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In the standard model, QCD is
the fundamental theory of strong interactions

Our journey together

QCD exhibits many rich structures reward: fun/exciting behaviours

QCD exhibits mand challenging strutures reward: precision/accuracy
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Part I: QCD basics
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Lagrangian and degrees of freedom

]' = ; vpo [a a
L= _ZF:VFMVQ + Z Qf(’m - mf)qf + 1671_2€M ’ F;U/Fpa
f
D, =0, + igT°A’ F2, = 0,A5 — 0,A; — ghapcALAS

SU(3) gauge theory with fundamental d.o.f.

quarks (matter) gluons (vectors)
fundamental representation adjoint representation
3 colours (red, green, blue) 8 colours -3-1)
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Lagrangian and degrees of freedom

1 _ . vpo
L= R+ aril — me)as + 15" FiF,
f
D,=0,+ igTaAZ F:V = OuA) — 8VAZ - gfabCAZA’i

quarks carry a flavour index (f) + are charged (interact with photons)

q first second third

2
6 quarks 5 u(up) c(charm) t (top)
3 families (m=0) (m=~ 1.3 GeV) (m =~ 173 GeV)

-% d (down) s (strange) b (bottom)

(m=~0) (m=0) (m =~ 4.2 GeV)
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Lagrangian and degrees of freedom

1 _ . vpo
L= R+ aril — me)as + 15" FiF,
f
D,=0,+ igTaAZ F:V = OuA) — 8VAZ - gfabCAZA’i

quarks carry a flavour index (f) + are charged (interact with photons)

q first second third
2
6 quarks 5 u(up) c(charm) t (top)
3 families (m=0) (m =13 GeV) (m =~ 173 GeV)
. -1 d (down) s (strange) b (bottom)
rich/complex structures 3
(m=~0) (m=0) (m =~ 4.2 GeV)
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Lagrangian and degrees of freedom

1 _ . vpo
L=~ R+ ail — me)as + 1o e FiF,
f
D, =09, + igTaAZ F:V = 0uA) — &/AZ - gfabCAZAZC’

Non abelian theory : gluons interact! (complexity!)

gfabc

extra
flavour
factor

. 2 rabe rcd
new vertices gefavefaae
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Lagrangian and degrees of freedom

1 1% 9 LV po
D, =0, + igT°A; F2, = 0uA; — 0,A% — ghapc ADAS
OF F term:
o CP violating

o corresponds to the QCD axion (link to BSM)

o experimental limit: || < 10710

Quantum Chromodynamics CERN-FermiLab HCP School 2023



Rich phenomenology
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Topics covered (tentative)

e asymptotic freedom (UV divergences)
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Topics covered (tentative)

e asymptotic freedom (UV divergences)

e ee — QCD

basic “validation” of QCD
structure of IR divergences
factorisation

IRC safety

resummations

jets
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Topics covered (tentative)

e asymptotic freedom (UV divergences)

e ee — QCD

basic “validation” of QCD
structure of IR divergences
factorisation

IRC safety

resummations

jets

@ QCD in deep-inelastic scattering
PDFs (IR divergences)
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Topics covered (tentative)

e asymptotic freedom (UV divergences) @ pp collisions
o collision anatomy/factorisation

@ ee — QCD o basic kinematics

e basic “validation” of QCD o fixed-order co_m_plexity

e structure of IR divergences ® quest for precision

o factorisation

o IRC safety

e resummations

o jets

@ QCD in deep-inelastic scattering
PDFs (IR divergences)
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Topics covered (tentative)

e asymptotic freedom (UV divergences) @ pp collisions

e ee — QCD

basic “validation” of QCD
structure of IR divergences
factorisation

IRC safety

resummations

jets

@ QCD in deep-inelastic scattering
PDFs (IR divergences)

o collision anatomy/factorisation
e basic kinematics

o fixed-order complexity

e quest for precision

@ Monte Carlo generators

@ basic concept

o fixed-order generators

e parton showers

e general-purpose generators
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Topics covered (tentative)

e asymptotic freedom (UV divergences) @ pp collisions
o collision anatomy/factorisation

e ee — QCD e basic kinematics

e basic “validation” of QCD ° flxed—c;rder CO_m_P|eX|ty

o structure of IR divergences ® quest for precision

o factorisation

@ Monte Carlo generators

o IRC safety -

e resummations ° baSIC concept

o jets o fixed-order generators

e parton showers
e general-purpose generators
@ QCD in deep-inelastic scattering

PDFs (IR divergences) @ Outlook: “funny structures” in QCD

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023 6 /91



Before we get started...

Stop me whenever you want! |

US))

Better if you understsand even if it means not covering everything

Use your brain! (I will try to ask questions)

The philosophy to keep in mind is

@ Why is this concept important/non-trivial?
@ What are the past/current/future challenges?

| am happy/available to discuss during discussion sessions (except Friday/Saturday)
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Part |l: asymptotic freedom
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UV renormalisation

QCD (like QED) is a renormalisable gauge theory

N g4y o
/ (2m)2 5“2)5((‘7*6)2) ~ Poas log ?
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UV renormalisation

QCD (like QED) is a renormalisable gauge theory

N g4y o
/ (2m)2 5“2)6((‘7*02) ~ Poas log ?

Idea: absorb the UV (short distance) divergence in the definition of the coupling

— o P A2
O[Sbare N ozs(qQ) — asbare +50(055bare )2|og? 4.
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UV renormalisation

QCD (like QED) is a renormalisable gauge theory

g2 N gty A2
T o / (2W)25(€2)6((q—€)2)zﬂoaslog?

Idea: absorb the UV (short distance) divergence in the definition of the coupling

— o P A2
asbare N ozs(qQ) — asbare +50(055bare )2|og? 4.

Renormalisation-group equation (consistency condition)

2 2 2/ 2 all orders .
120,005(12) = —Boa2(1?) + .. " T Blay) (B function)
Generic renormalisation strategy: absorb UV divergences in physical parameters of the Lagrangian (typically
coupling and masses)
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Asymptotic freedom (1/3)

QED
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Asymptotic freedom (1/3)

QED

Bqep > 0

/1'2 /[ = Olelm /(

vacuum fluctuations screen
electric charge
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Asymptotic freedom (1/3)

QED QCD
Bep > 0
/1'2 /[ = Olelm /(

vacuum fluctuations screen
electric charge
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Asymptotic freedom (1/3)

QED QCD
11Ca — 4nf T,
Bqep >0 Bacp <0 (Bo= %)
/1'2 /[ = Qelm /( IUZ /\ = Qs \
vacuum fluctuations screen ASYMPTOTIC FREEDOM

electric charge
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Asymptotic freedom (2/3)

e QCD becomes increasingly perturbative at larger energy scales
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Asymptotic freedom (2/3)

e QCD becomes increasingly perturbative at larger energy scales

@ in particular: Qg doeS not diVerge in the UV (chance of “remaining” a fundamental theory)
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Asymptotic freedom (2/3)

e QCD becomes increasingly perturbative at larger energy scales
o in particular: Qg doeS not diVerge in the UV (chance of “remaining” a fundamental theory)

o At 1 loop:

as(p?) = 0:(1) S
(12) = -
1+ 2ai5(p15) 5o log 2 Polog v

Aqcp = Landau pole (~ 100 — 200 MeV): a5 diverges in the IR
QCD becomes non-perturbative
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Asymptotic freedom (2/3)

QCD becomes increasingly perturbative at larger energy scales

o
@ in particular: Qg doeS not diVerge in the UV (chance of “remaining” a fundamental theory)
o At 1 loop:
2
2 as (1) 1
as(/'L ) = =

1+ 2a4(p3)Bolog 2 ~ Bolog i

Aqcp = Landau pole (~ 100 — 200 MeV): a5 diverges in the IR
QCD becomes non-perturbative

evaluating a process = choosing a renormalisation scale, ,u%,, to evaluate as

typically: (commensurate with) the hardest scale in the process
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Asymptotic freedom (2/3)

e QCD becomes increasingly perturbative at larger energy scales

@ in particular: Qg doeS not diVerge in the UV (chance of “remaining” a fundamental theory)
o At 1 loop:

as(p?) = 0:(1) S
(12) = -
1+ 2ai5(p15) 5o log 2 Polog v

Aqcp = Landau pole (~ 100 — 200 MeV): a5 diverges in the IR
QCD becomes non-perturbative

@ evaluating a process = choosing a renormalisation scale, ,u%,, to evaluate as

typically: (commensurate with) the hardest scale in the process

o if one knows S(as), ... to all orders the choice of 1% is irrelevant
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Asymptotic freedom (2/3)

e QCD becomes increasingly perturbative at larger energy scales
o in particular: Qg doeS not diVerge in the UV (chance of “remaining” a fundamental theory)

o At 1 loop:

as(p?) = 0:(1) S
(12) = -
1+ 2ai5(p15) 5o log 2 Polog v

Aqcp = Landau pole (~ 100 — 200 MeV): a5 diverges in the IR
QCD becomes non-perturbative

@ evaluating a process = choosing a renormalisation scale, ,u%,, to evaluate as

typically: (commensurate with) the hardest scale in the process
o if one knows S(as), ... to all orders the choice of 1% is irrelevant

@ at a given fixed order o, leftover effects of O(a*!) (renormalisation scale uncertainty)
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Asymptotic freedom (3/3)
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Part |ll: hadrons and confinement
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(VERY) Brief overview

2000
@ In the IR, QCD becomes
. -0
non perturbative ] 2
1500 @
e z| ==
e Confinement property: s i o H3a
one observes colourless hadrons %1000_ EEK* —+N
P
(mesons& baryons) —
_ e —— experimen
not quarks and gluons 500 K = width
o input
—n # QcD

@ Generally poorly understood 0

@ Typical approach: Lattice QCD. Good for static questions, dynamics more delicate
@ Some analytic models

@ Some numerical (Monte-Carlo) models (more later)
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Part IV: eTe™ collisions
basics
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ee > v/Z — q§

Z/y
_ 2
Oete——qg — Ne E €f |Oete——ptpu—
f

et q

What do we learn from this?J
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ee > v/Z — q§

e” y q
Z/[y
_ 2
Oete——qg — Ne E €f |Oete——ptpu—
f

et

Qi

e factor >, e?: count the number of “active” quarks

is?
What do we learn from thIS'J e factor N.: count the number of colours (for each quark)
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ee > v/Z — q§

e

et

What do we learn from this?J

Z /vy

Qi

_ 2
Oete——qg — Ne E €f |Oete——ptpu—
f

e factor >, e?: count the number of “active” quarks

e factor N.: count the number of colours (for each quark)

AL I B ne=3
2 T | p(2s) i Z E k=2
i :"\ j nE4 10
ol -3
/\Jl\/;:; e n=> %
,-"!p E
[ Ll ]
1 10 10° 1 ?
VR GoV] [s thI_S exelct.
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ee > v/Z — qqg

K 2
2567 (p1-k1)? + (p1-k2)? + (p2-k1)? + (p2.k2)?
k3 2 _ elm 2/Vc .G P1-K1 1.K2 1 2
M\<M+ VW\<W M s e (ku-ks)(k2-ks)
k2
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ee > v/Z — qqg

2567 Qteim > (pr-k1) + (pr.k2) + (p2.k1)? + (p2.ko)?
M|" = —— e, Neas G
\AN\<N/ WM<'W | ‘ ’ " e (ki.ks)(ka.k3)

° e2N as before (electromagnetic + N. = 3 flavours)
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ee > v/Z — qqg

256 Cteim 2 (p1-k1)* + (pr-k2)? + (p2-k1)* + (p2-k2)?
\AN\'<N/ WA<VW e s e (ku-ks)(k2-ks)

° e2N as before (electromagnetic + N. = 3 flavours)
@ a5 QCD interaction! We usually take as = as(v/s)

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023 17 / 91



ee > v/Z — qqg

256 Cteim 2 (p1-k1)* + (pr-k2)? + (p2-k1)* + (p2-k2)?
\AN\'<N/ WA<VW e s e (ku-ks)(k2-ks)

° e2N as before (electromagnetic + N. = 3 flavours)

@ a5 QCD interaction! We usually take as = as(v/s)
o Cr: fundamental SU(3) constant (Casimir)

NZ—1 4
- = Ca=N.=3 (T3 T2g=Créag; FPerbd=c,6c)

=N T3
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ee > v/Z — qqg

2567 Qelm > (P1~k1)2 + (P1~k2)2 + (P2.k1)2 + (P2~k2)2
MPP = =50 2N C
M<M “M<w e k)

N¢: as before (electromagnetic + N. = 3 flavours)

