mathcal{O}_{n+1} + \int d\Phi_n |\mathcal{M}_{\mathsf{virt}}|^2 \mathcal{O}_n = \mathsf{finite}$$

- ullet Overall finite but the $|\mathcal{M}_{\mathsf{real}}|^2$ integration diverges and $|\mathcal{M}_{\mathsf{virt}}|^2$ has poles (in arepsilon)
- Common idea: factorise the phase space $d\Phi_{n+1} = d\Phi_n d\Phi_1$
- and introduce a subtraction term S $(I = \int d\Phi_1 S)$

$$rac{d\sigma_{\mathsf{pure\;NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} (|\mathcal{M}_{\mathsf{real}}|^2 + S) \mathcal{O}_{n+1} + \int d\Phi_{n} (|\mathcal{M}_{\mathsf{virt}}|^2 - I) \mathcal{O}_{n}$$

such that each term is separately finite

- Many methods: Catani-Seymour, FKS, slicing, projection to Born, sector decomposition,...
- Usually a weighted approach with negative weights

- Require a finite range of multiplicities
- Main challenge: each *n* is separately infinite

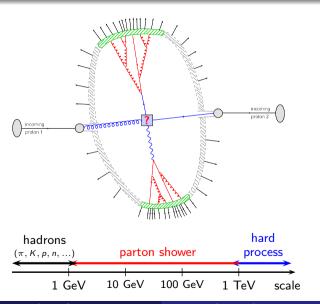
$$\frac{d\sigma_{\mathsf{pure\ NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} |\mathcal{M}_{\mathsf{real}}|^2 \mathcal{O}_{n+1} + \int d\Phi_n |\mathcal{M}_{\mathsf{virt}}|^2 \mathcal{O}_n = \mathsf{finite}$$

- ullet Overall finite but the $|\mathcal{M}_{\mathsf{real}}|^2$ integration diverges and $|\mathcal{M}_{\mathsf{virt}}|^2$ has poles (in arepsilon)
- Common idea: factorise the phase space $d\Phi_{n+1} = d\Phi_n d\Phi_1$
- and introduce a subtraction term S $(I = \int d\Phi_1 S)$

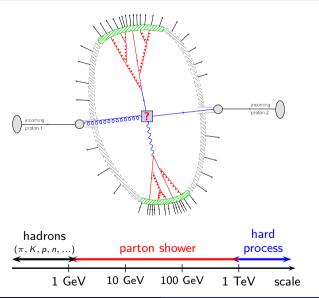
$$rac{d\sigma_{\mathsf{pure\;NLO}}}{d\mathcal{O}} = \int d\Phi_{n+1} (|\mathcal{M}_{\mathsf{real}}|^2 + S) \mathcal{O}_{n+1} + \int d\Phi_{n} (|\mathcal{M}_{\mathsf{virt}}|^2 - I) \mathcal{O}_{n}$$

such that each term is separately finite

- Many methods: Catani-Seymour, FKS, slicing, projection to Born, sector decomposition,...
- Usually a weighted approach with negative weights
- Recall: the observable needs to be IRC-safe!

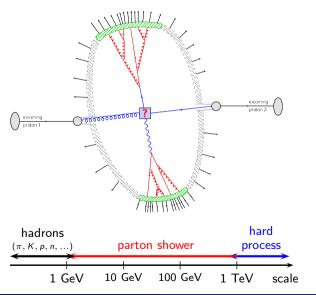


Idea: generate the full event



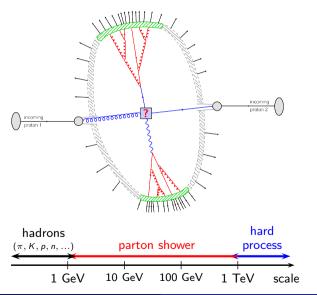
Idea: generate the full event

- Hard process
- Parton shower
- hadronisation
- hadron decays
- MPI/UE



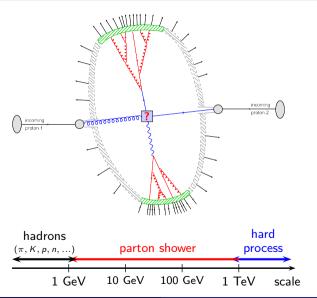
Idea: generate the full event

- Hard process perturbative QCD, fixed order
- Parton shower
- hadronisation
- hadron decays
- MPI/UE



