Accelerators Part I

Tatiana Pieloni (Tatiana.Pieloni@epfl.ch)
Laboratory for Particle Accelerator Physics, EPFL

References and accessible Reading Material

available on the internet:
P. Schmüser \& J. Rossbach, Basic course on accelerator optics:
https://cds.cern.ch/record/247501/files/p17.pdf
F. Tecker, Longitudinal Dynamics material:
https://arxiv.org/pdf/1601.04901.pdf

Book, H.Wiedemann, Particle Accelerators, download pdf !:
https://link.springer.com/book/10.1007\%2F978-3-319-18317-6

CERN Accelerator School (CAS) proceedings homepage (huge!)
http://cas.web.cern.ch/cas/CAS Proceedings.html

books, papers:

S.Peggs, T.Satogata, Introduction to Accelerator Dynamics, Cambridge University Press, 2017
A. Wolski, Beam Dynamics in high energy particle accelerators, Imperial College Press, 2014
A. W. Chao, M. Tigner, Handbook of Accelerator Physics and Engineering, World Scientific 1999
E. D. Courant and H. S. Snyder, Annals of Physics: 3, 1-48 (1958)

Contents:

- Particle types and relativity for accelerators
- Accelerator components: Dipole, quadrupoles magnets, accelerating RF cavities...
- Transverse plane (x, y) \rightarrow Guiding and focusing beams
- Particle motion in linear approximation
- Invariant of motion and Emittance
- Beam Optics: beta functions, beams sizes, Beam Tunes
- Longitudinal plane (s, t) \rightarrow Acceleration
- Synchronous motion
- Synchrotrons and LHC injection complex
- Hadron Accelerators: Synchrotrons
- Beam production
- Magnets
- Luminosity
- Collective effects

Contents:

- Particle types and relativity for accelerators
- Accelerator components: Dipole, quadrupoles magnets, accelerating RF cavities...
- Transverse plane $(x, y) \rightarrow$ Guiding and focusing beams
- Particle motion in linear approximation
- Invariant of motion and Emittance
- Beam Optics: beta functions, beams sizes, Beam Tunes
- Longitudinal plane (s,t) \rightarrow Acceleration
- Synchronous motion
- Synchrotrons and LHC injection complex
- Hadron Accelerators: Synchrotrons
- Beam production
- Magnets
- Luminosity
- Collective effects

Introduction to accelerators and particle Dynamics

Accelerator = series of elements for beam guiding (bending, focusing) and acceleration of particles

- guiding fields must ensure stability of circulating particles on designed trajectory
- often arranged in a closed loop (ring) \rightarrow acceleration occurs at every turn
- or in a periodic "straight" sequence (linacs) \rightarrow acceleration all along the length

Accelerating particles \rightarrow Towards Relativity

Particles to Accelerate

Wide range of rest masses from electron to heavy ions

The accelerators differ vastly, e.g.

- particle speed in cavities
- synchrotron radiation power
- activation by losses
- requirements for vacuum

Accelerator design depends on particle type and properties Energy

Speed of different particles vs energy

relativistic energy-

 momentum relation:$$
\begin{aligned}
E & =\sqrt{m_{0}^{2} c^{4}+c^{2} p^{2}} \\
& =m_{0} c^{2}+E_{k}
\end{aligned}
$$

$$
\gamma=\frac{E}{m_{0} c^{2}}=1+\frac{E_{k}}{m_{0} c^{2}}
$$

$$
\beta=\sqrt{1-1 / \gamma^{2}}
$$

numerical example for protons LHC injection energy 450 GeV ultra relativistic beam $\beta^{\sim} 1$

Contents:

- Particle types and relativity for accelerators
- Accelerator components: Dipole, quadrupoles magnets, accelerating RF cavities...
- Transverse plane (x, y) \rightarrow Guiding and focusing beams
- Particle motion in linear approximation
- Invariant of motion and Emittance
- Beam Optics: beta functions, beams sizes, Beam Tunes
- Longitudinal plane (s, t) \rightarrow Acceleration
- Synchronous motion
- Synchrotrons and LHC injection complex
- Hadron Accelerators: Synchrotrons
- Beam production
- Magnets
- Luminosity
- Collective effects

Guiding charged particles: Lorentz Force

$$
\vec{F}=e \vec{E}+e \vec{v} \times \vec{B} \quad \text { (charge = e) }
$$

electric field energy gain: $\Delta E_{k}=e U$

Longitudinal Motion Parallel to the direction of motion. Used to accelerate charged particles.

magnetic field

$$
\text { bending: } B \rho=p / e, \Delta E_{k}=0
$$

H.A.Lorentz 1853-1928

Lorentz Force - getting it right

Lorentz Force - getting it right

Tevatron p-pbar collider \rightarrow same B field \rightarrow difficult to have pbar beams LHC p-p collider \rightarrow opposite B field \rightarrow complex magnet design so called 2 in 1

Comparison E and B field

Bending radius for protons in B and E :
example: electric and magnetic force on protons
$\overrightarrow{F_{E}}=e \cdot \vec{E}, \quad \overrightarrow{F_{B}}=e \cdot \vec{v} \times \vec{B}$ table: bending radius, varying E_{k}

E_{k}	$B=1 T$	$E=10 \mathrm{MV} / \mathrm{m}$
60 keV	35 mm	12 mm
1 MeV	140 mm	200 mm
1 GeV	5.6 m	150 m

Magnetic fields are used exclusively to bend and focus ultra-relativistic particles

Accelerators in fundamental Particle Physics Research

- High Energy \rightarrow Acceleration
- High Luminosity \rightarrow Guiding and focusing high intensity beams

LEIR
Low Energy Ion Ring

Accelerate Particles

$$
\Delta E_{k}=e U
$$

Make Particles Circulate

Bending Magnet and magnetic rigidity

Field defined by the geometry of poles
$\rightarrow 2$ flat poles

Superconducting
Field defined by the geometry of coils
\rightarrow Current distribution Cos ϕ

F_{c}

- accelerate beams \rightarrow increase B
- at fixed B : higher $\mathrm{p} \rightarrow$ increase bending angle...

$$
B \rho=\frac{p}{e}
$$

Magnetic rigidity:

Focusing the Particles

Quadrupole Magnet - Focusing Element

Quadrupole magnets:

Iron dominated:
field determined by geometry of poles
$\rightarrow 4$ hyperbolic poles

Superconducting:

field determined by
geometry of coils
$\rightarrow j(\phi) \sim \cos 2 \phi$

Quadrupole magnets

- Focusing in one plane
- Defocusing in the other plane

$$
\nabla \times \boldsymbol{B}=0 \rightarrow \frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y}
$$

Gradient g

HiLumi LHC magnet zoo

Triplet QXF (LARP and CERN)

Orbit corrector (CIEMAT)

Separation dipole D1 (KEK)

11 T dipole (CERN)

Recombination dipole D2 (INFN design)

Overall, about 150 magnets are needed

Accelerator elements

Contents:

- Particle types and relativity for accelerators
- Accelerator components: Dipole, quadrupoles magnets, accelerating RF cavities...
- Transverse plane (x, y) \rightarrow Guiding and focusing charged particles
- Particle motion in linear approximation
- Invariant of motion and Emittance
- Beam Optics: beta functions, beams sizes, Beam Tunes
- Longitudinal plane $(\mathrm{s}, \mathrm{t}) \rightarrow$ Acceleration
- Synchronous motion
- Synchrotrons and LHC injection complex
- Hadron Accelerators: Synchrotrons
- Beam production
- Magnets
- Luminosity
- Collective effects

Curvelinear Coordinate System

aim: derive a set of equations that describe the motion of a single particle wrt. a curved coordinate system around the reference orbit of a beam, (x, y)

see also: Frenet-Serret coordinates, e.g. Wiedemann chap 4.3

Deriving the Equation of Motion in x-plane (see Appendix)

Frenet-Serret coordinate system
the effect of the curved coordinate system, i.e. the moving unit vectors e_{x}, e_{s} must be included in the calculation

starting with general equation of motion:
 $$
\frac{d \vec{p}}{d t}=\gamma m_{0} \ddot{\vec{R}}=\vec{F}
$$

dipole and
quadrupole field
orbit curvature

Quadrupole field gradient sign convention!
k-value

$$
x^{\prime \prime}+\left(\frac{1}{\rho^{2}}+k\right) x=0
$$

off momentum term
derivative w.r.t. path-length s, not time t

Equation of Motion in x and y planes for designed momentum:

$$
\begin{gathered}
x^{\prime \prime}+\left(\frac{1}{\rho^{2}}+k\right) x=0 \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

Equation of Motion in x and y planes for designed momentum: generalized form

$$
\begin{gathered}
x^{\prime \prime}+\left(\frac{1}{\rho^{2}}+k\right) x=0 \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

generalised form:

$$
\begin{array}{r}
x^{\prime \prime}+K_{x}(s) x=0 \\
y^{\prime \prime}-K_{y}(s) y=0
\end{array}
$$

*see also Wiedemann sec. 1.5.8

Equation of Motion in x and y planes for designed momentum: generalized form

$$
\begin{gathered}
x^{\prime \prime}+\left(\frac{1}{\rho^{2}}+k\right) x=0 \\
y^{\prime \prime}-k y=0
\end{gathered}
$$

generalised form:

$$
\begin{aligned}
x^{\prime \prime}+K_{x}(s) x & =0 \\
y^{\prime \prime}-K_{y}(s) y & =0
\end{aligned}
$$

Differential Equation valid for:

- drift spaces
- Quadrupoles ($k \neq 0$)
- combined function magnets ($k \neq 0$, $1 / \rho \neq 0$)
- on-momentum particles ($\Delta \mathrm{p}=0$)
we discuss solutions of different cases of this equations in single accelerator magnets, depending on $K(s)$ and $\rho(\mathrm{s})$

Equation of Motion in x and y planes for designed momentum: off momentum particles

$$
\begin{aligned}
x^{\prime \prime}+\left(\frac{1}{\rho^{2}}+k\right) x & =\frac{1}{\rho} \frac{\Delta p}{p_{0}} \\
y^{\prime \prime}-k y & =0
\end{aligned}
$$

Differential Equation valid for:

- drift spaces
- Quadrupoles ($k \neq 0$)
- combined function magnets ($k \neq 0$, $1 / \rho \neq 0$)
- on-momentum particles ($\Delta p \neq 0$, first order)
we discuss solutions of different cases of this equations in single accelerator magnets, depending on $K(s), \rho(s)$ and Δp
*see also Wiedemann sec. 1.5.8

Summary on Approximations used

- small displacements $x \ll \rho, y \ll \rho, \ddot{s} \approx 0$ (paraxial optics)
- only dipole and quadrupole magnets (linear field changes)
- design orbit lies in a plane, horizontal (flat accelerator)
- no coupling between motion in hor. and vert. plane (upright magnets)
- small momentum deviations $\Delta \mathrm{p} / \mathrm{p}_{0} \sim 10^{-4}$ (quasi monochromatic beam)
- in general: no quadratic or higher order terms (linear beam optics)

Next Step: Solving the Equation of Motion

$$
\begin{aligned}
x^{\prime \prime}+K_{x}(s) x & =0 \\
y^{\prime \prime}-K_{y}(s) y & =0
\end{aligned}
$$

Piecewise Solution of Equation

$$
x^{\prime \prime}+K(s) x=0
$$

For ON MOMENTA particles \rightarrow general form of equation similar to harmonic oscillator with three cases: $K=0, K<0, K>0$

$m \ddot{x}+k x=0, \omega=\sqrt{\frac{k}{m}}$

Drift Space

On momentum particles $(\Delta p=0)$ moves straight

$$
x^{\prime \prime}+K(s) x=0
$$

1) $\mathrm{K}=0 \rightarrow$ Drift Space

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right)\binom{x}{x^{\prime}}_{\mathrm{in}}
$$

Focusing Quadrupole

On momentum particles ($\Delta \mathrm{p}=0$)

$$
x^{\prime \prime}+K(s) x=0
$$

2) K >0 : Focusing Quadrupole

$$
\begin{aligned}
& \binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\cos (\sqrt{K} L) \\
-\sin (\sqrt{K} L) \sqrt{K} & \sin (\sqrt{K} L) / \sqrt{K} \\
\cos (\sqrt{K} L)
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }} \\
& \text { lens approximation: } \quad K=\frac{1}{L f}, \quad \lim _{L \rightarrow 0}\left(\sin (\sqrt{L / f}) \frac{1}{\sqrt{L f}}\right)=\frac{1}{f}
\end{aligned}
$$

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)\binom{x}{x^{\prime}}_{\mathrm{in}}
$$

Defocusing Quadrupole

3) K<0: Defocusing Quadrupole

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
\cosh (\sqrt{|K|} L) & \sinh (\sqrt{|K|} L) / \sqrt{|K|} \\
\sinh (\sqrt{|K|} L) \sqrt{|K|} & \cosh (\sqrt{|K|} L)
\end{array}\right)\binom{x}{x^{\prime}}_{\mathrm{in}}
$$

thin lens approximation: $\quad K=\frac{1}{L f}, \lim _{L \rightarrow 0}\left(\sin (\sqrt{L / f}) \frac{1}{\sqrt{L f}}\right)=\frac{1}{f}$
thin lens approximation for defocusing quad:

$$
\binom{x}{x^{\prime}}_{\text {out }}=\left(\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right)\binom{x}{x^{\prime}}_{\text {in }}
$$

Alternating gradient sequence \rightarrow net focusing effect!

concatenation of particle transport through a series of elements:

$$
\boldsymbol{M}=\boldsymbol{M}_{n} \ldots \boldsymbol{M}_{2} \cdot \boldsymbol{M}_{1} \quad(\boldsymbol{M}=\text { transport matrix } 2 \times 2)
$$

$$
\begin{aligned}
M_{\text {doublet }}=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{f} & 1
\end{array}\right) & \cdot\left(\begin{array}{cc}
1 & l \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
\frac{1}{f} & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
1+\frac{l}{f} & l \\
-\frac{1}{f^{*}} & 1-\frac{l}{f}
\end{array}\right)
\end{aligned}
$$

$$
f^{*}=\frac{f^{2}}{l}>0 \quad \rightarrow \mathrm{M}_{\text {doublet }} \text { is always focusing }
$$

FODO Cell

$$
\boldsymbol{M}_{\mathrm{FODO}}=\left(\begin{array}{cc}
C & S \\
C^{\prime} & S^{\prime}
\end{array}\right)=\left(\begin{array}{cc}
1-\frac{L^{2}}{8 f^{2}} & L\left(1+\frac{L}{4 f}\right) \\
-\frac{1}{f^{*}} & 1-\frac{L^{2}}{8 f^{2}}
\end{array}\right), \quad \frac{1}{f^{*}}=\frac{L}{4 f^{2}}\left(1-\frac{L}{4 f}\right)
$$

Unit sequence of magnets used to build an accelerator Alternating gradients \rightarrow net focusing!