@ a5 QCD interaction! We usually take as = as(v/s)
o Cr: fundamental SU(3) constant (Casimir)
N2—1 4
Cr = N~ 3 Ca=N:=3 (TAc T2g=Crdap: FeF?9=C,6)
@ =: kinematic factor (more about this later)
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ee > v/Z — qqg

2567 Qeim 2 (p1.k1)? + (p1.k2)? + (p2.k1)? + (p2.ka)?
M\<M VW\<W e ’ e (ki-ks)(ka-ks)

° e2N

as before (electromagnetic + N. = 3 flavours)

@ a5 QCD interaction! We usually take as = as(v/s)
o Cr: fundamental SU(3) constant (Casimir)

NZ-1 4

Cr= "o =3 Ca=N.=3

(Tac Teg=Crdag; P rb9=Cn5<)

Helpful rewrite: x; = 2, d’c (o ) x (e2N.) asCr i +x3
- ee—r c
X +x+x3=20<x<1 dxidxo " ! 2 (1-x)(1-x)

B

Gregory Soyez

Quantum Chromodynamics
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ee > v/Z — qqg

Ky 2
M = 2567 Ctelm e2Neas Cr (p1-k1)* + (pr-k2)* + (p2-k1)* + (p2.-k2)®
ks + S (k1-k3)(ko-k3)
do 2 asCr Xl2 + X22
= ee Nc
ko dade ~ Ceemml&Ne) o = 500

Does anything look strange/weird/suspicious/odd? J
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ee > v/Z — qqg

Ky 2
M = 2567 Ctelm e2Neas Cr (p1-k1)* + (pr-k2)* + (p2-k1)* + (p2.-k2)®
ks + S (k1-k3)(ko-k3)
do 2 asCr Xl2 + X22
= ee Nc
ko dade ~ Ceemml&Ne) o = 500

Does anything look strange/weird/suspicious/odd? J

(logarithmic) IR divergences when
° kl.k3 — 0 or k2.k3 — 0
e X1 — 1or Xy — 1
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Part V: eTe~ collisions
IR behaviour
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ee —»v/Z — QCD

@ We first focus on the simplest observable: the inclusive cross-section eTe™ — QCD
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ee —»v/Z — QCD

@ We first focus on the simplest observable: the inclusive cross-section eTe™ — QCD

@ Issue: we have missed some diagrams!!

Real Virtual
Moxg M xg Mxg? M* x1
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ee —»v/Z — QCD

@ We first focus on the simplest observable: the inclusive cross-section eTe™ — QCD

@ Issue: we have missed some diagrams!!
Virtual

Real

wm<w + VM<W + +
needs a regulator
Mo g* M* x 1

Mxg M xg here: dimreg d =4 — 2¢
2 3
- —2—8—&----

) |-

2 3 19 V|rt
= ... N
|zt +5+ Tate) = (€3 Ne)oo

(real) (e N )

qqg

27r

20 / 91
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ee —»v/Z — QCD

@ We first focus on the simplest observable: the inclusive cross-section eTe™ — QCD

@ Issue: we have missed some diagrams!!

Real Virtual
needs a regulator
Mxg M*xg here: dimreg d = 4 — 2¢ Mx g? M*x1
(real) Qs CF 2 3 19 V|rt Qs CF 2 3
A =@M 5T [ e T ol = @Mn ST T[S - e

ee C
R Zemad _ (S, [Hio‘s o )}
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Fundamental property of (perturbative) QCD

At each order of the perturbation theory, the divergences of the real and
virtual contributions (to the squared amplitude) cancel
Kinoshita-Lee-Nauenberg (QCD) — Bloch-Nordsieck (QED)
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Fundamental property of (perturbative) QCD

At each order of the perturbation theory, the divergences of the real and
virtual contributions (to the squared amplitude) cancel
Kinoshita-Lee-Nauenberg (QCD) — Bloch-Nordsieck (QED)

Wonderful! (given enough pen, paper, courage, ...) we can compute R at an arbitrary order in pQCD!

Can we actually compute more than a single number? (at a given /5) J
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Fundamental property of (perturbative) QCD

At each order of the perturbation theory, the divergences of the real and
virtual contributions (to the squared amplitude) cancel
Kinoshita-Lee-Nauenberg (QCD) — Bloch-Nordsieck (QED)

Wonderful! (given enough pen, paper, courage, ...) we can compute R at an arbitrary order in pQCD!

Can we actually compute more than a single number? (at a given /5) J

Let us first give these divergences a closer look...
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Soft and collinear limit

K 2

M
k3 —+

do
k2 dX1 dX2

(logarithmic) IR divergences when
@ ki.ks >0or kp.ks >0
oxg~>lorx —1

When does this happen? )

Gregory Soyez

Quantum Chromodynamics

2567 Qeim

(pr-k1)? + (prke) + (p2.ki)? + (p2.ke)?
(kl.k3)(k2.k3)
asCr Xt +3
27 (1 — X1)(1 — XQ)

2
€q Ncas CF

= (Jee%uu)(esNC)
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Soft and collinear limit

fa ’ MP = 2567T53aelm & NeasCr (pko) + (Pl(-:z): ilfpik)l)z + (p2.k2)?
ot do asC X3 +x3 S
ko dandry — (o) (EgNe) o (1- ;1)(12— x2)
(logarithmic) IR divergences when
@ ki.ks —~0or ko.ks =0 ki.ks = E1E3(1 — cos 613)
oxg—~lorx—1 1—x = %X1X3(1 — cos f13)

When does this happen? J

Does this help? J
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Soft and collinear limit

fa ’ MP = 2567T53aelm & NeasCr (pko) + (Pl(-:z): ilfpik)l)z + (p2.k2)?
ks 4 . , 1.k3)( k2. k3
ko dfffm = (e ) (e NC)O;:F 1 —X;;hx = x2)
(logarithmic) IR divergences when
@ ki.ks —~0or ko.ks =0 ki.ks = E1E3(1 — cos 613)
oxg—~lorx—1 1—x = %X1X3(1 — cos f13)

i ? ..
When does this happen? J o E5 0 soft limit

Does this help? J
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Soft and collinear limit

fa ’ MP = 2567T53aelm & NeasCr (pko) + (Pl(-:z): ilfpik)l)z + (p2.k2)?
ks 4 . , 1.k3)( k2. k3
ko dfffm = (e ) (e NC)O;:F 1 —X;;hx = x2)
(logarithmic) IR divergences when
@ ki.ks —~0or ko.ks =0 ki.ks = E1E3(1 — cos 613)
oxg—~lorx—1 1—x = %X1X3(1 — cos f13)

i ? .
When does this happen J o E5 — 0: soft limit

Does this help? ) e 13 or thh3 — 0: collinear limit
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Soft limit: £3 — 0

@ One radiates an (arbitrarily) soft gluon
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Soft limit: £3 — 0

@ One radiates an (arbitrarily) soft gluon
@ The kinematics of the gqg pair is unaffected by the radiation of the gluon (eikonal limit)
@ In this limit:

(k1.k2)

Moz |? = IMgal? x (87asCr)— L
| qqg’ ’ CIQ‘ ( S F)(kl.k3)(k3.k2)
Can be rewritten

dE; (1 — cosbs7)
do 7|2~ dd g x —dQ
3| Mgel 2| Mqg|” % Es 3(1 — cos 613)(1 — cos 623)
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Soft limit: £3 — 0

One radiates an (arbitrarily) soft gluon

The kinematics of the gg pair is unaffected by the radiation of the gluon (eikonal limit)
In this limit:

(k1.k2)
(k1.k3)(ks.k?)

o factorisation between ee — qg and g radiation from gg (the antenna formula)

Maaggl? = |[Mqggl|* x (8masCr)
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Soft limit: £3 — 0

@ One radiates an (arbitrarily) soft gluon
@ The kinematics of the gg pair is unaffected by the radiation of the gluon (eikonal limit)

@ In this limit:
(k1.k2)

(k1.k3)(ks.k?)

factorisation between ee — qg and g radiation from gg (the antenna formula)

Maaggl? = |[Mqggl|* x (8masCr)

Generalises: radiation of a soft gluon from n QCD legs (q or g)

(ki-kj)
(i-kn+1) (Kn1-k7)

Mpi1? = [Ma|? x Y 8rag(T;.T;)

y
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Soft limit: £3 — 0

@ One radiates an (arbitrarily) soft gluon
@ The kinematics of the gg pair is unaffected by the radiation of the gluon (eikonal limit)

@ In this limit:
(k1.k2)

(k1.k3)(ks.k?)

factorisation between ee — qg and g radiation from gg (the antenna formula)

Maaggl? = |[Mqggl|* x (8masCr)

Generalises: radiation of a soft gluon from n QCD legs (q or g)

(ki-kj)
(i-kn+1) (Kn1-k7)

Mpi1? = [Ma|? x Y 8rag(T;.T;)

y

Growing complexity due to colour, except at large N (more later)
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Soft limit: £3 — 0

One radiates an (arbitrarily) soft gluon

The kinematics of the gg pair is unaffected by the radiation of the gluon (eikonal limit)
In this limit:

(k1.k2)
(k1.k3)(ks.k?)

factorisation between ee — qg and g radiation from gg (the antenna formula)

Maaggl? = |[Mqggl|* x (8masCr)

Generalises: radiation of a soft gluon from n QCD legs (q or g)

(ki-kj)
(i-kn+1) (Kn1-k7)

Mpi1? = [Ma|? x Y 8rag(T;.T;)

y

Growing complexity due to colour, except at large N (more later)

Physically: a soft gluon only sees colour lines
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Collinear limit: 613 — 0

o Change of variable: x; o — 6 = 613,z = x3, and take the limit § < 1
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Collinear limit: 613 — 0

o Change of variable: x; o — 6 = 613,z = x3, and take the limit § < 1

@ Result:
asCF1+(1—z)2d L92

dOce sqig = Tee—qg X z
qqg qq o z 92

@ Again factorisation between ee — gg and g — qgg

@ Again a logarithmic divergence

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023



Collinear limit: 613 — 0

o Change of variable: x; o — 6 = 613,z = x3, and take the limit § < 1

@ Result:

asCel+(1—2)%  d#?
dOee—qag = Tee—qq X ;WF (z ) dz?

Again factorisation between ee — qg and g — qg

Again a logarithmic divergence
DGLAP /Altarelli-Parisi splitting function:

asCrl+(1- z)2
2T z

qu(z) =

represents a probability distribution for g — gq with energy sharing z and 1 — z
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Collinear limit: 613 — 0

o Change of variable: x; o — 6 = 613,z = x3, and take the limit § < 1

@ Result:

asCel+(1—2)%  d#?
dOee—qag = Tee—qq X ;WF (z ) dz?

Again factorisation between ee — qg and g — qg

Again a logarithmic divergence
DGLAP /Altarelli-Parisi splitting function:

asCrl+(1- z)2
2T z

qu(z) =

represents a probability distribution for g — gq with energy sharing z and 1 — z

: . . o<1
Physically: collinear physics is local: ¢ S qg does not see the rest of the process
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Collinear limit: 613 — 0

o Change of variable: x; o — 6 = 613,z = x3, and take the limit § < 1

@ Result:
ozsC,:l—l-(l—z)2d L92

dOce sqig = Tee—qg X Zz
qqg qq o z 92

@ Again factorisation between ee — gg and g — qgg
@ Again a logarithmic divergence
o DGLAP/Altarelli-Parisi splitting function:

asCr1+(1—2z)?

qu(z) = o 2

represents a probability distribution for g — gq with energy sharing z and 1 — z

: . . o<1
@ Physically: collinear physics is local: ¢ S gg does not see the rest of the process

@ One recognises the soft z — 0 divergence
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Splendid! We understand a bit better IR divergences in QCD...

. however, we still have divergences!

Is there any hope to compute anything (other than R)
in (perturbative) QCD?
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Part VI: IRC safety
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IRC safety: perturbative calculability

can we compute an observable v in (perturbative) QCD?

Answer: IRC safety

Yes, provided it is insensitive to (arbitrarily) soft emissions and collinear branchings
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IRC safety: perturbative calculability

can we compute an observable v in (perturbative) QCD?