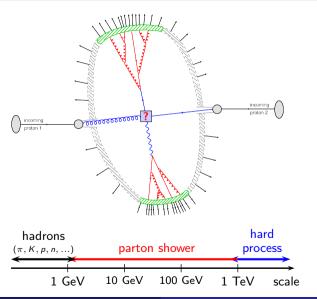
Idea: generate the full event

- Hard process perturbative QCD, fixed order
- Parton shower perturbative QCD, all orders
- hadronisation
- hadron decays
- MPI/UE



Idea: generate the full event

- Hard process perturbative QCD, fixed order
- Parton shower perturbative QCD, all orders
- hadronisation non-perturbative, modelled
- hadron decays non-perturbative, modelled
- MPI/UE non-perturbative, modelled



Idea: generate the full event

- Hard process perturbative QCD, fixed order
- Parton shower perturbative QCD, all orders
- hadronisation non-perturbative, modelled
- hadron decays non-perturbative, modelled
- MPI/UE non-perturbative, modelled
- Q: How to estimate uncertainties?

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies, still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

[slide from T. Sjöstrand, 2016]

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies. still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

[slide from T. Sjöstrand, 2016]

Torbiörn Siöstrand

Status and Developments of Event Generators slide 7/28 Quantum Chromodynamics

Super useful!

- full events
- can compute basically anything you want
- can feed to detector simulations

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies, still special interest in soft physics.

Herwig (successor to EARWIG, begun in 1984): originated in coherent showers (angular ordering), cluster hadronization as simple complement.

Torbiörn Siöstrand

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

[slide from T. Sjöstrand, 2016]

Status and I

Status and Developments of Event Generators slide 7/28

Super useful!

- full events
- can compute basically anything you want
- can feed to detector simulations

Watch out!

- building blocks have their own limitations
- different observables sensitive differently to each ingredient
- sometimes one expects MC to disagree with data

Herwig, PYTHIA and Sherpa offer convenient frameworks for LHC physics studies, covering all aspects above, but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978): originated in hadronization studies. still special interest in soft physics.

probably the most used theoretical tool in Herwi particle physics origina

cluster hadronization as simple complement.

Torbiörn Siöstrand

Sherpa (APACIC++/AMEGIC++, begun in 2000): had own matrix-element calculator/generator originated with matching & merging issues.

[slide from T. Siöstrand, 2016]

Status and Developments of Event Generators slide 7/28 Quantum Chromodynamics

Super useful!

- full events
- can compute basically anything you want
- can feed to detector simulations

Watch out!

building blocks have their own limitations

- different observables sensitive differently to each ingredient
- sometimes one expects MC to disagree with data

Part XIII: Monte Carlo event generators parton showers

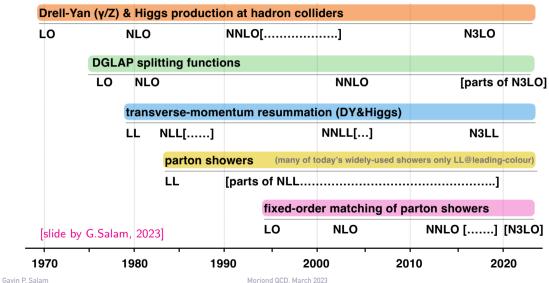
Basic comments

Role

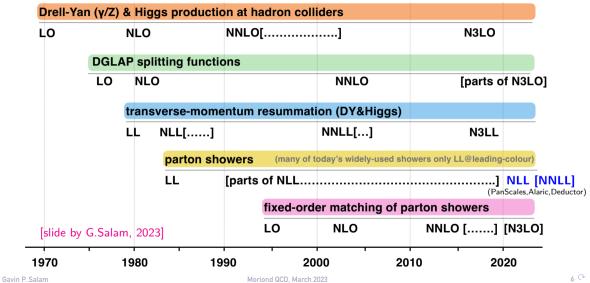
perturbative QCD connecting the scale of the hard process to the scale where non-perturbative hadronisation happens

- This is achieving resummations
- accuracy should be counted as LL, NLL, ...
- Keep in mind: not an exact α_s expansion...
- ... unless matched with exact fixed order (briefly discussed later)

selected collider-QCD accuracy milestones



selected collider-QCD accuracy milestones



Example 1: radioactive emissions

Toy model

a particle emits photons at a rate ω (per unit time) Probability to have n emissions over a time T:

$$P_n(T) = \frac{(\omega T)^n}{n!} e^{-\omega T}$$

Simulation strategy

- \bigcirc start at $t = t_0 = 0$
- 2 recursively select next emission time t_{n+1} according to $R(t_{n+1}) = \omega e^{-\omega(t_{n+1}-t_n)}$
- until reaching a cut-off time t_{cut}