Summary Matrix Treatment

- equation of motion is piecewise solved for constant $K(s)$
- coordinates x, x^{\prime} are transported by multiplication with a 2×2 matrix
- matrixes can be concatenated \rightarrow particle transport over many turns
- defocusing and focusing quadrupoles are combined in overall focusing doublets
- linear motion in a ring is stable over n turns if stability conditions are fulfilled ($|\operatorname{Tr} \mathbf{M}|<2$)

The two dialects of

Accelerator Physics

EPFL

Summary Matrix Treatment

- equation of motion is piecewise solved for constant $K(s)$
- coordinates x, x^{\prime} are transported by multiplication with a 2×2 matrix
- matrixes can be concatenated \rightarrow particle transport over many turns
- defocusing and focusing quadrupoles are combined in overall focusing doublets
- linear motion in a ring is stable over n turns if stability conditions are fulfilled ($|\operatorname{Tr} \mathbf{M}|<2$)
- The motion can be parametrized (Courant-Schneider Parametrization) \rightarrow introduce optical function β function

Hill equation

- First used by an astronomer G. Hill in his studies of the motion of the moon, a motion under the influence of periodically changing forces

$$
x^{\prime \prime}+K(s) \cdot x=0
$$

1838-- 1914

$$
K(s)=K(s+C)
$$

Periodic over one full revolution C = 29 days

Hill equation

- First used by an astronomer G. Hill in his studies of the motion of the moon, a motion under the influence of periodically changing forces

Solution is of the type:

$u(s)=A \sqrt{\beta(s)} \cos [\phi(s)]$
Pseudo-harmonic oscillator

$$
\begin{array}{r}
x^{\prime \prime}+K(s) \cdot x=0 \\
K(s)=K(s+C)
\end{array}
$$

Hill: Solution for periodic K

$$
x(s)=A \sqrt{\beta(s)} \cos \left(\varphi(s)-\varphi_{0}\right), \varphi(s)=\int_{t=s_{0}}^{s} \frac{d t}{\beta(t)}
$$

\rightarrow the beta function is a scaling factor for the amplitude of orbit oscillations and their local wavelength
A, φ_{0} are constants of motion

strong quads

Comparison to Classical Harmonic Oscillator

$$
\begin{gathered}
\ddot{u}+\omega^{2} u=0 \\
u(t)=A \cos \omega t, \omega=\sqrt{\frac{k}{m}}
\end{gathered}
$$

amplitude is fixed:

$$
A=\mathrm{const}
$$

phase grows linear with time: $\quad \sqrt{\frac{k}{m}} t$
conserved (energy):

$$
\frac{k}{2} u^{2}+\frac{m}{2} \dot{u}^{2}=\frac{k}{2} A^{2}
$$

Hill Equation (pseudo harmonic equation)

$$
\begin{aligned}
x(s) & =\sqrt{2 J \beta} \cos (\varphi) \\
x^{\prime}(s) & =-\sqrt{\frac{2 J}{\beta}}(\alpha \cos (\varphi)+\sin (\varphi))
\end{aligned}
$$

amplitude varies:

$$
x(s) \propto \sqrt{\beta(s)}
$$

phase increases monotonically
but growth rate varies as $1 / \beta$:

$$
d \varphi=\frac{d s}{\beta(s)}
$$

conserved (action):

$$
\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=2 J=\mathrm{const}
$$

Conserved action : invariant on motion for single Particle

Closer look to Equation of Motion

Initial conditions for the amplitude and phase.

Beta Function (1)

The Beta-function is a periodic function entirely defined by the lattice (the magnets).
This function is calculated by means of accelerator design software codes. An examples of this is the Methodical Accelerator Design (MAD-X) that describes particle accelerators, simulate beam dynamics and optimise the optics. In case you want to play http://cern.ch/madx

Beta-function \rightarrow beam envelope

Trajectory of a single particle

Turn, after turn, after turn...betatron

Trajectory of a many particles defining the beam envelope

LHC beams contain about 3×10^{14} protons/beam

Beta Function at LHC

Examples of real optics used in the LHC at the very small beta-star of 0.25 m in ATLAS and CMS.
LHC 6.5TeV Collisions at 0.25 m beta-star ATLAS and CMS

Beta Function at LHC

Examples of real optics used in the LHC at the very small beta-star of 0.25 m in ATLAS and CMS.
LHC 6.5TeV Collisions at 0.25 m beta-star ATLAS and CMS

Beam Emittance

- single particles are associated with a particular ellipse
- In a bunch we have many particles 10^{11}
- emittance ε is the average value of particle action J
- Beam Emittance is a property of the beam.

$$
\varepsilon=<>
$$

Beam Emittance

beam emittance as statistical property:

$$
\varepsilon_{x}=\sqrt{<x^{2}><x^{\prime 2}>-<x x^{\prime}>^{2}}
$$

projected Gaussian distribution:
$f(x)=\frac{1}{\sqrt{2 \pi} \sqrt{\beta_{x} \varepsilon_{x}}} \exp \left(-\frac{x^{2}}{2 \beta_{x} \varepsilon_{x}}\right)$

Beam size is known all along the ring:

$$
\sigma_{x, y}(s)=\sqrt{\epsilon_{x, y} \beta_{x, y}(s)}
$$

$\xrightarrow[s]{ }$

Conservation of Emittance

Beams subject to conservative forces as in our accelerator (without dissipative forces
i.e. synchrotron radiation) \rightarrow preserve the phase space density over time

The phase space density behaves like an incompressible liquid.

with a given emittance a beam can be made small with large angular spread, or can have small angular spread with a large size

Phase Space Ellipse in Drift Space

Phase Space Ellipse after focusing

Beam transverse size

Beam Emittance is a property of the beam.
Together with the beta-function gives the complete definition of the beam size (standard deviation).

$$
\sigma_{x}(s)=\sqrt{\epsilon \beta_{x}(s)}
$$

Emittance cannot be changed by focusing/defocusing but it shrinks with beam energy.

Normalized Emittance is constant with energy

$$
\epsilon_{n}=\beta_{\mathrm{rel}} \gamma_{\mathrm{rel}} \epsilon
$$

Beam size and Emittance measurements

Different mechanisms are used to measure the transverse beam size (and de-convolute it to global emittance).

Some interact with the beam, they can only be used at low intensities or low energies, like fast rotations wire scanners.

Other measure the induced ionisation in the rest gas, like ionisation profile monitors or synchrotron radiation, like LHC BSRT.

