

Detector technologies

August 28th, 2023

Jochen Klein (CERN)

CERN-Fermilab Hadron Collider Physics Summer School

Overview

- Introduction → role of particle detectors
 - evolution of detectors
 - challenges and figures of merit
- Interactions of particles and matter → basis for particle detection
 - electromagnetic
 - strong
 - weak
- **Detector technologies** → information from interactions
 - gaseous and semiconductor trackers
 - timing detectors
 - photon detectors
 - calorimeters
 - neutral particle detectors
- Applications in experiments → combination of techniques
 - examples and performance

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Goals

- concepts and connections instead of rigorous derivations
- trends and scalings with examples of detectors
- references and pointers for more in-depth material

Historic examples

- Scintillating screens → counting experiments
- Emulsions and cloud/bubble chambers → imaging experiments
- Modern experiments → electronic readout and full reconstruction of trajectories

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Rutherford experiment (1909)

ALEPH @ LEP (1982 - 2000)

Discovery of positron in cloud chamber (1932)

Particle detectors

• Particle detectors drive understanding of matter and interactions

- through direct discoveries, e.g. positron
- through detection of decay products and reconstruction of interactions
- Modern experiments typically rely on a combination of detectors to measure properties of particles (at accelerator facilities, from cosmic rays, ...)
 - presence and rates
 - momentum, energy, direction
 - mass (\rightarrow species)
 - production vertices (\rightarrow reactions)

As fundamental a tool as ever for progress in particle physics

LHC experiments

- Challenging environment from LHC collisions
 - high interaction rates
 - large multiplicities
 - complex observables
 - large backgrounds
- Stringent requirements on
 - rate capability
 - detection efficiency
 - momentum/energy resolution
 - particle identification

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

used as examples

ATLAS

ALICE

Figures of merit

Momentum resolution

curvature in magnetic field
 → measurement of points along the trajectory of particles

• Pointing resolution

 propagation of tracks to determine production vertices

• Energy resolution

complete absorption in detector material
 → measurement of response
 proportional to deposited energy

- Mass resolution (particle identification)
 - velocity, mass-dependent radiation
- Rate capability
 - large occupancies
 - radiation tolerance

Relevance of various aspects depends on physics goals

→ different optimisations

Interactions as basis of detection

- Electromagnetic interaction \rightarrow charged particles, photons
 - ionisation and excitation (exploited in many different ways)
 - electromagnetic showers
 - scintillation
 - Cherenkov radiation
 - transition radiation
- Strong interaction → hadrons • hadronic showers

• Weak interaction \rightarrow neutrinos

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Detectors rely on interactions of particles with (detector) material

Tracks of charged particles

Charged particles in matter

- Consider a charged particle X traversing matter
 - cross section dominated by inelastic collisions with electrons
- **Classical derivation** of interaction (following Bohr, 1913)
 - Coulomb force $F = \frac{ze^2}{r^2}$ leads to momentum transfer $\Delta p_{\perp} = \int dt F = \frac{2ze^2}{bv}$ and, thus, energy transfer $\Delta E = \frac{\Delta p^2}{2m_e}$ to electron
 - Considering all material $dE(b) = -n 2\pi b \, db \, dx \, \frac{4z^2 e^4}{b^2 v^2} \frac{1}{2m_e} = -\frac{4}{b^2 v^2}$

$$\frac{4\pi nz^2 e^4}{m_{\rm e}v^2} \frac{{\rm d}b}{b} {\rm d}x \rightarrow \text{divergent in } b$$

Energy loss of charged particles

- Average energy loss from integration over relevant range of b (avoiding divergence)
 - b_{min}: localisation limited by uncerta
- Integration yields $-\frac{\mathrm{d}\tilde{E}}{\mathrm{d}x} = \frac{4\pi z^2 e^4}{m_{\rm e}c^2\beta^2} n \ln \frac{m_{\rm e}c^2\beta^2\gamma^2}{\hbar\langle v\rangle} \text{ with } n$

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

ainty:
$$\frac{h}{p} = \frac{h}{\gamma m_e v}$$

• b_{max} : interaction time limited by revolution period of electrons: $t_{\text{int}} < T_{\text{e}}$

$$n = \frac{N_A \rho Z}{A}$$

 $\beta = p/E, \gamma = E/m \Rightarrow \beta \gamma = p/m$

Bethe-Bloch equation

- Calculation considering quantum mechanics by Bethe and Bloch leads to $-\frac{\mathrm{d}E}{\mathrm{d}x} = Kz^2 \frac{Z}{A} \rho \frac{1}{\beta^2} \left[\frac{1}{2} \log \frac{2m_e c^2 \beta^2 \gamma^2 T_{\mathrm{max}}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$
 - T_{max}: max. energy transfer (in single collision)
 - I: ionisation potential (~ (10 ± 1) Z eV for elements beyond O)
 - $\delta/2$: density correction (Lorentz contraction + polarisability of material)

Modifications for electrons and positrons

- indistinguishable particles \rightarrow W/2
- annihilation for positrons
- low mass \rightarrow deflection more important \rightarrow longer path length • low mass \rightarrow radiation (bremsstrahlung) important (discussed later)