Answer: IRC safety

Yes, provided it is insensitive to (arbitrarily) soft emissions and collinear branchings

We can then apply the KLN theorem
(reals and virtuals are separately infinite but finite together)
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IRC safety: conditions

Say that for n particles, v is given by v,(®,) = va(k1, ..., kn)
The distribution for v is therefore _ Works for (almost) everythingJ

1 dN 2 = (could even consider output of ML)
= Z/dCD |Mn(®n)|? 6(v — Va(®n))

IRC safety means:
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IRC safety: conditions

Say that for n particles, v is given by v,(®,) = va(k1, ..., kn)

g (could even consider output of ML)

LIV 5~ [ om0 6 o)

The distribution for v is therefore _ Works for (almost) everythingJ

IRC safety means:
@ soft-safe/IR-safe:

[im Vn(kl,...,k,',...,kn) = anl(kl,...,k,‘,...,kn)
E;—0
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IRC safety: conditions

Say that for n particles, v is given by v,(®,) = va(k1, ..., kn)

g (could even consider output of ML)

LIV 5~ [ om0 6 o)

The distribution for v is therefore _ Works for (almost) everythingJ

IRC safety means:
@ soft-safe/IR-safe:

[im Vn(kl,...,k,',...,kn) = anl(kl,...,k,‘,...,kn)
E;—0

@ collinear-safe:

lim Vn(kl,...,k,',...,kj,...,kn):Vn_1(k1,...,lf,',...,lfj,...,kn,k,'—‘rkj)
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IRC safety: conditions illustrated

initial
n-particle configuration
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IRC safety: conditions illustrated

initial
n-particle configuration

init
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IRC safety: conditions illustrated

IR(real)

initial
n-particle configuration

coll(real) coll(virt) inTit ’
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IRC safety: conditions illustrated

IR(real)

initial
n-particle configuration

coll(real) coll(virt) (nTm ’
IR(V)
coll(V)

@ virtual corrections: same bin as initial
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IRC safety: conditions illustrated

IR(real)

initial
n-particle configuration

coll(real) coll(virt)

coII coII

@ virtual corrections: same bin as initial

e unsafe: real in different bin [no local KLN cancellation]
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IRC safety: conditions illustrated

IR(real)

initial
n-particle configuration

coll(real) coll(virt)

coll(R)

@ virtual corrections: same bin as initial
e unsafe: real in different bin [no local KLN cancellation]

e safe: real also in same bin [local KLN cancellation]
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IRC safety: worked examples

observable IR safe collinear safe e multiplicity: simply count particles

multiplicity
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IRC safety: worked examples

observable IR safe collinear safe e multiplicity: simply count particles

multiplicity X
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IRC safety: worked examples

observable IR safe collinear safe e multiplicity: simply count particles

multiplicity X X
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IRC safety: worked examples

observable IR safe collinear safe e multiplicity: simply count particles

multiplicity X X @ Emax = max;E;
EmaX
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IRC safety: worked examples

observable IR safe collinear safe e multiplicity: simply count particles

multiplicity X X @ Emax = max;E;
EmaX /
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IRC safety: worked examples

observable IR safe collinear safe e multiplicity: simply count particles

multiplicity X X @ Emax = max;E;
EmaX / X
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IRC safety: worked examples

observable IR safe collinear safe o multiplicity: simply count particles
multiplicity X X @ Emax = max;E;

Emax \/ X o 20 = ZI,_[ 0’]

Xy

Gregory Soyez

Quantum Chromodynamics

CERN-FermiLab HCP School 2023



IRC safety: worked examples

observable IR safe collinear safe o multiplicity: simply count particles
multiplicity X X @ Emax = max;E;

Emax v/ X ("] ZQZZI,J-H,‘J'Z

P X

Gregory Soyez

Quantum Chromodynamics
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IRC safety: worked examples

observable

collinear safe

multiplicity
Emax
2y

Gregory Soyez

e multiplicity: simply count particles

0 Enax = max;E;

o 29 = Z,JH,-J-:

Quantum Chromodynamics

CERN-FermiLab HCP School 2023
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;

Emax Ve X e Yy= Zi,j 0,'j:

2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches count how many contain at least 1 particle
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;

Emax \/ X o 29 = ZI,_[ 0’./

2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X count how many contain at least 1 particle
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;

Emax \/ X o 29 = ZI,_[ 0’./

2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;

Emax v X o 29 = Zi,j H,J

2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC o EEC, = ¥, EE6S
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;

Emax v X o 29 = Zi,j H,J

2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC / o EEC, = ¥, EE6S
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;

Emax Ve X e Yy= Zi,j 0,'j:

2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC / / o EEC, = Y, EE65
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;
Emax v/ X @ Yy= Zu 0ij:
2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC / / o EEC, = Y, EE65

@ A\p = ZiJ E,-ZEJ?GU
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;
Emax v/ X @ Yy= Zu 0ij:
2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC ; / o EEC, = Y, EE65

@ A\p = ZiJ E,-ZEJ?GU
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;
Emax v/ X @ Yy= Zu 0ij:
2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC ; ‘)/( o EEC, = Y, EE65

@ A\p = ZiJ E,-ZEJ?GU
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;

Emax Ve X e Yy= Zi,j 0,'j:

2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC ; ‘)/( o EEC, = Y, EE65

o \p=Y;,; E?E?0;

@ "IRC-safety = perturbative calculability”
= make it a habit to check!
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IRC safety: worked examples

observable IR safe collinear safe © multiplicity: simply count particles
multiplicity X X © Emax = max;E;
Emax \/ X o 29 = ZI,_[ 0’./
2y X X ® Npatches: SPlit sphere in fixed regions,
Npatches X 4 count how many contain at least 1 particle
EEC v v
Iy / X e EEC, = Z,-J- EiE;05

@ A\p = ZiJ E,-ZEJ?GU

"IRC-safety = perturbative calculability” ~ Not always 100% trivial
= make it a habit to check! J @ 4 more complex cases

(Pt,softDrop/ Pt jet, old cone jets, zg)
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Part VII: final-state and jets

examples of standard IRC-safe observables

CERN-FermiLab HCP School 2023 31/91



Event shapes (examples)

@ Thrust:

i
Notes:
o the “A" achieving the min defines the “Thrust axis”, t
defines two “hemispheres”
radiation collimated around one axis: T ~ 1
radiation spread uniformly: T ~1/2
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Event shapes (examples)

@ Thrust: .
T = maxiz’. ‘p'_,m
=1 i |pil

@ Thrust major (M), minor (m)
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Event shapes (examples)

@ Thrust: .
T = maxiz’. ‘p'_,m
=1 i |pil

@ Thrust major (M), minor (m)

@ Sphericity

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023 32 /91



Event shapes (examples)

@ Thrust: .
T = maxz |pi- 7

[=1 Z il

@ Thrust major (M), minor (m)

@ Sphericity

o C-parameter

5=(i) 2%““1(22’?;%
a B

€ =30k +d2ds+A3h)  with A efgenvalues of ©a = |p | Z p"pp'
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Most frequent branchings are either collinear or soft
= expect most of the event's energy localised around a few axes
= define jets as these few directions
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dea ...

Most frequent branchings are either collinear or soft
= expect most of the event’s energy localised around a few axes
= define jets as these few directions

(Historical) cone algorithm: find directions of energy flow

Event is n jets if all but a fraction ¢ of the /s energy is in n cones of half-opening-angle §
(and not in n— 1)
[Sterman, Weinberg, 1977]

@ Works but geometry makes it delicate to go to high orders in pQCD
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Iteratively:

@ Find the pair, p;, p; that minimises mi- = (pi + pj)? = 2E;E;j(1 — cos ;)
@ Recombine p;, pj — pitj = pi + p; (i.e. from n to n — 1 particles)

Stop when mg- > YeutS
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Iteratively:

@ Find the pair, p;, p; that minimises mg- = (pi + pj)? = 2E;E;j(1 — cos ;)
@ Recombine p;, pj — pitj = pi + p; (i.e. from n to n — 1 particles)

Stop when mg- > YeutS

Invert the QCD branching process

small mj; when soft/collinear = unlikely to be a new jet
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Iteratively:

@ Find the pair, p;, p; that minimises m = (pi + pj)? = 2E;E;j(1 — cos ;)
@ Recombine pj, pj = pi+j = pi + p; (|.e. from n to n — 1 particles)
Stop when mg- > YeutS

Alternatives with more friendly behaviour

Durham/k;: Same strategy with d,-(jkt) = min(E?, Ejz)(l — cos )
Cambridge: d,-(jcam) = (1 —cosfjj)  (with Durham y.: as a stopping condition)
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[JADE___ ]

[teratively:

@ Find the pair, p;, p; that minimises m,?j = (pi + pj)* = 2E;E;(1 — cos ;)
@ Recombine p;, pj — pi+j = pi + pj (i.e. from n to n — 1 particles)
Stop when m,?j > VeutS

Alternatives with more friendly behaviour

Durham/k;: Same strategy with dl-(jkt) = min(E?, Ejz)(l — cos ;)

Cambridge: dé-cam) = (1 —cosfjj)  (with Durham y. as a stopping condition)

Note: two possible modes:
@ Count the number of jets for a fixed ycut
@ Study the distributino of y,_1 ,, the transition beteen n —1 and n jets

Both allow strong tests of QCD (hold on a bit more before examples)
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Part VIII: fixed-order and resummations
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Example: JADE 3-jet rate

do
dx1dxo

@ show that m,?j = EEj(1—cosbjj) =(1—xk)s (k#1i,j) = 3jetsif 1 —x; > yeur, Vi

@ take from above

Cr 3% 3 3% Y 7 5—12y —9y?
FUADE) _ QsTF 1002 Y 2 9y oL S A A
3 = |8 T, Tl m e o+ 2l — 4

What features do you recognise here? J
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Example: JADE 3-jet rate

do
o take T do

@ show that m,?j = EiEj(1 —costj) = (1 —xk)s (k #i,j) = 3jetsif 1 —x; > yeur, Vi

from above

£(JADE)
3 1—-y 6 4

asCr sy 3 y .Yy 25— 12y — 9y?
—— |log® —— + =(1 —2y)| 2L _—t
= [ogl_y+2( y)0g1_2y+ i

What features do you recognise here? J

@ Proportional to asCr, i.e. probes fundamental aspects of QCD

At O (ag) we get e.g. contributions sensitive 2
' C CeC,
@ to the non-abelian nature of QCD < SF X FETA
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Example: JADE 3-jet rate

do
dx1dxo

@ show that m,?j = EEj(1—cosbjj) =(1—xk)s (k#1i,j) = 3jetsif 1 —x; > yeur, Vi

@ take from above

Cr 3% 3 3% Y 7 5—12y —9y?
FUADE) _ QsTF 1002 Y 2 9y oL S A A
3 = |8 T, Tl m e o+ 2l — 4

What features do you recognise here? J

@ Proportional to asCr, i.e. probes fundamental aspects of QCD
o When y+ < 1:

C
;%(JADE) n F5SF [Iogzy -+ g log y]
T

Traces of the (logarithmic) IR behaviour of QCD
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Example: JADE 3-jet rate

X2 .
@ Consider the x;, xo phase-space

1 Recal: 0< x, <1, x1+x+x3 =2
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Example: JADE 3-jet rate

X2 .
@ Consider the x;, xo phase-space

1 | Recal: 0< x, <1, x1+x+x3 =2

@ Soft and collinear divergences x; 2 — 1
IRC-safe observables should not get there!
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Example: JADE 3-jet rate

X2

o Consider the x;, x> phase-space
Recal: 0 < x, <1, xx+x+x3=2
@ Soft and collinear divergences x; o — 1
IRC-safe observables should not get there!
o Jade f3: 1 — X; > Veut
= |IRC-safe
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Example: JADE 3-jet rate

X2
o Consider the x;, x> phase-space

Recal: 0 < x, <1, xx+x+x3=2

Soft and collinear divergences x;» — 1
IRC-safe observables should not get there!

Jade f3: 1 — Xj 2 yeut

. = |[RC-safe
. @ However, when yo,+ < 1 one gets close to the log
R divergence
2eut N o
1’)/cut 1 x1
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Example: JADE 3-jet rate

X2
o Consider the x;, x> phase-space

Recal: 0 < x, <1, xx+x+x3=2
@ Soft and collinear divergences x; o — 1
IRC-safe observables should not get there!