Betatron Tune
 $Q x=64.31$
 $Q y=59.32$

Number of complete oscillations per turn:

$$
Q_{x}=\frac{1}{2 \pi} \oint \frac{\mathrm{~d} s}{\beta_{x}(s)} \quad \begin{aligned}
& x: \text { horizontal tune } \\
& y: \text { vertical tune }
\end{aligned}
$$

Integer tune:

Seen in orbit response by ~550 dual plane Beam Position Monitors (BPM Electrodes)

Fractional Tune:

Turn-by-turn signal on single electrode after a small beam excitation (kick)

Fast Fourier transform (FFT) of oscillation data gives resonant frequency

Off momentum particles

What happens to a particle with energy deviation δ travelling in the accelerator magnetic elements?

Off momentum particles

What happens to a particle with energy deviation δ travelling in the accelerator magnetic elements?

Particle with an energy deviation δ

- Will be bent and focused differently

- The equation of motion: non-homogeneous Hill equation

Off momentum particles: Dispersion

$$
\delta=\frac{\Delta p}{p_{0}}
$$

$$
x^{\prime \prime}+K_{x}(s) x=\frac{1}{\rho(s)} \frac{\Delta p}{p_{0}}
$$

Bending in a dipole changes with the particle energy...

Particles will move on different orbit!

$$
B \rho=p / e
$$

Particle deviation from ideal orbit

$$
x=x_{\beta}+x_{\varepsilon}=x_{\beta}+D(s) \cdot \delta
$$

$D(s)$ - dispersion function

Beam size

- When the beam energy spread is δ

$$
\sigma^{2}=\sigma_{\beta}^{2}+\sigma_{\varepsilon}^{2}=\varepsilon \cdot \beta+D^{2} \delta^{2}
$$

Contents:

- Particle types and relativity for accelerators
- Accelerator components: Dipole, quadrupoles magnets, accelerating RF cavities...
- Transverse plane (x, y) \rightarrow Guiding and focusing beams
- Particle motion in linear approximation
- Invariant of motion and Emittance
- Beam Optics: beta functions, beams sizes, Beam Tunes
- Longitudinal plane (s, t) \rightarrow Acceleration
- Synchronous motion
- Synchrotrons and LHC injection complex
- Hadron Accelerators: Synchrotrons
- Beam production
- Magnets
- Luminosity
- Collective effects

Acceleration

Why we would like to accelerate particles?
*Reach of higher energetic collisions (ions, protons and leptons)

* Compensate for energy loss due to emission of synchrotron radiation (leptons)

$$
\vec{F}=\frac{\mathrm{d} \vec{p}}{\mathrm{~d} t}=e(\vec{E}+\vec{v} \times \vec{B})
$$

Longitudinal Motion
Parallel to the direction of motion.
Used to accelerate charged particles.

Transverse Motion Perpendicular to the direction of motion. Used to keep circulating orbit and beam steering.

Acceleration has to be done by an electric field in the direction of the motion

Electrostatic acceleration

Simplest way to generate an electric field in the motion direction: voltage difference

Gain on kinetic energy is proportional to V (the potential)

Curiosity:

The energy unit (electron Volt): 1 eV is the energy that 1 elementary charge e gains when it is accelerated in a voltage of 1 Volt.

Electrostatic machines are still used at lower energy, as a 1st stage of acceleration, radiotherapy, particle source, etc.

Limitations:

Max. Voltage ~ 10MV due to insulation problems.

Radio-frequency acceleration

Apply an E-field which is reversed while the particle travels inside the tube \rightarrow it gets accelerated at each passage.

Build the acceleration with one or more series of drift tubes with gaps in between them.

Could accelerate in linear and circular machines

Only particles synchronized with RF will be accelerated \rightarrow particles are bunched in packages

LINAC: linear accelerator

Acceleration gaps (electrical field) Drift-tubes (field free)

For non-relativistic particles \rightarrow Distance (L) between the acceleration gaps needs to fulfil the synchronism condition with T the period of the RF oscillator.

Bunched Beam
$\uparrow v \Longrightarrow \uparrow L$

Energy gain:
$E=n e V_{\mathrm{RF}} \sin \phi_{\mathrm{s}}$
n : number of gaps
e : charge
V_{RF} : applied voltage
ϕ_{s} : synchronous phase

RF field break down

High gradient limits : field levels of 10-100 MV/m.

Electrons in surface are emitted (field emission), vacuum arcs may form and the field breaks down. Eventually the break down processes may damage the structure.

Figure 4.3.: Power flows around a field emitter tip in an RF cavity.

From LINAC to Circular Machines

LINACs are today the first stage in many accelerator complexes

Limited by the particle energy reach due to length and single pass

Circular Accelerators

Use of circular structures in order to apply over and over the accelerating fields. Particles are bend onto circular trajectories \rightarrow Many passages through RF structure

The Synchrotron: acceleration

The synchrotron is a synchronous accelerator since there is a synchronous RF phase for which the energy gain fits the increase of the magnetic field at each turn. That implies the following operating conditions:

If $\mathrm{v} \approx \mathrm{c}, \omega$ hence ω_{RF} remain constant (ultra-relativistic)
LHC case $\mathrm{fRF}=400 \mathrm{MHz}$ and $\mathrm{frev}=11 \mathrm{kHz}=\mathrm{c} / 27 \mathrm{Km} \mathrm{h} \sim 35640$

Synchrotron oscillations (with acceleration)

Case with acceleration B increasing $\quad \gamma>\gamma_{t}$

- Bucket area = longitudinal Acceptance [eVs]
- Bunch area $=$ longitudinal beam emittance $=4 \pi \sigma_{E} \sigma_{\dagger}[\mathrm{eVs}]$

Synchrotron motion in phase space

The restoring force is nonlinear.
\Rightarrow speed of motion depends on position in phase-space
(here shown for a stationary bucket)

Contents:

- Particle types and relativity for accelerators
- Accelerator components: Dipole, quadrupoles magnets, accelerating RF cavities...
- Transverse plane $(x, y) \rightarrow$ Guiding and focusing beams
- Particle motion in linear approximation
- Invariant of motion and Emittance
- Beam Optics: beta functions, beams sizes, Beam Tunes
- Longitudinal plane $(\mathrm{s}, \mathrm{t}) \rightarrow$ Acceleration
- Synchronous motion
- Synchrotrons and LHC injection complex
- Hadron Accelerators: Synchrotrons
- Beam production
- Magnets
- Luminosity
- Collective effects

Synchrotrons

- First Synchrotron the Cosmotron at Brookhaven Laboratory 19523 GeV protons (288 magnets)
- In 1947 General Electric's Research Lab observed for the first time Synchrotron radiation \rightarrow electromagnetic radiation emitted by charged particles travelling at relativistic speeds, forced to take a curved path by a magnetic field (Synchrotron light sources for spectroscopy and crystallography)

Large scale accelerators since components can be divided in different sections

Synchrotrons

1959 construction of the first "larger" synchrotron machines

> CERN-PS (Proton Synchrotron): 60 year still in operation, still in use for the injection to the LHC.
> BNL-AGS (Alternating Gradient Synchrotron)

The CERN Accelerator Complex

The CERN accelerator complex Complexe des accélérateurs du CERN

LINAC 4

160 MeV (90 meter linac)

PS Booster

$1^{\text {st }}$ Synchrotron in the chain with 4 superposed rings
Circumference of 157 m
Increases proton energy from $\mathbf{1 6 0} \mathbf{~ M e V}$ to $\mathbf{2 ~ G e V ~ i n ~} \mathbf{1 . 2 s}$

LINAC 4 pulse is distributed vertically in the 4 rings. Bunches are built as multi-turn PSB injection. Keeping charge density constant every injection in a different phase-space defining the transverse emittance.