Logic

- Factor $e^{-\omega \Delta t} \equiv P_0(\Delta t_{n+1})$ (no emissions between t_n and t_{n+1} , often called Sudakov)
- Factor ω : emission rate at t_{n+1}

```
link to file
    class Emission (
    public:
       Emission(double t_in=0) : t(t_in){}
      double t:
    class Event (
    public:
       Event(){}
      vector < Emission > emissions:
11
    };
12
13
    Event generate event(double omega, double tcut){
14
      Event ev:
15
      double t = 0.0:
16
17
      while (true) {
18
         double u = ((double) rand()/RAND_MAX);
19
        t += -\log(1-u)/\text{omega}:
20
         if (t>tcut) return ev:
         ev.emissions.push_back(Emission(t));
23
24
       return ev:
25
```

```
average multiplicity = 0.00998358 exp: 0.01 mult. dispersion = 0.100402 exp: 0.1
```

CERN-FermiLab HCP School 2023

Example 2: toy abelian shower

Toy model

a particle emits photons with angl θ and momentum fraction $z>z_{\rm cut}$ at a rate

$$dP = \frac{\alpha}{\pi} \frac{dz}{z} \frac{d\theta}{\theta}$$

Simulation strategy

Say "time" = $t = \log(\theta_{\text{max}}/\theta)$; start at $t = t_0 = 0$ Emitter with mom fraction x (starting with x = 1) Recursively

- ① select next emission time t_{n+1} according to $R(t_{n+1}) = \frac{\alpha}{\pi} \log \frac{1}{z_{\text{cut}}} e^{-S}$ $S = \left[\frac{\alpha}{\pi} \log \frac{1}{z_{\text{cut}}}\right] (t_{n+1} t_n)$
- 2 generate the z fraction uniformly in $\ln z$ emission takes zx, emitter (1-z)x

until a cut-off time $t_{\rm cut} = \log(\theta_{\rm max}/\theta_{\rm min})$

```
link to file
     class Emission {
     public:
       Emission(double t in, double x in) : t(t in), x(x in) {}
       double t. x:
     class Event (
     public:
       Event() : x lead(1.0) {}
       vector < Emission > emissions:
11
       double x lead:
       void add_emission(double t, double z){
         emissions.push back(Emission(t.x lead*z)):
         x_{lead} *= (1-z);
15
16
     };
17
18
     Event generate_event(double alpha, double zcut,
19
                           double theta max, double theta min) {
20
       Event ev:
21
22
       double t
                      = 0 0:
23
                      = log(theta_max/theta_min);
24
25
       double Inzcut = log(1/zcut):
26
       double omega = alpha/M_PI*Inzcut;
27
28
       while (true){
         double u = ((double) rand()/RAND_MAX);
30
         t += -\log(1-u)/\text{omega}:
31
         if (t>tmax) return ev:
33
34
         double v = ((double) rand()/RAND_MAX);
35
         double z = exp(-v*lnzcut);
36
         ev.add emission(t.z):
37
38
39
       return ev:
40
```

Example 2: toy abelian shower

Tov model

a particle emits photons with angl θ and momentum fraction $z \geq z_{\text{cut}}$ at a rate

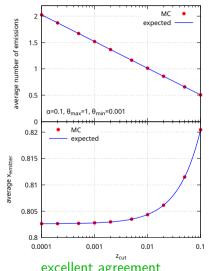
$$dP = \frac{\alpha}{\pi} \frac{dz}{z} \frac{d\theta}{\theta}$$

Simulation strategy

Say "time" = $t = \log(\theta_{\text{max}}/\theta)$; start at $t = t_0 = 0$ Emitter with mom fraction x (starting with x = 1) Recursively

- **1** select next emission time t_{n+1} according to $R(t_{n+1}) = \frac{\alpha}{\pi} \log \frac{1}{1 - \epsilon} e^{-S}$ $S = \left[\frac{\alpha}{\pi} \log \frac{1}{z_{\text{cut}}}\right] (t_{n+1} - t_n)$
- 2 generate the z fraction uniformly in ln z emission takes zx, emitter (1-z)x

until a cut-off time $t_{\rm cut} = \log(\theta_{\rm max}/\theta_{\rm min})$



CERN-FermiLab HCP School 2023

Shower evolution variable

Previous example:

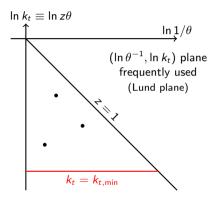
- $t = \log(1/\theta) \equiv$ shower evolution variable
- $\ln z \equiv \text{auxiliary variable}$