: o Jade f3: 1 — X; > Veut
N i = |[RC-safe
: @ However, when y,+ << 1 one gets close to the log

divergence

2 N .
Vet N . @ Result: logs in observables

. double logs (Iog2 Yeut): both soft and collinear
I-yetl X1 single logs (log ycut) : collinear
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Organising the perturbative series

‘Finite” }/cut ycut << 1
(Ots Iogycut <1, as K 1) (Oésl_ = Qs |0gycut ~1, o K 1)
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Organising the perturbative series

‘Finite" yeut Yeut K 1
(aslog yeur € 1, as < 1) (askl = aslog yeur ~ 1, as < 1)
f = 14+asfD(y)+a2F O (y)+a3FO(y)+. .. fy = (1+C(as)) et (st Lt ga(asl)tgs(asl)ast..
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Organising the perturbative series

‘Finite" yeut Yeut K 1
(aslog yeur < 1, as < 1) (asL = aslog yeut ~ 1, as < 1)
f = 1+asFM(y) + 2FO(y) + 2O (y) +. .. gi(asl) L+gz(asl) + g3(asl) as+...
—_— e fo = (1+C(as))e Lt NLL NNLL
LO NLO NNLO s
“standard” perturbation theory “resummed” perturbation theory
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Organising the perturbative series

‘Finite” }/cut ycut << 1
(aslog yeur < 1, as < 1) (asL = aslog yeut ~ 1, as < 1)
f = 1+asFM(y) + 2FO(y) + 2O (y) +. .. gi(asl) L+gz(asl) + g3(asl) as+...
;’—/ —— = fo = (1+C(as))e Lt NLL NNLL
LO NLO NNLO s
“standard” perturbation theory “resummed” perturbation theory
Statue-of-the-art: NLO Statue-of-the-art: NLL
Increasingly many NNLO Increasingly many NNLL
A few N3LO A few N3LL
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Organising the perturbative series

‘Finite” }/cut ycut << 1
(aslog yeur < 1, as < 1) (asL = aslog yeut ~ 1, as < 1)
f = 1+asFM(y) + 2FO(y) + 2O (y) +. .. gi(asl) L+gz(asl) + g3(asl) as+...
;’—/ —— = fo = (1+C(as))e Lt NLL NNLL
LO NLO NNLO s
“standard” perturbation theory “resummed” perturbation theory
Statue-of-the-art: NLO Statue-of-the-art: NLL
Increasingly many NNLO Increasingly many NNLL
A few N3LO A few N3LL

If only one thing to remember

Calculations are valid (i) up to a given accuracy, (ii) in certain limits
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Examples at LEP: testing QCD

Evidence for a non-abelian theory

Evidence for a gluon R R R AR RN
7000 r

L. L3 [ QD
w 30 - l El
& A )
@ e data B ]
8] 4

— vector

3500

Abelian

Event Fraction (%)

Lo

00 20" a0 60t 80°
7. S A B Lnz
0.6 0.8 1 N,
Xy c; =255+055+04+0.2 exp.:2.25 abelian:0
The gluon was discovered through 3-jet events ? —01+24 exp.1.875  abelian:15
F
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Examples at LEP: testing QCD

JADE jet rates at OPAL

100 . .
OPAL | Com _
E =91 GeV e 5 017 P

4 . -, I
- 2ot 3 0,16

80 | ‘\ ) / ; 1 25
A 0.15
S

as from k;/Durham jet rates

comb,
result
ERER

DYDS  N°NT

o1l

ouxa 2-3-4-, 5-ij! data 0.14

oo lu oo

n-jet event rates [ %]

QCD O(a}): 0.13 a1 =
— n2 = 0017 EZy, Agpr= 110 MeV] o2 E 3
""" 2= Bln, A5 =230MeV 12 1
\_\ 011 f 3
-, - F k|
~. ] 01 [ 3
- F |
L (XJM» F=0.119+0.004 1
\‘\-i-zfi 0.09 [ N 7 E
X 4~ et W B dae b by bo g by Loy by vadaaad
0 DAl e, . 20 40 60 80 100 120 140 160 180 200
6.0 0.05 0.10 . 0.15 ) Q[GeV]
y cut
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Examples at LEP: testing QCD

H = o T L B B T T
JADE Jet rates at OPAL % 10 Y NNLL+NNLO + power corr. -
100 YRS i S NNLL+NNLO ——
Ep=91 GeV /'/“Z]_;' =1 =~ ALEPH data
— B0k /’ : J
8 Y ' ol PRELIMINARY ]
g omxa 234, Sict data
£ - 4 Q=M, o (M)=0.1146
et QCD 02 101 ?
g e 4% = 0017 E2,, Agrr= 110 MeV. » o, (2GeV) = 0.4883 ;
3 w2 B, AgE=230MeV ] i \¥
k- 10 A R T | Y
oy 0 0.1 0.2 03 0.4
1 1T
3-jet
T—. Improved through the years
0.15 High accuracy requires (non-perturbative)

power corrections
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Part IX: DIS and PDFs
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Hadrons in the initial state

2 cases to consider:
e ep collisions (Deep Inelastic Scattering (DIS)): HERA, EIC, ...

can also do eA (not covered here)

@ pp collisions: LHC, Tevatron, FCC-hh, etc...

can also do pA or AA (not covered here)
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Hadrons in the initial state

2 cases to consider:

e ep collisions (Deep Inelastic Scattering (DIS)): HERA, EIC, ...
can also do eA (not covered here)
We will use this to discuss the basic physics of hadronic beams

@ pp collisions: LHC, Tevatron, FCC-hh, etc...
can also do pA or AA (not covered here)
We will use this to discuss a few aspects of LHC physics and future challenges
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DIS kinematics: ep — eX (X =anything)

e(k) e(k’) Kinematic variables:
s=(p+ k) W =(p+aq)
p.qg 2v
UV = . = —_——= —
\j(q) P YTk T s
2
2 2 Q
= _ 0 .
Q q°(>0) X ==

Idea: use the photon to probe the proton

&Ji X large Q> = small distance ~ 1/Q
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DIS kinematics: ep — eX (X =anything)

e(k) e(k’) Kinematic variables:
s=(p+ k) W =(p+aq)
p.qg 2v
UV = . = —_——= —
\j(q) P YTk T s
2
2 2 Q
= _ 0 .
Q q°(>0) X ==

2 degrees of freedom (negleting azimuth):
X energy (E’) and angle (6) of outgoing electron
&Ji Q% = 4EE' cos?(0/2)
= EE’ cos?(0/2)
~ P(E — E'sin?(0/2)
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Structure functions

2 .
|M| = Ll“’ w# (generic Lorentz structure)
L/W = lepton tensor (calculable from first principles)
WH" = hadron tensor (contains the proton structure)

q“q” q" q”\ F2
— | o E oy 9 vy d )12
<g + Q2 ) Lt <p * 2x> <p * 2x ) v
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Structure functions

2 .
|M| = Ll“’ w# (generic Lorentz structure)
L/W = lepton tensor (calculable from first principles)
WH" = hadron tensor (contains the proton structure)

q“q” q" q”\ F2
— | o E oy 9 vy d )12
<g + Q2 ) Lt <p * 2x> <p * 2x ) v

o F1o(x, Q?) are the proton structure functions (also F; = F, — 2xF;)
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Structure functions

2 .
|M| = Ll“’ w# (generic Lorentz structure)
L/W = lepton tensor (calculable from first principles)
WH" = hadron tensor (contains the proton structure)

q“q” q" q”\ F2
— | o E oy 9 vy d )12
<g + Q2 ) Lt (p * 2x> <p * 2x ) v

o F1o(x, Q?) are the proton structure functions (also F; = F, — 2xF;)

@ One can also have the exchange of a Z boson (neutral currents)
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Structure functions

2 .
|M| = Ll“’ w# (generic Lorentz structure)
L/W = lepton tensor (calculable from first principles)
WH" = hadron tensor (contains the proton structure)

q“q” q" q”\ F2
— | o E oy 9 vy d )12
<g + Q2 ) Lt (p * 2x> <p * 2x ) v

o F1o(x, Q?) are the proton structure functions (also F; = F, — 2xF;)
@ One can also have the exchange of a Z boson (neutral currents)

@ One can also have charged currents with a W™ exchange (e.g. etp — vX)
This introduces a 3" structure function F3(x, Q?)
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Parton model: PDFs

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

p=(0,0,P, P)
1
n=(0.0, 2P '3p)
k2 + k2
K= gpt o T L K
28
1
large @®> = 4 ((q + k)2) ~ 56(5 —x) and F, = egxq(x) q(x)= f tr(;/IB p,k))3(£—x))
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Parton model: PDFs

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

p=(0,0,P, P)
1
n= (0.0, 2P '3p)
k2 + k2
K= gpt o T L K
28
1
large @®> = 4 ((q + k)2) ~ 56(5 —x) and F, = egxq(x) q(x)= f tr(;/IB p,k))3(£—x))

@ Photon scatters on a “quark” carrying a fraction x of the proton's longitudinal momentum
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Parton model: PDFs

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

p=(0,0,P, P)
1
n= (0.0, 2P '3p)
k2 + k2
K= gpt o T L K
28
1
large @®> = 4 ((q + k)2) ~ 56(5 —x) and F, = egxq(x) q(x)= f tr(;/IB p,k))3(£—x))

@ Photon scatters on a “quark” carrying a fraction x of the proton's longitudinal momentum
@ g(x) = Parton Distribution Function: density of quarks g with momentum fraction x
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Parton model: PDFs

Working hypothesis: photon scatters on point-like particle

Frame with boosted proton:

p=(0,0,P, P)
1
n= (0.0, 2P '3p)
k2 + k2
K= ep 4 i
28
1
large @®> = 4 ((q + k)2) ~ 56(5 —x) and F, = egxq(x) q(x)= f tr(;/IB p,k))3(£—x))

@ Photon scatters on a “quark” carrying a fraction x of the proton's longitudinal momentum
@ g(x) = Parton Distribution Function: density of quarks g with momentum fraction x
@ Bjorken scaling: Fo(x, @?) = F»(x), independent of @2 ((very) roughly true)

@ Callan-Gross relation: F; = F, — 2xF; = 0 (in practice: < F,) means quarks are spin %
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QCD effects

The quark can radiate gluons (real or virtual):

LEE

Explicit calculation gives:

s Q% 4|2 as , .
Fr=e x/ —qo(€ [ (1 — 2) + ;—Wqu (2) / d|k2] = egxqo(g) [1 + ;—W(dlvergent)]

How do we proceed? J
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QCD evolution

Qs Q| k2 Qs , .
Fr=e x/ —qo(€ [ (1 — 2) + quq (2) / |k2] = egxqo(g) [1 + ;—W(dlvergent)]

Idea:
@ introduce a regulator ;i
@ absorb the divergence in the PDF: the “bare” qgo(x) becomes q(x, u?)

We get:

1 2
F = egx/ qu(f,;ﬂ) [5 (1 — Z) + ;—;qu <z> log 52} = egxq(x, Q2)
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QCD evolution

1 d Ys x 2
e By o-2) 20 ()]

Important consequences:
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QCD evolution

Important consequences:
@ F, does depend on Q2 (Bjorken scaling violated by QCD)
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QCD evolution

1 d Ys x 2
e By o-2) 20 ()]

Important consequences:
@ F, does depend on Q2 (Bjorken scaling violated by QCD)
@ require that F»(x, @?) does not depend on the specific choice of 1 yields

Lge X 1+ 22
@Rogalx, @) == [ Sp () @) Pulz)=C ( >
@2q(x, Q%) L AV q( ) qa(2) F\ 12 .
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QCD evolution

1 d Ys x 2
e By o-2) 20 ()]

Important consequences:
@ F, does depend on Q2 (Bjorken scaling violated by QCD)
@ require that F»(x, @?) does not depend on the specific choice of 1 yields

Lge X 1+ 22
@Rogalx, @) == [ Sp () @) Pulz)=C ( >
@2q(x, Q%) L AV q( ) qa(2) F\ 12 .

