Experimental BSM Physics

Lecture 2 of 3

Greg Landsberg

CERN, August 26, 2023

Model-Independent Searches

- It is very tempting to try optimizing a search for an arbitrary signal
 - ★ Unfortunately, this is not mathematically possible, as has been shown by Pearson in 1930-ies
 - * Only the likelihood ratio (e.g., L(S+B)/L(B)) possess well-defined properties; while individual likelihoods change property under transformation of variables
 - That means that "optimizing" in, e.g., pT or pT² yields completely different results
 - ★ Unfortunately, this is largely underappreciated in the HEP community, and every few years there is another attempt to reinvent the wheel and do "model-independent optimization", which is simply mathematically impossible (latest attempts use unsupervised machine learning)
- What can be done is what's typically done in SUSY searches: create a large number of independent or overlapping search categories ("signal regions", SRs) and look for the maximum excess of events over the respective background prediction among them

Look-Elsewhere Effect

- This brings us to a concept of the look-elsewhere effect (LEE)
 - ***** If one rolls a dice, a probability to get six is $1/6 \approx 0.17$
 - ***** If one rolls three dices, a probability that one of them will have six is 1 $(5/6)^3 = 0.42$
 - **★** The ratio r = 0.42/0.17 \approx 2.5 is the *trial factor*
- Similarly, if one looks for a signal in multiple search regions, the local p-value of the largest excess among them needs to be multiplied by a trial factor in order to get the global p-value of an excess
 - ★ The trial factor is usually estimated with pseudo-experiments, but there are also analytical asymptotic methods [Gross and Vitells, <u>Eur. Phys. J. C 70 (2010) 525]</u>
- Therefore, the more SRs one has, the larger the trial factor is, and the lower the global p-value is, compared to the local one
- Consequently these model-independent searches [e.g., D0's Sleuth, <u>PRL 86</u> (2001) 3712, ; ATLAS, <u>Eur. Phys. J. C 79 (2019) 120</u>; CMS' MUSiC, <u>EPJC 81</u> (2021) 629] are inherently less powerful than model-specific searches that can be properly optimized without paying the trial factor price
 - ★ They are good as a grand finale kind of thing: e.g., have we missed anything interesting in the LHC Run 2 data, despite all the model-specific searches we published?
 - \star While fun to conduct, they are unlikely to become a discovery tool

Typically, LEE is very pronounced in searches in a high-resolution channel

* An infamous X(750) was a classic example of people underestimating LEE

- Roughly speaking the trial factor is approximately equal to the search range divided by the average resolution, i.e., how many nonoverlapping signals one could "fit" in the mass spectrum probed
- In the case of ATLAS dielectron X(ee) search, the trial factor is ~50

29

Blind Analysis

Removes (often subconscious!) bias of an observer Many examples in particle physics, biology, medicine

Greg Landsberg - Experimental BSM Physics - HCPSS 2023 - 08/23

Justice is Blind...

- Optimization of the analysis is done exclusively in the control regions
- "Peeking" in the signal region is strictly not allowed
- Example: $H \rightarrow ZZ \rightarrow 4l$: [110,140] GeV mass region is blinded

CMS Unblinding Event

- The unblinding of all the Higgs channel took place at a special event on June 15, 2012, with roughly 80% of total statistics - no changes in any of the analyses after unblinding
- June 15 "Unblinding Event" 250 people in the HOT! room and >500 via video!

CMS Unblinding Event

- The unblinding of all the Higgs channel took place at a special event on June 15, 2012, with roughly 80% of total statistics - no changes in any of the analyses after unblinding
- June 15 "Unblinding Event" 250 people in the HOT! room and >500 via video!

SUSY Searches

Slide 33

Greg Landsberg - Search for Exotics @ the LHC - HCPSS 2020

Looking for SUSY

- Everything you always wanted to know about SUSY but were afraid to ask:
 - ***** What is SUSY? Answered for you by Tim
 - ***** Three SUSY miracles
 - ★ Supersymmetric particle zoo Answered for you by Tim
 - ★ "Natural" SUSY
- SUSY and Higgs the marriage made in heaven
 * What did we learn about SUSY in the aftermath of the Higgs discovery?