- ISOLDE: High-Intensity 10-13 turns are injected = large transverse emittance
- LHC: 2-3 injected turns = small transverse emittance After acceleration they will be combined and transferred to the PS.

PS: Protons Synchrotron

The oldest operating synchrotron at CERN (since 1959)
Circumference of 628 m
$4 \times$ PSB ring
Accelerates from 2 GeV to a range of energies up to 26 GeV depending on the user

- East area: 24 GeV
- SPS: 14 GeV or 26 GeV
- AD: 26 GeV
- n-TOF: 20 GeV

Cycle length goes from 1.2 s to 3.6 s

CERN PS

Various types of extractions: fast, slow and multi-turn (MTE) Many different RF cavities: $10 \mathrm{MHz}, 13 / 20 \mathrm{MHz}, 40 \mathrm{MHz}, 80$ MHz,200 MHz

LHC filling and Bunch Splitting in PS

Changing RF frequency we change the harmonic number h

$$
\omega_{R F}=h \omega
$$

Standard: 72
bunches @ 25
ns

BCMS: 48
bunches @ 25
ns

Smaller
Emittance

[^0]
The LHC25 (ns) cycle in the PS

\rightarrow Each bunch from the Booster divided by $12 \rightarrow 6 \times 3 \times 2 \times 2=72$

Triple splitting in the PS

Two times double splitting in the PS

Two times double splitting and bunch rotation:

- Bunch is divided twice using RF systems at
$h=21 / 42(10 / 20 \mathrm{MHz})$ and $h=42 / 84(20 / 40 \mathrm{MHz})$
- Bunch rotation: first part h84 only $+h 168(80 \mathrm{MHz})$ for final part

SPS

The first synchrotron in the LHC chain at $\mathbf{3 0 m}$ underground.
Circumference of 6.9 km
$11 \times$ PS ring
Accelerates from 26 GeV to up 450 GeV
Store intensity up to 5 e13 protons per cycle.
> Slow extraction to North Area
> Fast extraction to LHC, AWAKE and HiRadMat

The Synchrotron - LHC Operation Cycle

The magnetic field (dipole current) is increased during the acceleration.

SPPbarS collider 6 bunches

Synchrotrons Colliders

Tevatron: 36 bunches

RHIC: 110 bunches

1. Superconducting magnets
2. Cleaning and protection
3. Luminosity and Interaction Regions design
4. Collective effects

Superconducting magnets \rightarrow LHC dipole field for 7 TeV protons

What is the needed dipole field to keep the protons circulating in the 27 km ring?

$$
\text { Magnetic rigidity } \rightarrow 0.3 B[\mathrm{~T}] \approx \frac{p[\mathrm{GeV} / c]}{\rho[\mathrm{m}]}
$$

The radius of the circumference cannot be just $27 \mathrm{~km} / 2 \pi$ as we need space for the detectors, RF, injection and extraction regions and collimation (so-called straight sections).
Approx. 2/3 of LHC ring are dedicated to the bending

$$
\begin{aligned}
& \rho \approx 2.8 \mathrm{~m} \approx \frac{0.65 \times 26.7 \mathrm{~km}}{2 \pi} \\
& \quad B[\mathrm{~T}] \approx \frac{7000 \mathrm{GeV} / \mathrm{c}}{0.3 \times 2.8 \mathrm{~m}}=8.33 \mathrm{~T}
\end{aligned}
$$

LHC Nominal dipole field 8.33 T

LHC super-conducting dipoles

Previous machines use super-conducting magnets:

- Tevatron at FNAL 1987-2011: proton-antiproton collider
- HERA at Desy 1992 -2007: hadron-electron collider
- RHIC at BNL 2000 - present : relativistic heavy-ion collider

All used NbTi cooled with He at 4.2 K with a maximum B-field ~ 5 Tesla
LHC also uses Nb-Ti (Cu clap) used but to push the performance they are cooled to 1.9K using super-fluid He.

With the drawback that a very small energy deposition (by beam interaction in the surroundings) or the slightest microscopic movement of the conductor could create a magnet quench (loosing super-conductivity). unless the fault was detected quickly and the current turned off.

Niobium-Titanium Rutherford cable

Total superconducting cable required 1200 tonnes which translates to around 7600 km of cable.

The cable is made up of strands which is made of filaments, total length of filaments would go 5 times to the sun and back with enough left over for a few trips to the moon.

LHC dipole

LHC cross-section

LHC DIPOLE : STANDARD CROSS-SECTION

Re-use the LEP tunnel

 constrained the size of the magnet using the two-inone design.Two beam channels in a common cold mass cryostat and magnetic flux in opposite sense.

Complex design.

Dimensions of the dipole beam screen are:

22 mm horizontal
17 mm vertical

1. Superconducting magnets

2. Cleaning and protection
3. Luminosity and Interaction Regions design
4. Collective effects

Comparison of the 3 LHC Running Periods

Energy depositions at $\mathbf{6 . 5 T e V} \sim \mathbf{1 0 0} \mathbf{m J} / \mathrm{cm}^{\mathbf{3}}$ risk to initiate a quench.

A quench without damage will require ~ 10 hours of cool down time to recover the cryogenic conditions. With damage > 3 months.

At 6.8 TeV with about 3 e 14 proton beams, a tiny fraction of beam, 0.00002%, could quench a magnet ($\sim 6 \mathrm{e} 7$ protons)

Beam Losses at LHC

- A tiny fraction of the full beam is enough to damage equipment
- Therefore, a very control of beam losses is mandatory to ensure safe LHC operation

Normal Losses

They can be minimised but cannot be avoided completely
Due to beam dynamics: particle diffusion,
scattering processes, instabilities.
Due to Operational variations: orbit, tune, chromaticity changes during ramp, squeeze, collision.

Collimation system (smallest aperture) is designed to catch increased beam losses up to 500 kW over 10sec.

Beam Loss Measurements that extract the beam if exceed the specified max. loss rates.

Abnormal losses

Due to failure or irregular behaviour of accelerator components.

LHC Collimation System

LHC Collimation system guarantees that losses will not reach the cold region.

Like a diaphragm in a camera, collimators are the closest elements to the circulating beam concentrating the losses in the collimation regions.

Collimator Design

Two parallel jaws in a vacuum tank at different orientations.
Jaw material depends on its functionality:

- Carbon (primary and secondary collimators)
- Copper and Tungsten (absorbers and tertiary collimators)
Movable jaws, controlling gap and jaw angle with precision of 5 microns

LHC Collimation System

108 Movable Collimators

Momentum cleaning: particles with different momentum are absorbed in this area

LHC Beam Loss Monitoring

Approximately 4000 Beam Loss Detectors (ionization chambers) distributed along the LHC covering critical locations:

- Losses in the cold area: dipoles, quadrupoles, etc.
- Losses at injection and extraction: transfer lines
- Losses down stream each collimator.