© PDFs remain essentially non-perturbative but their Q% dependence is predicted by QCD
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QCD evolution

In practice: all flavour combinations

%” SR o () - 52 [958 £tg) ()

11—z

+(1-2)? Comments:
@ This is the DGLAP equation

1— @ . = uF is the factorisation scale
é'\ ng = 2CA 1 — 5 2 z (1 - Z):| (+virt) / / 3 L.

qu*CF

@ "“P"’s are the Altarelli-Parisi (or DGLAP)
splitting functions

Pog = ’[Z +(1-2)7] @ Trace of the soft divergence at z =10, 1
(other equations to handle them: BFKL,...)
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QCD evolution

e we had a (IR) divergence; we absorbed it in the PDFs; we are left with log(Q?/u?)
@ DGLAP is an all-order treatment (resummation) of (a log(Q2/u?))":

e} 2\ N 1 1

Ydé &
—P
0 T u2 én &' Je, En—1 En—1 (

2
o §1 5)q(£1>u )

QQ
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QCD evolution

e we had a (IR) divergence; we absorbed it in the PDFs; we are left with log(Q?/u?)
o DGLAP is an all-order treatment (resummation) of (as log(Q?/u?))™:

2y - Qz ldfn 1d§n,1 én d‘fl & 2
@) =3 (520 %) [ R [ e [ a0

QQ

@ What we did here is the “leading logarithmic” order
Often also referred to as the “strongly ordered limit”

/og comes from p? < |ki| < - < @2
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QCD evolution

e we had a (IR) divergence; we absorbed it in the PDFs; we are left with log(Q?/u?)
@ DGLAP is an all-order treatment (resummation) of (a log(Q2/u?))":

2y _ - %l gz>n 1dfnP X ldﬁn_1P gn 1d£1 51
e @) =3 (Grres ) [P e [P et )

@ What we did here is the “leading logarithmic” order

@ Fundamental factorisation theorem: this remains true at all orders

o ()= €00 ) <

o (67
P(z,05) = 52 P02+ (52)" PO(2) + (52) PO
LL/LO NLL/NLO NNLL/NNLO
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@ State-of-the-art: NNLL known, N3LL almost known (in moment space)
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https://lhapdf.hepforge.org/pdfsets

@ State-of-the-art: NNLL known, N3LL almost known (in moment space)

@ Practical approach:

@ Take an initial condition for all quarks and gluons at an initial scale Qo: gr(x, Q3; 3),
g(x, Q%; 3) (with 7 a set of free parameters)

@ Solve DGLAP to get gr(x, Q%; 3), g(x, @?; 3) at all Q2

© Fit the free parameters 3 to experimental data (F, F;’b, Fi, pp jets, pp tt, ...)
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@ State-of-the-art: NNLL known, N3LL almost known (in moment space)

@ Practical approach:

@ Take an initial condition for all quarks and gluons at an initial scale Qo: gr(x, Q3; 3),
g(x, Q%; 3) (with 7 a set of free parameters)

@ Solve DGLAP to get gr(x, Q%; 3), g(x, @?; 3) at all Q2

© Fit the free parameters 3 to experimental data (F, F;’b, Fi, pp jets, pp tt, ...)

@ Several subtleties: form of the init cdt, treatment of heavy quarks, data included,
treatment of uncertainties, ...

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023


https://lhapdf.hepforge.org/pdfsets

@ State-of-the-art: NNLL known, N3LL almost known (in moment space)

@ Practical approach:

@ Take an initial condition for all quarks and gluons at an initial scale Qo: gr(x, Q3; 3),
g(x, Q%; 3) (with 7 a set of free parameters)

@ Solve DGLAP to get gr(x, Q%; 3), g(x, @?; 3) at all Q2

© Fit the free parameters 3 to experimental data (F, F;’b, Fi, pp jets, pp tt, ...)

@ Several subtleties: form of the init cdt, treatment of heavy quarks, data included,
treatment of uncertainties, ...

e Effort (still ongoing!!) from several groups: CTEQ/CT, MRST/MSTW/MMHT /MSHT,
NNPDF, ...
1438 PDF sets available from LHAPDF (link)
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2 2
Oea = P2+ y?[1+ (1 — y)?]FL [HERAPDF2.0]
1 H1land ZEUS
o 1
2 o HERANC &'p 05t H1land ZEUS
16 Vs=318 GeV +2 Q*=2Gev? Q?=27Gev? Q?=35Gev? Q%= 45Gev?
%g = 0002 O ZEUSHERAII o n. [#, [ ¥, &
14| % =00002 } ﬁ# 0 ZEUSHERA | e . "
?L © H1HERAII 0 " 2\7 sl " 117 L L 147 Lol L 217 Losal i
" A HLHERAI Q*=65GeV Q*=85Gev Q*=10GeV’ Q*=12Ge
1 L o# [ #. L L
1 % =0.008 RN e
o0 Dot sanl sl i ol ol ol vl L vl cand v vl sund sl o
Q*=15Gev? Q’=18Gev? Q?=22Gev? Q*=27Gev?
08 5
= w@. IR
oot ¥ » F ~?’?’tM& % E e 0 [ound gl sl s L gl sual sl Lol sand sl Lol v sy
[ z Q?=35GeV’ Q7= 45GeV’ Q*=60GeV’ Q?=70Gev
2 o 3 '»MMM“‘ " oo
04 3 %, 2008 g
1 P [ r r
02 g#’?bwh? » t‘%
_ 0 Found suad und 1und sl ol sl L vud and v L vl sund ol
X5 =025 Q*=90Gev’ Q?=120Gev? w0t w0° %
°) 10 o 0 o P s L L ® HERANCEpPOSf O
Q¥4Gev? Vs=318 GeV
o Dokl — == HERAPDF2.0HiQ2 NNLO
100 100 10°

@ Rapid rise at small x

o flatter at large x (Bj. scaling) Well reproduced by DGLAP fit (Q? > 10 Gev?)
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2 2
Oed = F2+y [1+(1—y)]F [HERAPDF2.0]
ot H1and ZEUS Resulting PDFs
e & HERANC €p05fb™
16 Vs=318 GeV 1 H1and ZEUS
O ZEUSHERAII = ! '
14} % =000z | 1 # 0 ZEUSHERA | W2 =10 GeV
P © HLHERAII
4 H1HERAI 08 [ Heraror20nL0 7

1 % ﬁj%& =008 4 HeraPDFLONLO

T g o
e Tt

0 ?MMWH%
1 10 10° 10° * 06 el\L;“z
@ Rapid rise at small x X
o flatter at large x (Bj. scaling) Gluon (and sea quarks) rise at small x

Gregory Soyez ntum Chromodynamics CERN-FermiLab HCP School 2023 52 /91



Part X: recap
divergences in QCD
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Recap: divergences in QCD

@ UV divergences:

@ IR divergences in the initial state:

© IR divergences in the final state:
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Recap: divergences in QCD

@ UV divergences: absorbed in parameters of the QCD Lagrangian
QCD is renormalisable
Renormalisation Group Equation for the dependence of as and masses on the
renormalisation scale

@ IR divergences in the initial state:

© IR divergences in the final state:
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Recap: divergences in QCD

@ UV divergences: absorbed in parameters of the QCD Lagrangian
QCD is renormalisable
Renormalisation Group Equation for the dependence of as and masses on the
renormalisation scale

@ IR divergences in the initial state: absorbed in PDFs
Depencence on the factorisation scale through the DGLAP equation

© IR divergences in the final state:
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Recap: divergences in QCD

@ UV divergences: absorbed in parameters of the QCD Lagrangian
QCD is renormalisable
Renormalisation Group Equation for the dependence of as and masses on the
renormalisation scale

@ IR divergences in the initial state: absorbed in PDFs
Depencence on the factorisation scale through the DGLAP equation

© IR divergences in the final state: cancel between “real” and “virtual” contributions
as long as the observable is infrared-and-collinear safe
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Recap: divergences in QCD

Comments:

o All divergences are logarithmic

@ Intimately connected to calculability in perturbative QCD:
o kernels of the RGE and PDFs calculable order by order

#
o IRC-safe observables calculable up to non-perturbative corrections o (A%D)

@ For a hard scale Q, perturbative expansion in powers of as(Q) (LO, NLO, NNLO, ...)

@ For disparate scales, say Q and vQ (v < 1), perturbative expansion in powers of
as(Q)log? v or ag(Q)log v (LL, NLL, NNLL, ...)
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Part XI: QCD at hadronic colliders
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Foreword

@ Most of the fundamental concepts are as in ee and DIS
@ More busy environment due to hadronic beams

@ Simply discuss the main differences with what we discussed earlier
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Colliders study fundamental interactions at high energy J

Master formula:

UZ/dX1dX2 fa(x1, Q)fp(x2, Q) 6(x1. X2, Q)

~~

PDFs partonic x-sect.

incoming
proton 2

incoming
proton 1
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Anatomy of a high-energy collision

incoming
proton 2

incoming
proton 1

hard

process
A —

1 GeV 10 GeV 100 GeV 1 TeV  scale

Gregory Soyez
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Anatomy of a high-energy collision

incoming
proton 2

hard
parton shower process

1 GeV 10 GeV 100 GeV 1 TeV  scale
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Anatomy of a high-energy collision

incoming
proton 2

hard
parton shower process

1 GeV 10 GeV 100 GeV 1 TeV  scale
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Anatomy of a high-energy collision

Hard + branchings

@ perturbative QCD

@ under solid control

@ predictive, systematically
improvable theory with
genuine uncertainty estimates |

incoming
proton 2

hard
parton shower process

1 GeV 10 GeV 100 GeV 1 TeV  scale
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Anatomy of a high-energy collision

parton shower

Hard + branchings

@ perturbative QCD
@ under solid control

@ predictive, systematically
improvable theory with
genuine uncertainty estimates

Hadronisation and UE/MPI

o NON-perturbative
@ needs modelling

@ model-dependent

CERN-FermiLab HCP School 2023
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Kinematics

The “partonic” collision can (usually) happen for a range of x3, x»
= the centre-of-mass of the hard collision is boosted compared to the lab frame J

pp collisions ee collisions
p" = (px: Py, pz, E) p* = (px,Py,pz, E)
= (ptcos ¢, ptsin ¢, mysinh y, m; cosh y) = (psinfcosy, psinfsinp, pcosl, E)
= pt(cos ¢, sin ¢, sinh y, cosh y) m=? p(sin 6 cos p, sin @ sin ¢, cos §, 1)
Use cylindrical coordinates: p;, y, ¢ Use spherical coordinates: E, 6, ¢

1 E+
me = \/ p§ + m? yzilogE_ZZ
4
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The “partonic” collision can (usually) happen for a range of x3, x»
= the centre-of-mass of the hard collision is boosted compared to the lab frame

@ p; is the transverse momentum

pp collisions
(m¢ is the transverse mass)

pt = (pmpyapzaE)
= (ptcos ¢, ptsin ¢, mysinh y, m; cosh y)

pt(cos ¢, sin ¢, sinh y, cosh y)

Use cylindrical coordinates: p;, y, ¢
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The “partonic” collision can (usually) happen for a range of x3, x»
= the centre-of-mass of the hard collision is boosted compared to the lab frame

@ p; is the transverse momentum

(m¢ is the transverse mass)

pp collisions
@ y is the rapidity

pt = (pmpyapzaE)
= (ptcos ¢, ptsin ¢, my sinh y, m; cosh y)

pt(cos ¢, sin ¢, sinh y, cosh y)

Use cylindrical coordinates: p;, y, ¢
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Kinematics

The “partonic” collision can (usually) happen for a range of x3, x»
= the centre-of-mass of the hard collision is boosted compared to the lab frame J

pp collisions
@ p; is the transverse momentum
pM = (px, Py Pz E) (m¢ is the transverse mass)
@ y is the rapidit
= (ptcos ¢, ptsin ¢, mysinh y, m; cosh y) Y _ pIaity _
@ ‘“energy-like” and geometrical

m=0 pt(cos ¢, sin ¢, sinh y, cosh y)

Use cylindrical coordinates: p;, y, ¢
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The “partonic” collision can (usually) happen for a range of xi, x»
= the centre-of-mass of the hard collision is boosted compared to the lab frame

pp collisions
@ p; is the transverse momentum
(m¢ is the transverse mass)

(Px; Py, Pz, E)
@ y is the rapidity
@ “energy-like” and geometrical

= (ptcos ¢, ptsin ¢, mysinh y, m; cosh y)
@ transverse and longitudinal

0 pt(cos ¢, sin ¢, sinh y, cosh y)

pu

Use cylindrical coordinates: p;, y, ¢
E+ p,

_ 2 2 — 1 [
me=\/p; +m= y=7log g p
4
CERN-FermiLab HCP School 2023
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Kinematics

The “partonic” collision can (usually) happen for a range of xi, x»
= the centre-of-mass of the hard collision is boosted compared to the lab frame J

pp collisions
p: is the transverse momentum

(m¢ is the transverse mass)

(Px: Py, Pz, E)
= (ptcos ¢, ptsin ¢, mysinh y, m; cosh y)

p/"[/
y is the rapidity

“energy-like” and geometrical
transverse and longitudinal

pt(cos ¢, sin ¢, sinh y, cosh y)
Pseudo-rapidity n = —logtan /2

Use cylindrical coordinates: p;, y, ¢

1. E+
m; = \/ p; + m? yzilogE_gz
4

Quantum Chromodynamics
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Kinematics

The “partonic” collision can (usually) happen for a range of xi, x»
= the centre-of-mass of the hard collision is boosted compared to the lab frame J

pp collisions

p: is the transverse momentum
pM = (px, Py Pz E) (m¢ is the transverse mass)

is the rapidit
(pt cos ¢, p sin ¢, my sinh y, m; cosh y) Y PICIEY

“energy-like” and geometrical

pt(cos @, sin ¢, sinh y, cosh y) transverse and longitudinal

Pseudo-rapidity n = —logtan /2
ey=n < m=0

5 ) 1 | E+ p, e Ay boost invariant, not An
me =\/pt +m y_§ OgE—pz o Prefer y over n!