The rate can also be rewritten as $dP = \frac{\alpha}{\pi} \frac{dv}{v} \frac{dz}{z}$

- $\ln v = \ln(z\theta^{\beta+1})$ as the shower variable
- In z as the auxiliary variable

Strategy

- no need for a z_{cut}
- \bullet $\theta_{\min} \rightarrow v_{\min}$
- $\beta = 0 \Rightarrow v \approx k_t$ (standard choice)
- One can impose a cut $k_t \ge k_{t,min}$



Shower evolution variable

Previous example:

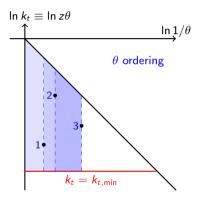
- $t = \log(1/\theta) \equiv$ shower evolution variable
- $\ln z \equiv \text{auxiliary variable}$

The rate can also be rewritten as $dP = \frac{\alpha}{\pi} \frac{dv}{v} \frac{dz}{z}$

- $\ln v = \ln(z\theta^{\beta+1})$ as the shower variable
- In z as the auxiliary variable

Strategy

- \bullet no need for a z_{cut}
- \bullet $\theta_{\min} \rightarrow v_{\min}$
- $\beta = 0 \Rightarrow v \approx k_t$ (standard choice)
- One can impose a cut $k_t \ge k_{t,min}$



Shower evolution variable

Previous example:

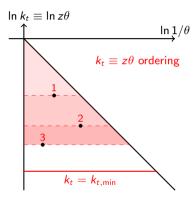
- $t = \log(1/\theta) \equiv$ shower evolution variable
- $\ln z \equiv \text{auxiliary variable}$

The rate can also be rewritten as $dP = \frac{\alpha}{\pi} \frac{dv}{v} \frac{dz}{z}$

- In $v = \ln(z\theta^{\beta+1})$ as the shower variable
- In z as the auxiliary variable

Strategy

- \bullet no need for a z_{cut}
- \bullet $\theta_{\min} \rightarrow v_{\min}$
- $\beta = 0 \Rightarrow v \approx k_t$ (standard choice)
- One can impose a cut $k_t \ge k_{t, \min}$



Shower evolution variable

Previous example:

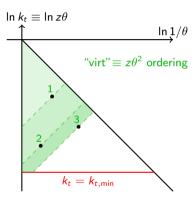
- $t = \log(1/\theta) \equiv$ shower evolution variable
- $\ln z \equiv \text{auxiliary variable}$

The rate can also be rewritten as $dP = \frac{\alpha}{\pi} \frac{dv}{v} \frac{dz}{z}$

- $\ln v = \ln(z\theta^{\beta+1})$ as the shower variable
- In z as the auxiliary variable

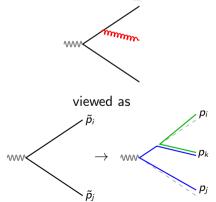
Strategy

- o no need for a z_{cut}
- \bullet $\theta_{\min} \rightarrow v_{\min}$
- $\beta = 0 \Rightarrow v \approx k_t$ (standard choice)
- One can impose a cut $k_t \geq k_{t, \min}$



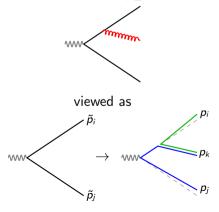
Mostly two types of showers:

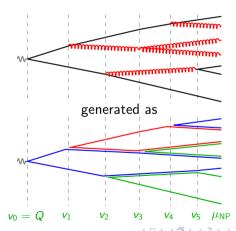
- Angular-ordered showers:
 mostly as before but after a branching both daughter partons can branch further
- Dipole shower ($v_{\beta \geq 0}$ -ordered): large N_c



Mostly two types of showers:

- Angular-ordered showers:
 mostly as before but after a branching both daughter partons can branch further
- Dipole shower ($v_{\beta \geq 0}$ -ordered): large N_c





Angular-ordered shower

- ✓ correct collinear physics respects QCD angular ordering: $\theta_{n+1} < \theta_n$, the final-state equivalent of DGLAP
- \checkmark full N_c
- soft-gluon pattern difficult In particular: struggle with non-global logs

Dipole shower ($v_{\beta \geq 0}$ -ordered)

- ✓ soft-gluon by construction dipoles easily get the antenna pattern
- ✓ collinear physics not too delicate to get
- \times delicate to go beyond leading N_c

Notes on angular ordering:

- fundamental property of QCD
- often referred to as "colour coherence"
- only valid after azimuthal averaging (connected to spin correlations)
- Relatively simple to show for soft emissions from an antenna:

$$\int d^2\theta_k \frac{1-\cos\theta_{ij}}{(1-\cos\theta_{ik})(1-\cos\theta_{ki})} \propto \int^{\theta_{ij}} \frac{d\cos\theta_{ik}}{1-\cos\theta_{ik}} + \int^{\theta_{ij}} \frac{d\cos\theta_{jk}}{1-\cos\theta_{ik}}$$

Angular-ordered shower

- ✓ correct collinear physics respects QCD angular ordering: $\theta_{n+1} < \theta_n$, the final-state equivalent of DGLAP
- ✓ full N_c
- soft-gluon pattern difficult In particular: struggle with non-global logs

Dipole shower $(v_{\beta \geq 0}$ -ordered)

- ✓ soft-gluon by construction dipoles easily get the antenna pattern
- ✓ collinear physics not too delicate to get
- \times delicate to go beyond leading N_c

In principle...

techniques similar to what we used above should get us NLL accuracy

In practice...

- angular-ordering struggles with NGLs
- dipole showers can have nasty recoil issues

Matching

As for the analytic calculations, ideally we want both

- fixed-order accuracy
- resummation accuracy

in a single event simulation framework.

Matching

As for the analytic calculations, ideally we want both

- fixed-order accuracy
- resummation accuracy

in a single event simulation framework.

Rely on matching techniques

- Idea: generate a few "exact" (at fixed-order) hard emissions then let the shower take over i.e. connect the fixed-order hard-scale and broad scale range of the shower
- Delicate point: avoid double-counting
 (i.e. the fixed-order and shower should not spoil the other part's accuracy)
- Delicate point: not trivial to avoid negative weights
- Fairly automated at NLO through aMC@NLO, POWHEG or using a MiNLO approach
- Several recent NNLO approaches: MiNNLO_{PS}, UNLOPS, GenEvA

CERN-FermiLab HCP School 2023

Part XIV: selected extra topics

Jet substructure

Idea

Instead of considering a "jet" as a particle (with a p_t , y, ϕ and mass), look at the internal dynamics of the jet constituents

Originated in the study of boosted boson decay

Take a $X \equiv W/Z/H$ decaying hadronically. The $q\bar{q}$ opening angle scales like m_X/p_t (Lorentw boost). At large p_t this is smaller than the jet radius so X is seen as a single jet.

Techniques must be devived to separate X from QCD backgroungs

- Now applications in many directions including searches (e.g. diboson excess from run-I), precision calculations and measurements, Deep Learning, heavy-ions, ...
- Long list of tools designed (SoftDrop, mMDT, *N*-subjettiness, ...)
- Two families of modern tools with active research:
 Energy Correlation Functions and Lund Plane techniques
- Check out these lecture notes of the BOOST conference series for more

CERN-FermiLab HCP School 2023

Amplitudes beyond QCD

The main domain of usage of the amplitude results is QCD.

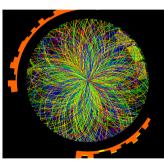
However:

- many studies directly touch our fundamental understanding of quantum field theory, with new structures emerging regularly
- One recent application is the use of amplitude techniques to compute gravitational waves.
 This is based on a "double-copy" relation: gravity≈Yang-Mills × Yang-Mills
 Roughly on par with Post-Newtonian approach to in-mergers

Heavy-ion collisions

Alice pp event

Alice PbPb event



- Substantially more complex!!
- increased Underlying Event
- Quark-Gluon plasma interacting "with itself" and with high-energy particles (hard probes)
- QGP behaves as a perfect liquid
- Complex interaction with jets
- See Liliana's lectures!

Various interesting behaviours/scaling properties

Many interesting behaviours of QCD are still regularly discovered

- some equations describing soft gluon emissions show properties common to the evolution of populations in stat phys
- some equations describing interactions of hard jets with the QGP exhibit wave turbulence
- ullet some substructure observables show behaviours independent of $lpha_s$
- the QGP behavesas a perfect fluid
- amplitudes show remarkable signs of simplicity/symmetries
- Casimir scaling for a large family of quark/gluon discriminants
- ...

Note that all of the above are true only in appropriate limits

Conclusions

A top-notch knowledge/understanding of QCD is

- interesting per se!
 (part of a physicist's job to understand fundamental interactions)
- primordial for the whole programme of collider physics searches AND measurements!

Still a lot to do at the (HL-)LHC and for future colliders