Losses are concentrated in warm regions

1. Superconducting magnets
 2. Cleaning and protection

3. Luminosity and Interaction Regions design

4. Collective effects

Luminosity

For accelerator people this IS the quantity used to optimise the machine.
The higher the luminosity the better.

Number of particles per bunch

LHC nominal parameters

Table 2.1: LHC beam parameters relevant for the peak luminosity

		Injection	Collision
Beam Data			
Proton energy	[GeV]	450	7000
Relativistic gamma		479.6	7461
Number of particles per bunch		1.15×10^{11}	
Number of bunches		2808	
Longitudinal emittance (4 σ)	[eVs]	1.0	$2.5{ }^{a}$
Transverse normalized emittance	[$\mu \mathrm{m} \mathrm{rad}$]	$3.5{ }^{\text {b }}$	3.75
Circulating beam current	[A]	0.582	
Stored energy per beam	[MJ]	23.3	362
Peak Luminosity Related Data			
RMS bunch length ${ }^{c}$	cm	11.24	7.55
RMS beam size at the IP1 and IP5 ${ }^{d}$	$\mu \mathrm{m}$	375.2	16.7
RMS beam size at the IP2 and IP8 ${ }^{e}$	$\mu \mathrm{m}$	279.6	70.9
Geometric luminosity reduction factor F^{f}		-	0.836
Peak luminosity in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	1.0×10^{34}
Peak luminosity per bunch crossing in IP1 and IP5	$\left[\mathrm{cm}^{-2} \mathrm{sec}^{-1}\right]$	-	3.56×10^{30}

Peak luminosity

How the increase of peak luminosity was achieved?

LHC Runs Challenges

Energy

- Lower quench margins
- Lower tolerance to beam loss
- Hardware closer to maximum (beam dumps, power converters etc.)

25 ns

- Electron-cloud
- UFOs
- More long range collisions
- Larger crossing angle, higher beta*
- Higher total beam current
- Higher intensity per injection

Smaller Beta-star

- Smaller machine aperture
- Tighter collimator settings
- Higher beam losses

Increase of beam current

Number of bunches

Early 2015 went from 50 ns bunch spacing to 25ns.

Example 2017

144 bunches SPS batch (max 2556b) Based on 48 PS batch x 3

Number of protons/bunch

With past LINAC 2 (50 MeV max energy)
Average 1.1e11p/b in 2018
Peak~1.5e11p/b
With LINAC 4 (160 MeV)
Average 1.6 e11p/b in RUN III

Peak ~ 2.2e11p/b \rightarrow ready for HL-LHC era

Reduction of beam emittance

Different bunch splitting and merging in PS gives a push on beam brightness (reduction of emittance)

Higher peak luminosity at the cost of higher pile-up due to reduced number of bunches

Beta-star

Reduction of beta-star in ATLAS/CMS over Run 2:

- 2015: 80 cm
- 2016: $\mathbf{4 0}$ cm

First time below Nominal values

- 2017: 40 cm $\boldsymbol{\rightarrow} \mathbf{3 0} \mathbf{c m}$
- 2018-2023: Dynamic squeeze in Stable Beams: $\mathbf{3 0} \mathrm{cm} \rightarrow \mathbf{2 7} \mathbf{~ c m ~} \boldsymbol{\rightarrow} \mathbf{2 5}$ cm
- 202915 cm
concept sketch: using a quadrupole doublet it is possible to focus particles in the horizontal and vertical planes simultaneously through the interaction point

Low Beta Insertion

the most simple IR configuration

- doublet focusing
- large beta function in doublet
\rightarrow aperture limitation for ring

Low Beta Insertion - Example of LHC

LHC interaction region with Low-Beta + D.S.

Beam Waist (e.g. interaction point collider)

$$
\begin{aligned}
& \beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}} \\
& \sigma_{\mathrm{rms}}=\sqrt{\varepsilon \beta^{*}}, \sigma_{\mathrm{rms}}^{\prime}=\sqrt{\frac{\varepsilon}{\beta^{*}}} \quad \beta^{*}=\text { Beta function at waist }
\end{aligned}
$$

Beam Waist (e.g. interaction point in collider)

Crossing angle operation

$$
\mathcal{L}=\frac{N_{1} N_{2} f n_{b}}{4 \pi \sigma_{x} \sigma_{y}}
$$

Multi Bunch operations brings un-wanted interactions left and right of the 4 Experiments

A finite crossing angle has to be applied to avoid multiple collision points

Luminosity Geometric reduction factor

Due to the crossing angle the overlap integral between the two colliding bunches is reduced!

$$
\mathcal{L}=\frac{N_{1} N_{2} f n_{b}}{4 \pi \sigma_{x} \sigma_{y}} \cdot \mathcal{S}
$$

S is the geometric reduction factor

Always valid for LHC and HL-LHC
$\sigma_{s} \gg \sigma_{x, y}$
$\sigma_{\mathrm{x}}=17-7 \mu \mathrm{~m}, \sigma_{\mathrm{s}}=7.5 \mathrm{~cm}$

Luminosity Geometric reduction factor

Due to the crossing angle the overlap integral between the two colliding bunches is reduced!

$$
\mathcal{L}=\frac{N_{1} N_{2} f n_{b}}{4 \pi \sigma_{x} \sigma_{y}} \cdot \mathcal{S}
$$

S is the geometric reduction factor

$\sigma_{s} \gg \sigma_{x, y}$
Always valid for LHC and HL-LHC $\sigma_{\mathrm{x}}=17-7 \mu \mathrm{~m}, \sigma_{\mathrm{s}}=7.5 \mathrm{~cm}$

LHC design: $\phi=285 \mu \mathrm{rad}, \sigma_{\mathrm{x}}=17 \mu \mathrm{~m}, \sigma_{\mathrm{s}}=7.5 \mathrm{~cm}, \mathrm{~S}=0.84$
LHC 2018: $\phi=320 \mu \mathrm{rad}, \sigma_{\mathrm{x}}=9.3 \mu \mathrm{~m}, \sigma_{\mathrm{s}}=7.5 \mathrm{~cm}, \mathrm{~S}=0.61$

Luminosity Levelling at LHC

a) Crossing angle levelling

Modification of large local orbit bump
b) Separation Levelling

Adding a small transverse offset (local orbit bump) to the beams.
It is the simplest way of implementing the levelling
c) Beta* levelling

Requires modification of the beta function at IP
Complex but very effective also in reducing beam-beam long range effects

Collective effects:

But ... these particles are electrically charged, and hence are sources of additional EM fields themselves.