Use cylindrical coordinates: p;, y, ¢
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Strategy similar to ee except for:
@ choice of kinematic variables
e UE/MPI
= extra hadronic activity
= jet radius R limiting the
spatial extent of jets
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Strategy similar to ee except for: Pairwise recombination algorithms
@ choice of kinematic variables Repeat the following until everything is clustered
e UE/MPI @ Compute distances between all particles
. - ) )
= extra hadronic activity dj = m'n(Pu ’ptj Py [AYIj + A¢ij]

= jet radius R limiting the

_ 2P p2
spatial extent of jets dig = pji R
@ Find smallest of all distances

@ If djj: remove p; and p; and replace by p; + p;
If dig: call i a jet
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Strategy similar to ee except for: Pairwise recombination algorithms
@ choice of kinematic variables Repeat the following until everything is clustered
e UE/MPI @ Compute distances between all particles
. - ) )
= extra hadronic activity dj = m'n(Pu ’ptj Py [AYIj + A¢ij]

= jet radius R limiting the

2p 2
spatial extent of jets dig = pji R
@ Find smallest of all distances

@ If djj: remove p; and p; and replace by p; + p;
If dig: call i a jet

3 typical cases:
Q p=1: k algorithm (cf. ee)
@ p = 0: Cambridge/Aachen algorithm (cf. ee)
© p = —1: anti-k; algorithm (default at the LHC)

o
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Strategy similar to ee except for: Pairwise recombination algorithms
@ choice of kinematic variables Repeat the following until everything is clustered
e UE/MPI © Compute distances between all particles
. - ) )
= extra hadronic activity dj = mln(Pt, ’ptj P) [Ay,'j + A%’}

= jet radius R limiting the 2 2
spatial extent of jets dig = py; R

For completeness: cone algorithms @ Find smallest of all distances

@ Idea of “dominant directions of energy oIf dij3 remove p; and pj and replace by p; + p;j

flow” in the event ..
] If dig: call i a jet
@ Extensively used at the Tevatron

(CDF MidPoint, DO MidPoint, JetClu, ...) | 3 typical cases:
@ All the cone algorithms used at the Q p=1: k algorithm (cf. ee)

Tevatron are IRC unsafe! — 0: Cambrid Aach | b ¢
@ One IRC-safe option: SISCone Q p=0: Cambri ge/ achen algorithm (C 0 ee)

(not extensively used in practice) © p = —1: anti-k; algorithm (default at the LHC)
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Example event at the LHC

compared to others, hard anti-k; are circles

p, [Gev]

One typically uses R = 0.4 (R up to 0.8-1 in specific cases)
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Example: (inclusive) jet cross-section

101

Jet = parton s anik, R=0.4 T atias 3
(At leat in the context of hadron colliders) % fomaTew B2 o o8 enritotio 3
. =5 B 10sly|<15(x10°
Jets are IRC-safe proxies to “hard = 0 195y <2001
” . .. . . S A zasbiesonw”
partons” from the initial collision g . ""'\ ”
~ ..
(\g '..."M ® .

o . .\jo% ——
. . . . Ay = —_—
@ Ubiquitous at colliders: used in almost *m —_—
A . -
-

all measurements and searches A‘“““«M =
@ Only well defined if one specifies o
o Which jet definition is used wag o
. . 102 103
o Which cuts are applied P [GeV]
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Example: (inclusive) jet cross-section
comparison to NNLO QCD

Jet = parton

(At leat in the context of hadron colliders)
Jets are IRC-safe proxies to “hard
partons” from the initial collision

@ Ubiquitous at colliders: used in almost
all measurements and searches
@ Only well defined if one specifies

o Which jet definition is used
o Which cuts are applied

Gregory Soyez

NNLOJET VE=13Te
14r0.0<|y|<0.5
1.2

[T N RIS S RN AR N R | Lt

1.0 Ty e AERERE: ‘
0.8 L
0.6

L4 15<ly|<2.0 ‘
1.2]

g E— i

o s o o

0.8|

10'6 i . . . Lo
1.4 32<|y|<4.7 —— Lo
1.2] . — NLo
SRR gl wwore
. anti-kr(R = 0.
0.6 NNPDF40 _nnlo_as 01180 i ocms

20 300 400 600 800 1200 2000
pr (GeV)

LO—NLO—NNLO: reduction of the uncertainties

Quantum Chromodynamics

CERN-FermiLab HCP School 2023
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QCD challenges

The LHC takes us through an amazing journey at the forefront of our knowledge
This implies a series of challenges

Things (briefly) discussed

@ precision needed! (Including &, PDFs, as,...)

Things not (really) discussed

C ° i -
@ large range of processes and multiplicities I T BITE el eI [progeT

challenge for precision @ Everything amplified at future colliders

Valid for both FCC-ee (+ee friends)

@ large range of scales = requires resummations
ge rang < and FCC-hh!

@ Need for good non-perturbative models
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QCD challenges

The LHC takes us through an amazing journey at the forefront of our knowledge
This implies a series of challenges

Things (briefly) discussed

@ precision needed! (Including &, PDFs, as,...)

Things not (really) discussed

o @ A vast and rich heavy-ion program
@ large range of processes and multiplicities v ! vy-ion prog

challenge for precision @ Everything amplified at future colliders

@ large range of scales = requires resummations Wl oy Broidh FCzg (e Griencl)
and FCC-hh!

@ Need for good non-perturbative models

If only one message to take home

A top-notch knowledge/understanding of QCD is

Q interesting per se! (part of a physicist’s job to understand fundamental interactions)
If time left: examples of fun structures emerging from QCD

@ primordial for the whole programme of collider physics
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Fixed-order calculations: Amplitudes

.o . . . tree-level n diagrams

Two main ingredients/difficulties: n-gluon 2 #diag 1
@ The amplitude M itself amplitude 5 25

. . . 6 220

Q Car.1ce.II|ng the divergences between real and virtual 7 0485
emissions 8 34300
Complexity increases with: 9 559405
10 10525900

© The number of loops (LO, NLO, NNLO, ...)

@ The number of external (coloured) legs
Including initial-state ones

Rough estimate:
1 extra loop =~ 2 extra legs
[thanks to S.Abreu and B.Page]
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Fixed-order calculations: Amplitudes

.o . . . tree-level n diagrams

Two main ingredients/difficulties: n-gluon 2 #diag 1
@ The amplitude M itself amplitude 5 25

. . . 6 220

Q Car.1ce.II|ng the divergences between real and virtual 7 0485
emissions 8 34300
Complexity increases with: 9 559405
10 10525900

© The number of loops (LO, NLO, NNLO, ...)

@ The number of external (coloured) legs
Including initial-state ones

Rough estimate:
1 extra loop =~ 2 extra legs
[thanks to S.Abreu and B.Page]

Field of amplitudes (born ~ 15 years ago) meant to
study and compute amplitudes without going through Feynman graphs J
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The NLO revolution
Many core tools developed:
About 10 years ago: NLO made (almost) automated ® Spinor-helicity formalism
=- compact expressions
@ Example: Parke-Taylor
R0
: (12)(23) --- (n1)

The NLO revolution
Unitarity based method
Traditional method
g
;’v\\?
.9 & A
§ §‘D . Vj:-sw 2
¢ &, 37 X
£ »e NN geF & i
N N g & SEE &
N N Q7 FFT *¥
N Yo §’g\: §§ . = . . .
i N b reod of @ Generalised unitarity
v v va vENG O Loops from trees and cuts
T T T T T T T
1985 1990 1995 2000 2005 2010 2015 @ ... and many others
S. Hoche
BCFW, double-copy, bootstrap,
alphabet&symbols, ...
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The NLO revolution
Many core tools developed:
@ Spinor-helicity formalism
= compact expressions
@ Example: Parke-Taylor

About 10 years ago: NLO made (almost) automated

The NLO revolution
R\
Unitarity based method \\|e
Traditional method 0 So )
N of
$ oéb Py N <U>
§ 8 o oS 9 Ce
é & g & (12){23) -~ (n1)
$ & - N N
&3 N § Y Oy
NS Co NS SEA 3z . ..
5 s b viod of @ Generalised unitarity
Al vE NG vENE & Loops from trees and cuts
1990 1095 2000 2005 2010 2015 @ ... and many others
S. Héche
BCFW, double-copy, bootstrap,
alphabet&symbols, ...
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Amplitudes: towards NNLO and beyond

@ Deep understanding on the structure of amplitudes, rooted in field theory
@ Often developed in N =4 SUSY which has a higher degree of symmetry than QCD
o Now extending to NNLO (even N3LO): current state-of-the-art: 2 — 3 at 2 loops

H+jet Hjj(VBF) . .
Antenna g Y NNLO timeline
T e‘e—>3jets o ) VH VH
q 2jets X gg — ggg
L ep—>2jets Z+b-jet yy Z+c-jet
N-jettiness Wijet  yiX WHi+jet 7+ X (+frag)
YY PET .
H ZH 2Z WW W2 rry ZeO(a) ttH
Colourful ZIW  WH Zy Wy HH tt bb
W+jet
P2B ' z
y+X Zsjet Zy ZoO(aa)
nested soft-coll. . .
H+jet  ep—jet WH(m,, # 0) Hjj(VBF)
YY HE (VBF WaO(a,x)
w/z  _H Hjj (VBF) ji (VBF)
Ot Oot vz WH [thanks to A. Huss]
e e*’3]ets
1991 2002 2005 2007 2009 2011 2013 2015 2017 2019 2020 2021 2022 2023
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All-order calculations: Resummations

Two main approaches
© ‘“direct” calculation in QCD
Q effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high

accuracy); direct calculation often nice to highlight underlying physics mechanisms
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All-order calculations: Resummations

Two main approaches
© ‘“direct” calculation in QCD
Q effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high

accuracy); direct calculation often nice to highlight underlying physics mechanisms

State-of-the-art
@ NLL (almost) automated

o for ee, NNLL (almost)
automated

o N3LL for specific cases

@ Collinear physics easier
than soft emissions
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All-order calculations: Resummations

Two main approaches

@ ‘direct” calculation in QCD
@ effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high
accuracy); direct calculation often nice to highlight underlying physics mechanisms

State-of the-art

e NLL (almost) automated @ complicated geometrical and colour structures
o for ee. NNLL (almost) @ Field-theory progress (webs,...); connected to amplitudes
automated @ Some observables (like a jet veto for jets with |y| < ycut in H studies)

are only sensitive to a part of the (geometrical) phase-space

3 . pe
@ N°LL for specific cases = “non-global” logs difficult to resum

o Collinear physics easier @ Usually appear at NLL: OK at large N, tough beyond
than soft emissions Recent progress: subleading correction at large N,
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All-order calculations: Resummations

Two main approaches
@ ‘direct” calculation in QCD
@ effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high

accuracy); direct calculation often nice to highlight underlying physics mechanisms

State-of-the-art

@ NLL (almost) automated Quite often include matched predictions NPLO + N9LL
o for ee, NNLL (almost) Idea: get the best of both limits:
automated @ exact NPLO s expansion (when logs are small)
o N3LL for specific cases @ N9LL resummation when logs are large
o Collinear physics easier @ avoiding double counting
than soft emissions requires log expansion at fixed order; several “matching” schemes
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All-order calculations: Resummations

Two main approaches
© ‘direct” calculation in QCD
@ effective field theory approach: Soft Collinear Effective Theory

My (rough and personal) take on this: SCET super efficient for systematic improvements (e.g. reaching high

accuracy); direct calculation often nice to highlight underlying physics mechanisms

State-of-the-art

@ NLL (almost) automated o e o
- T (el 07 finite/large v = m/p;

@ for ee {ellesi) - matched agrees with fixed-order
automated €

o N3LL for specific cases - Zz small v = m/pt (|arge |Og)

@ Collinear physics easier o1 . | matched agrees with resummed
than soft emissions So% o xT:

¢ =mypry

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023 68 / 91



Contributed to big achievements at the LHC

Long list of standard-model measuirements

Standard Model Production Cross Section Measurements 57 Jra
I

op inclasic
Jetsnecs
Dijets =04

Wzijew
e

July 2021

107 107 102 100 1 10! 10?