Three Miracles of SUSY

Elegant solution to the hierarchy problem (via the cancellation of fermionic loops with bosonic ones)

Dark matter candidate with the right abundance

Natural SUSY

- If SUSY is natural, we should find it soon:
 - *****And we most likely will find it by observing 3rd generation SUSY particles first
- **Requires shifting of the SUSY search paradigm: going for the third**generation partners, pushing gluino reach, and looking for EW **boson partners** L_i, \tilde{e}_i

Papucci, Ruderman, Weiler JHEP 09 (2012) 035

Natural SUSY

- If SUSY is natural, we should find it soon:
 - *And we most likely will find it by observing 3rd generation SUSY particles first
- Requires shifting of the SUSY search paradigm: going for the thirdgeneration partners, pushing gluino reach, and looking for EW boson partners

Papucci, Ruderman, Weiler JHEP 09 (2012) 035

decoupled SUSY

Natural SUSY

- If SUSY is natural, we should find it soon:
 - *And we most likely will find it by observing 3rd generation SUSY particles first
- Requires shifting of the SUSY search paradigm: going for the thirdgeneration partners, pushing gluino reach, and looking for EW boson partners $\tilde{L}_{i}, \tilde{e}_{i}$

Papucci, Ruderman, Weiler JHEP 09 (2012) 035

decoupled SUSY

SUSY Searches: General Approach

- Given that the SUSY signal is typically seen in multiple channels, hard to find good control regions that are signal free
- Also, given the landscape of SUSY models, the signal can be present at various multiplicities of different particles and in different kinematic regions
- Common to all R-parity conserving scenarios: generally large amount of ME_T due to the LSPs
- Hence, a search is typically done by signatures (e.g., jets + ME_T, 11 + jets + ME_T, etc.)
- The phase space is diced into multiple rectangular search regions, often O(100) per search (e.g., 3 jets, ≥1 b jet, ME_T > 300 GeV)
- Backgrounds are determined from a mixture of simulation and control regions targeting specific backgrounds
- The search often targets the main backgrounds via dedicated kinematic variables

Electroweakino Production

- In natural SUSY, the lightest Higgsino is light, so it's a natural particle to search for
 - ***** Unfortunately, it's most often an LSP, i.e. undetectable
 - \star It is also produced with EW cross section, i.e., feebly
 - Additionally, if the chargino-neutralino mass difference is small, searches are complicated because of soft final-state particles and small amount of ME_T
 Wino-like neutralino

39

Pulling all the Stops!

- Top quark partner ("stop") is expected to be light, if SUSY offers a natural solution to the hierarchy problem
 - **\star** Not surprisingly, a lot of effort went into top squark searches
- With the top squark masses excluded as high as ~1 TeV, a paradigm shift in filling gaps at low masses, via challenging 3- and 4-body decays

above the dominant background using shape differentiation offered by a DNN based on M_T -like variable (M_{T2}) & dilepton mass, ME_T, and H_T

SUSY Kinematics

- Look for pair-produced particles that cascade-decade with invisible particle emission
 - ★ Generally can cluster all visible products in each hemisphere to form "pseudojets", resulting in a dijet + ME_T topology
- How to optimize the search to reduce backgrounds and at the same time retain information about characteristic SUSY masses?
 - * CMS explored a number of different kinematic variables to optimize SUSY searches

The α_T Variable

- Alternative approach to requiring large ME_T in the event; does not rely on ME_T reconstructions Randall & Tucker-Smith, PRL 101 (2008) 221803 and tails
- **Combine visible decay products in the** event into two (pseudo)jets:

$$\alpha_{\rm T} = E_{\rm T}^{j_2} / M_{\rm T} = E_{\rm T}^{j_2} / \sqrt{H_{\rm T}^2 - H_{\rm T}^2}$$

- For a perfectly balanced dijet event, $\alpha_T \equiv E_T^{\frac{f_2}{f_2}} / M_T$ For QCD events with mismeasure α_T < 0.5
- For signal, long tail of $\alpha_T > 0.5^{/2(1 c)}$

CMS

0.25

0.5

2 Jets L dt = 35 pb⁻¹,√s = 7 TeV

> Standard Model CD Multijet t. W. Z + Jets

The M_{T2} Variable

Supercemetery?

• At first glance, the TeV scale SUSY is simply not there: strongly produced superpartners of gluons and quarks, gluinos and squarks, have been excluded to ~2 and ~1 TeV, respectively...

Read the Fine Print!

• Keep in mind that:

- ★ Searches typically assume 100% branching fraction in a particular channel, which does not have to be the case
- ★ Many searches assume mass degeneracy between various SUSY particles, e.g., squarks of different generation
- ★ Interpretation is usually done via simplified model framework, not in the full model

Read the Fine Print!

• Keep in mind that:

- ★ Searches typically assume 100% branching fraction in a particular channel, which does not have to be the case
- ★ Many searches assume mass degeneracy between various SUSY particles, e.g., squarks of different generation
- ★ Interpretation is usually done via simplified model framework, not in the full model