- They 'speak' to each other via these EM fields.
- They are not independent, but influence each other motion

Contents:

- Particle types and relativity for accelerators
- Accelerator components: Dipole, quadrupoles magnets, accelerating RF cavities...
- Transverse plane (x, y) \rightarrow Guiding and focusing beams
- Particle motion in linear approximation
- Invariant of motion and Emittance
- Beam Optics: beta functions, beams sizes, Beam Tunes
- Longitudinal plane (s,t) \rightarrow Acceleration
- Synchronous motion
- Synchrotrons and LHC injection complex
- Hadron Accelerators: Synchrotrons
- Beam production
- Magnets
- Luminosity
- Collective effects

Future Accelerators

The near and far future accelerators:

HEP Landscape - Colliders

HL-LHC (CERN)
Installation 2026
Commissioning 2029

In construction
CD4 June 2030

HL-LHC

The main goal is to increase luminosity by a factor of 5 to 10 in order to observe rare physics processes.
$250 \mathbf{~ f b}^{-1}$ per year $\leftarrow 2 \times$ LHC 4 years of Run II 3000 fb $^{-1}$ in 12 years

This will be accomplished with a series of upgrades

Injectors Upgrade (LIU)

Higher brightness beams
More intensity less emittance

LHC Upgrade

Increase of luminosity

HL-LHC established as project in summer 2010
Described in HL-LHC book and the HL-LHC design report

HI-LHC Upgrade

- LHC Upgrade of IR ATLAS/CMS inner triplets (quadrupoles)
- Upgrade of Collimation System
- Crab cavities for beam rotation
- 11 Tesla magnet + connection cryostat
- Cold powering
- Machine protection

IR ATLAS/CMS

HL-LHC baseline smaller beta-star 15 cm

Replace 1.2 km of the 27 km LHC ring

Super conductive large aperture triplet quadrupoles with use of novel Nb3Sn magnet technology

Triplet [G. Ambrosio, P. Ferracin et al.]

Super conductive separation/recombination dipoles D2 with B field same direction.

D2 [P. Fabbricatore, S. Farinon, et al.]

HL-LHC Collimators

Study of more robust materials for collimation and reduce impedance.

During LS2

Replacement of existing primary collimators and 8 secondary collimators with higher-electrically-conductive material MoGr.
Addition of 4 collimators in the dispersion suppression region
\rightarrow shorter magnets 11T Dipole 11-m ($\mathrm{Nb}_{3} \mathrm{Sn}$ technology)

Impact of 288
proton bunches on copper-allow (left) and MoGr (right)

HL-LHC Crab-cavities

Crab cavities will reduce the effect of the geometrical factor on the luminosity

HL-LHC timeline

HL-LHC

HL-LHC parameter table

Parameters	Nominal LHC (Design report'.	LHC 2018 max value -	HL-LHC (standard)	$\begin{aligned} & \mathrm{HL}-\mathrm{LHC} \\ & 8 \mathrm{~b}+4 \mathrm{e}^{12} \end{aligned}$	$\begin{gathered} \text { HL-LHC } \\ \text { (Ultimat } \end{gathered}$
Beam energy in collision [TeV]	7	6.5	7	7	7
N_{b}	$1.15 \mathrm{E}+11$	$1.15 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	$2.2 \mathrm{E}+11$	$2.2 \mathrm{E}+11$
n_{b}	2808	2556	2760	1972	2760
Number of collisions in IP1 and IP5 ${ }^{1}$	2808	$\underline{2544}$	$\underline{2748}$	1967	$\underline{2748}$
$\mathrm{N}_{\text {tot }}$	$3.2 \mathrm{E}+14$	$2.9 \mathrm{E}+14$	$6.1 \mathrm{E}+14$	$4.3 \mathrm{E}+14$	$6.1 \mathrm{E}+14$
beam current [A]	0.58	0.52	1.1	0.79	1.1
x-ing angle [$\mu \mathrm{rad}$]	285	$320=->260$	500	$470{ }^{10}$	500
beam separation $[\sigma]^{11}$	9.4	$10.3==>6.8$	10.5	10.5^{10}	10.5
β^{*} [m]	0.55	$0.30==>0.25$	0.15	0.15	0.15
$\varepsilon_{\mathrm{n}}[\mu \mathrm{m}]$	3.75	$2=$ => 2.5	2.50	2.20	2.50
r.m.s. bunch length [m]	$7.55 \mathrm{E}-02$	$8.25 \mathrm{E}-02$	$7.61 \mathrm{E}-02$	7.61E-02	$7.61 \mathrm{E}-02$
Total loss factor RO without crab-cavity			0.342	0.342	0.342
Total loss factor R1 with crab-cavity ${ }^{13}$			0.716	0.749	0.716
Virtual Luminosity with crab-cavity: Lpeak*R1/RO $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right]^{13}$			$1.70 \mathrm{E}+35$	$1.44 \mathrm{E}+35$	$1.70 \mathrm{E}+35$
Luminosity $\left[\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right.$] or Leveling luminosity for HL-LHC	$1.00 \mathrm{E}+34$	$2.00 \mathrm{E}+34$	$5.0 \mathrm{E}+34^{5}$	$3.82 \mathrm{E}+34$	$7.5 \mathrm{E}+34^{5}$
Events / crossing (with leveling and crab-cavities for HL-LHC) ${ }^{8}$	27	55	131	140	197
Peak line density of events [event/mm] (max over stable beams)	0.21	0.38	1.3	1.3	1.9
Leveling time [h] (assuming no emittance growth) ${ }^{8,13}$	-		7.2	7.2	3.5

Proj. leader L. Rossi talk 8th annual collaboration meeting October 2018

Future Circular Collider (FCC)

FCC-Condeptual Design Reports

Study of a hadron collider with a centre-of-mass energy of the order of 100 TeV in a new tunnel of $\mathbf{8 0 - 1 0 0} \mathbf{~ k m}$ circumference

Start as $e+e$ - collider FCC-ee \rightarrow Higgs Factory Ecom of 90-365 GeV
Luminosity ~ $17 \times 10^{34} \mathrm{~cm}-2 \mathrm{~s}-1$
Beta-star ~ 1 mm
Second stage pp collider FCC-hh \rightarrow Energy frontier Ecom of 50-100 TeV $16 \mathrm{~T} \Rightarrow 100 \mathrm{TeV}$ pp in 100 km Luminosity ~ $3 \times 10^{34} \mathrm{~cm}-2 \mathrm{~s}-1$

Linear Colliders ILC/CLIC

Two linear accelerators facing each other

Both propose a staged implementation of e+e-collider

$$
\begin{array}{rc}
\text { Ecom }=0.25-1 \mathrm{TeV} & \text { Ecom }=0.5 \mathrm{TeV}-3 \mathrm{TeV} \\
\text { Luminosity } 1.35 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} & \text { Luminosity } 1.3-5.9 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& \text { More about ILC: https://ilchome.web.cern.ch } \\
& \text { More about CLIC: } \underline{\text { https://clic.cern }}
\end{array}
$$

Muon Collider Study

20 T, 150 mm, 100 kW

30... $50 \mathrm{~T}, 50 \mathrm{~mm}$

Appendix: Magnetic Rigidity (proton)

Lorentz force $\quad \vec{F}_{B}=e \cdot \vec{v} \times \vec{B}$
B, v perpendicular $\quad F_{B}=e v B$
centrifugal force $\quad F_{c}=-m \frac{v^{2}}{\rho}$

$$
\begin{aligned}
F_{B}+F_{c}=0 \longrightarrow e v B & =m \frac{v^{2}}{\rho} \\
B \rho & =\frac{m v}{e}
\end{aligned}
$$