10°

i
10 10° 10° 10" 051.01.52.025
o [pb] data/theory

Also played a

1

Reference June 2021 CMS Preliminary
. '8 5 - & 7 TeV CMS measurement (L <5.0 fb™)
=10’ & 8 TeV CMS measurement (L < 19.6 fb ) |
o iy & 13 TeV CMS measurement (L < 137 fb°
N jel(s): Theory prediction
c— 104 L° » 4 Z 4 CMS 95%CL limits at 7, 8 and 13 TeV -
njeis
g 10°F = - i
& LI ..
0 10%F (877 - P, 4
8 - Lo .
G 10F - . LR 3 :
= ¥
S 1f ty u Al g
5] ¥ 4 L 1
3107 B r 4
<t a 3
S0k L i y
i * Il '
102k i 1
3
-4

All results at: http:/icemn.chigo/pNj7

critical role in BSM searches

J
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Challenges at HL-LHC/FCC-ee/FCC-hh

Highly challenging perspective )

From a pheno QCD standpoint (i.e. besides experimental aspects/challenges)
@ requires more precise determination of as

requires high fixed-order accuracy (likely at least N°LO)

requires high resummation accuracy (likely at least N°LL)

requires mixed QCD+EW corrections with high accuracy

requires excellent control over non-perturbative effects

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023



Part XlIl: Monte Carlo event generators
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Generic approach

Typical calculations take the following form:

O = Z/dd),,\/\/l(kl,...,k,,)\zO,,(kl,...,k,,)

Even if we have the amplitudes analytically, this is
still highly complex:

@ real-virtual cancellations

@ PDFs for hadronic beams

@ often complex observables and cuts
@ resummations sensitive to all n

@ one can have non-perturbative
hadronisation/MPI or detector simulations

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023 72 /91



Generic approach

Typical calculations take the following form:

0= Z/dd)n Mk, .- ka)l* Onlky, . kn)

_ end-user’s

~
Monte Carlo sampling

Even if we have the amplitudes analytically, thisis (RS ESAVS e L generators
still highly complex:

© Provide a numerical sampling of the

@ real-virtual cancellations phase-space and amplitudes
@ PDFs for hadronic beams @ hand over kq, ..., k, to the end user
@ often complex observables and cuts @ let the end user compute the obserable

@ resummations sensitive to all n

@ one can have non-perturbative
hadronisation/MPI or detector simulations
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Generic approach

Typical calculations take the following form:

O = Z/dd)n Mk, .- ka)l* Onlky, . kn)

_ end-user’s

~
Monte Carlo sampling

Even if we have the amplitudes analytically, thisis (RS ESAVS e L generators
still highly complex:

© Provide a numerical sampling of the

@ real-virtual cancellations phase-space and amplitudes

@ PDFs for hadronic beams @ hand over kq, ..., k, to the end user

@ often complex observables and cuts @ let the end user compute the obserable

@ resummations sensitive to all n

@ one can have non-perturbative Key gain: works with any
hadronisation/MPI or detector simulations observable
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Different types of MC generators

0= Z/dcbn IM(ky, .. kn)[? Onlky, ... k)

7

TV
Monte Carlo sampling
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Different types of MC generators

o= % /dd),,\/\/l(kl,...,k,,)\2 Onlke, - k)
neNKLO
——

finite sum

o Fixed order
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Different types of MC generators

0= > /dd),,\/\/l(kl,...,k,,)|2 On(ky,. .., k)

all n
~—~

infinite sum

o Fixed order or all orders

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023 73 /91



Different types of MC generators

0- Z/dcb Mk, . k) Oulhs . )

welght
sampled

o Fixed order or all orders
o Weighted
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Different types of MC generators

0- Z/d@n Mk k) On(ks, . ko)

7

sampled

@ Fixed order or all orders

@ Weighted or unweighted
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Fixed-order MC generators
@ Require a finite range of multiplicities
E.g. dijets:
o LO=0(a?): 2 — 2 (tree level)
o NLO= O(a?): 2 — 3 (tree level), 2 — 2 (1-loop)
o NNLO= O(a?): 2 — 4 (tree level), 2 — 3 (1-loop), 2 — 2 (2-loops)

Gregory Soyez
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Fixed-order MC generators

@ Require a finite range of multiplicities

@ Main challenge: each n is separately infinite

dopure NLO _

) /d¢n+1‘MreaI’2On+1 +/d¢n|Mvirt|20n = finite
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Fixed-order MC generators

@ Require a finite range of multiplicities

@ Main challenge: each n is separately infinite

dopure NLO _

) /d¢n+1‘MreaI’2On+1 +/d¢n|Mvirt|20n = finite

o Overall finite but the | M, |? integration diverges and |M,;.|? has poles (in €)
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Fixed-order MC generators

@ Require a finite range of multiplicities

@ Main challenge: each n is separately infinite

d ure o
% = /d¢n+1‘Mrea|’2On+1 +/d¢n|Mvirt|2On = finite

o Overall finite but the | M, |? integration diverges and |M,;.|? has poles (in €)
e Common idea: factorise the phase space d®,,1 = d$,dP;
o and introduce a subtraction term S (/ = [ d®,5)

d ure
% = /d¢n+1(|Mreal‘2 + S)(9n+1 + / dq)n(‘-/\/lvird2 - I)On

such that each term is separately finite
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Fixed-order MC generators

@ Require a finite range of multiplicities

@ Main challenge: each n is separately infinite

dopure NLO _

) /d(bn—&-l‘MreaIFOn—{-l +/d¢n|Mvirt|20n = finite

o Overall finite but the | M, |? integration diverges and |M,;.|? has poles (in €)
e Common idea: factorise the phase space d®,,1 = d$,dP;
o and introduce a subtraction term S (/ = [ d®,5)

d ure
% = /d¢n+1(|Mreal‘2 + S)(9n+1 + / dq)n(‘-/\/lvird2 - I)On

such that each term is separately finite

@ Many methods: Catani-Seymour, FKS, slicing, projection to Born, sector decomposition,...
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Fixed-order MC generators

@ Require a finite range of multiplicities

@ Main challenge: each n is separately infinite

dopure NLO _

) /d(bn—&-l‘MreaIFOn—{-l +/d¢n|Mvirt|20n = finite

o Overall finite but the | M, |? integration diverges and |M,;.|? has poles (in €)
e Common idea: factorise the phase space d®,,1 = d$,dP;
o and introduce a subtraction term S (/ = [ d®,5)

d ure
% = /d¢n+1(|Mreal‘2 + S)(9n+1 + / dq)n(‘-/\/lvird2 - I)On

such that each term is separately finite
@ Many methods: Catani-Seymour, FKS, slicing, projection to Born, sector decomposition,...

@ Usually a weighted approach with negative weights
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Fixed-order MC generators

@ Require a finite range of multiplicities

@ Main challenge: each n is separately infinite

dopure NLO _

) /d(bn—&-l‘MreaIFOn—{-l +/d¢n|Mvirt|20n = finite

o Overall finite but the | M, |? integration diverges and |M,;.|? has poles (in €)
e Common idea: factorise the phase space d®,,1 = d$,dP;
o and introduce a subtraction term S (/ = [ d®,5)

d ure
% = /d¢n+1(|Mreal‘2 + S)(9n+1 + / dq)n(‘-/\/lvird2 - I)On

such that each term is separately finite
@ Many methods: Catani-Seymour, FKS, slicing, projection to Born, sector decomposition,...
@ Usually a weighted approach with negative weights

@ Recall: the observable needs to be IRC-safe!
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Generic-purpose MC generators (GPMC)

Idea: generate the full event J

. 5
inconing AN\t s ETEO0

proton 1

hadrons hard
(7, K, p,n,...) parton shower process

1 GeV 10GeV 100GeV 1 TeV scale
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Generic-purpose MC generators (GPMC)

Idea: generate the full event )

Several ingredients

@ Hard process
@ Parton shower
@ hadronisation

@ hadron decays

hadrons hard e MPI/UE

(7, K, p,n,...) parton shower process

1 GeV 10GeV 100GeV 1 TeV scale
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Generic-purpose MC generators (GPMC)

Idea: generate the full event )

Several ingredients

@ Hard process
perturbative QCD, fixed order
@ Parton shower

@ hadronisation

@ hadron decays

hadrons hard e MPI/UE

(7, K, p,n,...) parton shower process

1 GeV 10GeV 100GeV 1 TeV scale
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@ Parton shower
perturbative QCD, all orders
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Generic-purpose MC generators (GPMC)

Idea: generate the full event )

Several ingredients

@ Hard process
perturbative QCD, fixed order

@ Parton shower
perturbative QCD, all orders

@ hadronisation
non-perturbative, modelled
@ hadron decays
non-perturbative, modelled
hadrons hard e MPI/UE

(7, K,p,n,...) parton shower process .
non-perturbative, modelled

1 GeV 10GeV 100GeV 1 TeV scale
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Generic-purpose MC generators (GPMC)

Idea: generate the full event )

Several ingredients
@ Hard process
perturbative QCD, fixed order
@ Parton shower
perturbative QCD, all orders
@ hadronisation
non-perturbative, modelled
@ hadron decays
non-perturbative, modelled
hadrons hard e MPI/UE

(7, K,p,n,...) parton shower process .
non-perturbative, modelled

1 GeV 10 GeV 100 GeV 1 TeV  scale Q: How to estimate uncertainties? J
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The workhorses

Herwig, PYTHIA and Sherpa offer convenient frameworks
for LHC physics studies, covering all aspects above,
but with slightly different history/emphasis:

PYTHIA (successor to JETSET, begun in 1978):
originated in hadronization studies,
still special interest in soft physics.

N Hér\./vig (su.ccessor to EARWIG, begun in 1984):
n, originated in coherent showers (angular ordering),
cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000):
had own matrix-element calculator/generator
originated with matching & merging issues.

[slide from T. Sjéstrand, 2016]

Torbjérn Sjostrand Status and Developments of Event Generators
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The workhorses Super useful!

e full events
Herwig, PYTHIA and Sherpa offer convenient frameworks e can compute basically
for LHC physics studies, covering all aspects above, .
but with slightly different history/emphasis: 2l yeu e

@ can feed to detector

PYTHIA (successor to JETSET, begun in 1978): simulations
originated in hadronization studies, ‘
still special interest in soft physics.

N ey Hervie (successor to EARWIG, begun in 1984):

n, originated in coherent showers (angular ordering),

cluster hadronization as simple complement.

Sherpa (APACIC++/AMEGIC++, begun in 2000):
had own matrix-element calculator/generator
originated with matching & merging issues.

[slide from T. Sjéstrand, 2016]

Torbjérn Sjostrand Status and Developments of Event Generators
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The workhorses

e full events
Herwig, PYTHIA and Sherpa offer convenient frameworks
for LHC physics studies, covering all aspects above,
but with slightly different history/emphasis:

@ can compute basically
anything you want

@ can feed to detector
PYTHIA (successor to JETSET, begun in 1978): simulations

originated in hadronization studies,
still special interest in soft physics.

\.

@ building blocks have

Herwig (successor to EARWIG, begun in 1984): . L.
N Ny g ( e ) their own limitations

n, originated in coherent showers (angular ordering),
cluster hadronization as simple complement. @ different observables
v sensitive differently to

had own matrix-element calculator/generator
originated with matching & merging issues.

[slide from T. Sjéstrand, 2016]

@ sometimes one
expects MC to
disagree with data

Torbjérn Sjéstrand Status and Developments of Event Generators slide 7/28
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The workhorses Super useful!

o full events
Herwig, PYTHIA and Sherpa offer convenient frameworks
for LHC physics studies, covering all aspects above,
but with slightly different history/emphasis:

@ can compute basically
anything you want

@ can feed to detector

PYTHIA (successor to JETSET, begun in 1978): simulations

originated in hadronization studies,

still special interest in soft physics.

.

teryi Probably the most used theoretical tool in building blocks have
Ay J

"I origin, particle physics their own limitations
cluster hadronization as simple complement. o different observables
sensitive differently to
Sherpa (APACIC++/AMEGIC++, begun in 2000): each ingredient

had own matrix-element calculator/generator
originated with matching & merging issues.

[slide from T. Sjdstrand, 2016]

@ sometimes one
expects MC to
disagree with data

Torbjérn Sjéstrand Status and Developments of Event Generators slide 7/28
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Part XIlI: Monte Carlo event generators
parton showers
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Basic comments

perturbative QCD connecting the scale of the hard process
to the scale where non-perturbative hadronisation happens

@ This is achieving resummations

accuracy should be counted as LL, NLL, ...
@ Keep in mind: not an exact as expansion...

@ ... unless matched with exact fixed order (briefly discussed later)
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selected collider-QCD accuracy milestones

LO NLO NNLO[.......covvuiennns ] N3LO

DGLAP splitting functions
LO NLO NNLO [parts of N3LO]

transverse-momentum resummation (DY&Higgs)
LL  NLL[...... I NNLL][...] N3LL

parton showers (many of today’s widely-used showers only LL@leading-colour)

LL [parts Of NLL......c.coiiiiiiiiiiiirr v s s s s e 1

fixed-order matching of parton showers
[slide by G.Salam, 2023] LO NLO NNLO [.......] [N3LO]

T T T T T T T T T T T

1970 1980 1990 2000 2010 2020
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selected collider-QCD accuracy milestones

LO NLO NNLO[.......covvuiennns ] N3LO

DGLAP splitting functions
LO NLO NNLO [parts of N3LO]

transverse-momentum resummation (DY&Higgs)
LL  NLL[...... I NNLL][...] N3LL

parton showers (many of today’s widely-used showers only LL@leading-colour)

LL [parts of NLL.......cccueiuieiiiiiiiieee s s e e 1 NLL [NNLL]

(PanScales,Alaric,Deductor)

fixed-order matching of parton showers
[slide by G.Salam, 2023] LO NLO NNLO [.......] [N3LO]

T T T T T T T T T T T

1970 1980 1990 2000 2010 2020
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Example 1: radioactive emissions

Toy model 1 class Emission{ link to file
2 public:
a particle emits photons at a rate w (per unit time) A imi:;if’n(d“ble t-in=0) : t(t.in){}
oe « . . ouble tj
Probability to have n emissions over a time T: 5 3
" —
PA(T) = I =T :
n J 7 class Event{
8 public:
9 Event OO {}
Simulation strategy i? }.vector<Emission> emissions;
12 ’
e startat t = tp = 0 13 Event generate_event (double omega, double tcut){
. .. . 14 Event ev;
@ recursively select next emission time tpi1 15 double t = 0.0;
3 _ —w(tpy1—tn) 16
acordlng to R(tn+1) = we 17 while (true){
. o o 18 double u = ((double) rand()/RAND_MAX);
@ until reaching a cut-off time tcut o © 4= ~log(1-u)/omega;
20
21 if (t>tcut) return ev;
22 ev.emissions.push_back (Emission(t));
23 ¥
ol L. 24 return ev;
@ Factor e = Po(Atni1) (no emissions 25}
between t, and t,41, often called Sudakov) average multiplicity = 0.00998358 exp: 0.01

mult. dispersion 0.100402 exp: 0.1

@ Factor w: emission rate at tp1
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Example 2 abelian shower

Toy model 1  class Emission{ link to file
2 public:
. . . 3 Emi i (doubl t_in, doubl _in) : t(t_in), (x_in){}
a particle emits photons with angl § and momentum 1 dowsle s, wy TR R e
. T,
fraction z > z.: at a rate ®  iees Evems(
class Even
o dz db 8 public:
dP = = — — 9 Event () : x_lead(1.0) {}
T Z 9 10 vector<Emission> emissions;
J 1 double x_lead;
12 void add_emission(double t, double z){
13 emissions.push_back (Emission(t,x_lead*z));
imulation strategy b 3
16 };
17
LU L — . = — 18 E t te_ t (doubl lpha, doubl t,
Say "time"= t = log(0Omax/0); start at t = to = 0 1o e ouble thota max, deuble +theta_min){
Emitter with mom fraction x (starting with x = 1) 20 Event ev;
. 22 double t = 0.0;
Recurswely 23 double tmax = log(theta_max/theta_min);
24
o _ o a o 25 double 1 t = log(1/ t);
@ select next emission time t,1 according to % double omega - alpha/N PIsinzcut;
27
R(t = 2o iefs 28 hile (true){
( "H) = 08 2 29 " double u = ((double) rand()/RAND_MAX);
o 1 30 t += -log(i-u)/omega;
_ |a _ 31
S |:7T |Og Zcut] (t,,+1 t,,) 32 if (t>tmax) return ev;
33
@ generate the z fraction uniformly in Inz En e 3 I S Ry O/RAND AR
. . . 36 ev.add_emission(t,z);
emission takes zx, emitter (1—z)x 7
38
. . 39 H
until a cut-off time teyr = log(Omax/Omin) a0 oy T
V.
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Example 2: toy abelian
2

MC e
a particle emits photons with angl # and momentum s erpected
fraction z > z.: at a rate § s
o dz df s
dP=——— g
Tz 6 e T
4 2
Simulation strategy & 40,1, Bpmie1, By =0.001
Say “time" =t = log(Omax/0); start at t = to = 0 ol o M ’ ;
Emitter with mom fraction x (starting with x = 1) ) expected
Recursively 5 08
@ select next emission time t,+1 according to f
_ « 1 .-S S 081
R(tn+1) = *lOgae 8
S = [O‘ log a} (tns1 — tn) 0.805
@ generate the z fraction uniformly in Inz 08 ; ;
emission takes zx, emitter (1—z)x 0.0001 0.01 001 01
Zeut
until a cut-off time teyr = log(Bmax/Omin) excellent agreement
v
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Example 2: toy abelian shower revisited

Previous example:

@ t = log(1/0) = shower evolution variable In ke = In z0

@ Inz = auxiliary variable In1/6

. dv d
The rate can also be rewritten as dP = & 2 %2 (In0~,In k;) plane

TV Z frequently used
@ Inv = In(z6°*!) as the shower variable (Lund plane)

@ Inz as the auxiliary variable <

Strategy

| A\
L]
L]

Same as before but
@ no need for a zut
@ Omin —> Vimin
@ B3=0= v = k: (standard choice)
@ One can impose a cut ki > Kt min

kt - kt,min

.

Gregory Soyez Quantum Chromodynamics CERN-FermiLab HCP School 2023 82 /91



Example 2: toy abelian shower revisited

Previous example:

@ t = log(1/0) = shower evolution variable In ke = In z0
@ Inz = auxiliary variable In1/6
a dv dz
The rate can also be rewritten as dP = — — — .
wri T v = 0 ordering

@ Inv = In(z6°*!) as the shower variable

|

o

| |
@ Inz as the auxiliary variable (SO,

v
| | |
L3
Strategy D ‘
le | ]
Same as before but o :
@ no need for a zut L L
kt - kt,mln

@ Omin —* Vimin
@ B3=0= v = k: (standard choice)
@ One can impose a cut ki > Kt min
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Example 2: toy abelian shower revisited

Previous example:

@ t = log(1/0) = shower evolution variable In ke = In z0

@ Inz = auxiliary variable In1/6

. a dv dz
The rate can also be rewritten as dP = P ke = 20 ordering

@ Inv = In(z6°*!) as the shower variable

@ Inz as the auxiliary variable

Strategy 3
Same as before but
@ no need for a z:
@ Omin —> Vimin
@ B3=0= v = k: (standard choice)
@ One can impose a cut ki > Kt min
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Example 2: toy abelian shower revisited

Previous example:

@ t = log(1/0) = shower evolution variable In ke = In z0
In1/6

@ Inz = auxiliary variable
a dv dz

The rate can also be rewritten as dP = P “virt” = 262 ordering

@ Inv = In(z6°*!) as the shower variable

@ Inz as the auxiliary variable y

Strategy 2 <

Same as before but S

@ no need for a z:

@ Omin —> Vimin

@ B3=0= v = k: (standard choice)
@ One can impose a cut ki > Kt min
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Towards QCD showers

Mostly two types of showers:

@ Angular-ordered showers:
mostly as before but after a branching both daughter partons can branch further

@ Dipole shower (vg>g-ordered): large N

viewed as
pi z
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Towards QCD showers

Angular-ordered shower

v correct collinear physics
respects QCD angular ordering: 6,11 < 0,
the final-state equivalent of DGLAP

v full N

X soft-gluon pattern difficult
In particular: struggle with non-global logs

Notes on angular ordering:
@ fundamental property of QCD

@ often referred to as “colour coherence”

(] only valid after azimuthal averaging (connected to spin correlations)

@ Relatively simple to show for soft emissions from an antenna:

1 — cos 8 d cos O

Dipole shower (vz>o-ordered)

v/ soft-gluon by construction

dipoles easily get the antenna pattern

v collinear physics not too delicate to get

X delicate to go beyond leading N,

/dzek oc/gij
(1 — cos@ix)(1 — cosby) 1 — cos O

Gregory Soyez

/‘9"1' d cos O
+
1 — cos 0

Quantum Chromodynamics
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Towards QCD showers

Angular-ordered shower Dipole shower (vz>o-ordered)

v correct collinear physics v/ soft-gluon by construction
respects QCD angular ordering: 6,11 < 0,

- _ dipoles easily get the antenna pattern
the final-state equivalent of DGLAP

v full N, v collinear physics not too delicate to get

X soft-gluon pattern difficult X delicate to go beyond leading N,
In particular: struggle with non-global logs

In principle...

techniques similar to what we used above should get us NLL accuracy

In practice...

@ angular-ordering struggles with NGLs

@ dipole showers can have nasty recoil issues
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As for the analytic calculations, ideally we want both
@ fixed-order accuracy
@ resummation accuracy

in a single event simulation framework.
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As for the analytic calculations, ideally we want both
@ fixed-order accuracy
@ resummation accuracy

in a single event simulation framework.

Rely on matching techniques

@ |dea: generate a few “exact” (at fixed-order) hard emissions then let the shower take over
i.e. connect the fixed-order hard-scale and broad scale range of the shower

@ Delicate point: avoid double-counting
(i.e. the fixed-order and shower should not spoil the other part’s accuracy)

@ Delicate point: not trivial to avoid negative weights

o Fairly automated at NLO through aMC@NLO, POWHEG or using a MiNLO approach

@ Several recent NNLO approaches: MiNNLOps, UNLOPS, GenEvA
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Part XIV: selected extra topics
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Jet substructure

Instead of considering a “jet” as a particle (with a pt, y, ¢ and mass), look at the internal
dynamics of the jet constituents

@ Originated in the study of boosted boson decay

Take a X = W/Z/H decaying hadronically. The qg opening angle scales like mx/p: (Lorentw boost).
At large p: this is smaller than the jet radius so X is seen as a single jet.

Techniques must be devived to separate X from QCD backgroungs

@ Now applications in many directions including searches (e.g. diboson excess from run-1), precision
calculations and measurements, Deep Learning, heavy-ions, ...

e Long list of tools designed (SoftDrop, mMDT, N-subjettiness, ...)

@ Two families of modern tools with active research:
Energy Correlation Functions and Lund Plane techniques

@ Check out these lecture notes of the BOOST conference series for more
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Amplitudes beyond QCD

The main domain of usage of the amplitude results is QCD.
However:

@ many studies directly touch our fundamental understanding of quantum field theory, with
new structures emerging regularly

@ One recent application is the use of amplitude techniques to compute gravitational waves.
This is based on a “double-copy” relation: gravity=Yang-MillsxYang-Mills
Roughly on par with Post-Newtonian approach to in-mergers
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Heavy-ion collisions

Alice pp event Alice PbPb event

Substantially more complex!!

increased Underlying Event

Quark-Gluon plasma interacting
“with itself” and with high-energy
particles (hard probes)

QGP behaves as a perfect liquid

Complex interaction with jets

@ See Liliana’s lectures!
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Various interesting behaviours/scaling properties

Many interesting behaviours of QCD are still regularly discovered

@ some equations describing soft gluon emissions show properties common to the evolution
of populations in stat phys

@ some equations describing interactions of hard jets with the QGP exhibit wave turbulence
@ some substructure observables show behaviours independent of ay

o the QGP behavesas a perfect fluid

e amplitudes show remarkable signs of simplicity/symmetries

e Casimir scaling for a large family of quark/gluon discriminants

Note that all of the above are true only in appropriate limits
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Conclusions

A top-notch knowledge/understanding of QCD is

Q interesting per se!
(part of a physicist’s job to understand fundamental interactions)

@ primordial for the whole programme of collider physics
searches AND measurements!

Still a lot to do at the (HL-)LHC and for future colliders
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