$B=$ magnetic field
$\rho=$ local bending radius
$p=$ momentum
$e=$ elementary charge

Appendix: Magnetic Rigidity in Practical Units

$$
\begin{aligned}
B \rho & =\frac{p}{e}=\frac{m v}{e}=\beta \gamma \frac{m_{0} c}{e} \\
& =\beta \gamma \frac{m_{0} c^{2}}{c e} \\
& =\beta \frac{E_{\mathrm{tot}}}{c e} \\
& =\beta \frac{10^{9}}{c} E_{\mathrm{tot}}[\mathrm{GeV}] \\
& \downarrow
\end{aligned}
$$

$B=$ magnetic field
$\rho=$ local bending radius
p = momentum
$e=$ elementary charge
$E_{k}=$ kinetic energy
total energy:
$E_{\mathrm{tot}}=E_{k}+m_{0} c^{2}$
approximations:

$$
\begin{aligned}
& B \rho[\mathrm{Tm}] \approx 3.3356 \cdot E_{k}[\mathrm{GeV} / \mathrm{c}] \\
& B \rho[\mathrm{Tm}]=3.3356 \cdot p[\mathrm{GeV} / \mathrm{c}]
\end{aligned}
$$

for $E_{k} \gg m_{0} c^{2}$
see also Wiedemann, p.101, eq.5.6

Appendix, Derivation: Equation of Motion I

$$
\begin{aligned}
& \text { starting with general } \\
& \text { equation of motion: }
\end{aligned} \quad \frac{d \vec{p}}{d t}=\gamma m_{0} \ddot{\vec{R}}=\vec{F}
$$

$$
\vec{R}=r \boldsymbol{e}_{x}+y \boldsymbol{e}_{y}, r \equiv \rho+x
$$

$\dot{\vec{R}}=\dot{r} \boldsymbol{e}_{x}+r \dot{\boldsymbol{e}}_{x}+\dot{y} \boldsymbol{e}_{y}$
$\dot{\vec{R}}=\dot{r} \boldsymbol{e}_{x}+r \dot{\theta} \boldsymbol{e}_{s}+\dot{y} \boldsymbol{e}_{y}$
$\ddot{\vec{R}}=\ddot{r} \boldsymbol{e}_{x}+(2 \dot{\boldsymbol{r}} \dot{\theta}+r \ddot{\theta}) \boldsymbol{e}_{s}+r \dot{\theta} \dot{\boldsymbol{e}}_{s}+\ddot{y} \boldsymbol{e}_{y}$
$\ddot{\vec{R}}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \boldsymbol{e}_{x}+(2 \dot{r} \dot{\theta}+r \ddot{\theta}) \boldsymbol{e}_{s}+\ddot{y} \boldsymbol{e}_{y}$
used here: $\quad \dot{\boldsymbol{e}}_{x}=\dot{\theta} \boldsymbol{e}_{s}, \dot{\boldsymbol{e}}_{s}=-\dot{\theta} \boldsymbol{e}_{x}$
comment: the main purpose here is to correctly treat the effect of the curved coordinate system, i.e. the moving unit vectors e_{x}, e_{s}

Derivation: Equation of Motion II

right side of equation, the force:

$$
\begin{aligned}
& \vec{F}=e \vec{v} \times \vec{B} \\
& \vec{v} \times \vec{B}=\left|\begin{array}{ccc}
\boldsymbol{e}_{x} & \boldsymbol{e}_{y} & \boldsymbol{e}_{s} \\
v_{x} & v_{y} & v_{s} \\
B_{x} & B_{y} & 0
\end{array}\right| \\
&=-v_{s} B_{y} \boldsymbol{e}_{x}+v_{s} B_{x} \boldsymbol{e}_{y}+\left(v_{x} B_{y}-v_{y} B_{x}\right) \boldsymbol{e}_{s} \\
& \begin{array}{l}
\text { assumptions: } \\
\bullet \\
\bullet B_{x}(y=0)=0
\end{array} \\
& g \equiv \frac{\partial B_{y}}{\partial x}=\frac{\partial B_{x}}{\partial y}
\end{aligned}
$$

result: two equations hor/vert from x, y components:

$$
\begin{aligned}
\gamma m_{0}\left(\ddot{r}-r \dot{\theta}^{2}\right) & =-e v_{s}\left(B_{0}+g x\right) \\
\gamma m_{0} \ddot{y} & =e v_{s} g y
\end{aligned}
$$

in literature g has varying sign conventions Wiedemann, Table 6.2: $\quad g=+d B_{\gamma} / d x$ Schmüser/Hillert: $\mathrm{g}=-\mathrm{dB}_{\mathrm{y}} / \mathrm{dx}$

Derivation: Equation of Motion III

introduce path length s as independent variable:

$$
\begin{aligned}
\gamma m_{0}\left(\ddot{r}-r \dot{\theta}^{2}\right) & =-e v_{s}\left(B_{0}+g x\right) \\
\gamma m_{0} \ddot{y} & =e v_{s} g y
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime \prime} & =\frac{1}{r}-\frac{e}{\gamma m_{0} v}\left(B_{0}+g x\right) \\
y^{\prime \prime} & =\frac{e}{\gamma m_{0} v} g y
\end{aligned}
$$

use:

$$
\begin{aligned}
& v_{s}=r \dot{\theta} \approx v \\
& \ddot{r}=\ddot{x} \\
& \ddot{x}=v^{2} x^{\prime \prime}, x^{\prime \prime} \equiv \frac{\partial^{2} x}{\partial s^{2}} \\
& \ddot{y}=v^{2} y^{\prime \prime}, y^{\prime \prime} \equiv \frac{\partial^{2} y}{\partial s^{2}}
\end{aligned}
$$

Derivation: Equation of Motion IV

$$
\begin{aligned}
& \text { use: } \\
& x^{\prime \prime}=\frac{1}{r}-\frac{e}{\gamma m_{0} v}\left(B_{0}+g x\right) \\
& y^{\prime \prime}=\frac{e}{\gamma m_{0} v} g y \\
& x^{\prime \prime}=\frac{1}{\rho}\left(1-\frac{x}{\rho}\right)-k x-\frac{1}{\rho\left(1+\frac{\Delta p}{p_{0}}\right)} \\
& =-\left(\frac{1}{\rho^{2}}+k\right) x+\frac{1}{\rho} \frac{\Delta p}{p_{0}} \\
& y^{\prime \prime}=k y \\
& \text { use: } \\
& \frac{1}{r}=\frac{1}{\rho+x} \approx \frac{1}{\rho}\left(1-\frac{x}{\rho}\right) \\
& \frac{e B_{0}}{\gamma m_{0} v}=\frac{e B_{0}}{p}=\frac{1}{\rho} \\
& p=p_{0}\left(1+\frac{\Delta p}{p_{0}}\right) \\
& k=\frac{e g}{\gamma m_{0} v}
\end{aligned}
$$

The Cyclotron as seen by the inventor

as seen by the LBL booklet 1967

ELECTBOMAGNET

as seen by the theoretical physicist

by the electrical engineer

as seen by the visitor

by the government funding agency

as seen by the laboratory director

by the experimental physicist

The cyclotron as seen by the student

[^0]: Image credit R.Garoby