- General behaviour of Bethe-Bloch equation
 - steep rise towards low energies: $\propto \beta^{-5/3}$ up to $\beta \gamma \approx 1$
 - broad minimum of $1 - 2 \frac{\text{MeV}}{\text{g cm}^{-2}}$ around $\beta \gamma \approx 3.5$
 - logarithmic rise towards large energies (Fermi plateau)

NB: Average energy loss (distribution discussed later)

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Specific energy loss

Ionisation from energy loss

- Energy loss of charged particles leads to **ionisation and excitation**
 - primary ionisation *n*_p
 - secondary ionisation $n_s = (1 5) n_p$
 - de-excitation

• Effective ionisation potential *W* to link ionisation and energy loss $\langle n_t \rangle = \frac{L \langle dE/dx \rangle}{W}$

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

material	l ₀ (eV)	W (eV)
He	25	41
Ne	22	36
Ar	16	26
Xe	12	22
Si	1.1	3.6
Ge	0.67	2.85

Ionisation properties for a selection of detection material

W is a few 10 eV for gases, few eV for semiconductors NB: factor 10³ in density

- Many methods exploit ionisation to make tracks of charged particle visible, e.g.
 - Photographic emulsions
 - ionisation leads to exposure
 - Cloud chambers
 - ions as seeds for condensation
 - **Bubble chambers**
 - ions as seeds for evaporation
- Embedding in magnetic field allows extraction of momentum from curvature of the track

Detection of ionisation

Particle tracks in emulsion

specific energy loss \rightarrow ionisation → width of trace

Particle tracks in cloud chamber

Delta electrons

- Curling traces emerging from main particle tracks
 - large energy transfers to electrons allowed for massive highly relativistic particles
 - Individual electrons with significant energy are called delta electrons
- Large range → not part of total ionisation → often lost for ionisation measurement

Energy loss distribution $(MeV g^{-1} cm^2)$

• Statistical distribution with long tail

- Landau distribution for thin absorber
- Vavilov: correction for thicker absorbers
- Approximation

$$D\left(\frac{\mathrm{d}E}{\mathrm{d}x}\right) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{\frac{\mathrm{d}E}{\mathrm{d}x} - \frac{\mathrm{d}E}{\mathrm{d}x}}{\frac{\xi}{\lambda}} + e^{-\lambda}\right)\right)$$

• more precise: Allison & Cobb (using measurements and numerical solution) Ann. Rev. Nuclear Sci. 30 (1980) 253

Important for dE/dx measurements (estimated from finite number of samples)

• Significant life time \rightarrow movement of charges possible, loss through

- recombination
 - → generally not important
- electron attachment ($e + M \rightarrow M^{-}$)
- Random motion of electrons and ions with mean free path $\lambda =$ $n\sigma$
- Drift: random motion with acceleration in electric/magnetic fields

Electrons and ions in material

 \rightarrow important in presence of electronegative gases (O₂, SF₆, ...) or impurities

Charge transport in gases

• Electron mobility μ_e in gases

- superposition of random motion and acceleration in electric field \rightarrow drift
- averaging of Langevin equation leads to $m\langle \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} \rangle = e\left(\vec{E} + \langle \vec{v} \rangle \times \vec{B}\right) - \frac{m}{\tau}\vec{v}_{\mathrm{D}}$
- hot gas $(T_e \gg kT) \rightarrow \text{constant } v_D$
- cold gas $(T_e \approx kT) \rightarrow v_D \propto E$
- Ion mobility
 - several orders of magnitude slower than electrons
- Electron/hole mobility in semi-conductors analogue • similar drift velocities for electrons and holes (within factor ~ 2)

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Typical values
cm/µs for electrons in gases • cm/ms for ions in gases $(\cdot 10^{-3} !)$ cm/µs for e/h in semi-conductors

Ionisation chamber

• Idea: collect charge in electric field, e.g.

- between two plates
- between cylinder and central wire
- Moving charges induce current
 - fast signal from fast drift of electrons
 - slow signal from slow drift of ions
 - position-independent response
 → Frisch grid

• Limitations

- small signal from charges
- no position information

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

NB: small currents in the pA range

Charge carriers in semi-conductors

- Electrons and holes as charge carriers
 - intrinsic semiconductors: thermal excitation across band gap
 - extrinsic semiconductors (doping): excitation from/to donor/acceptor levels \rightarrow saturation
- Drift of charge carriers similar to gases $O(cm/\mu s)$, slower for holes $v_{\rm h} \approx 0.3 - 0.5 v_{\rm e}$

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Electron density in Ge vs. temperature for different acceptor densities N

pn junction

• Contact between p- and n-doped regions

→ depletion zone

- depletion of charge carriers
- net charge
- electric field

• Schottky model

- sharp edges of regions
- thickness of depletion zone

$$d_{n} = \sqrt{\frac{2\epsilon\epsilon_{0}V_{D}}{e}} \frac{N_{A}/N_{D}}{N_{A} + N_{D}}$$
$$d_{p} = \sqrt{\frac{2\epsilon\epsilon_{0}V_{D}}{e}} \frac{N_{D}/N_{A}}{N_{A} + N_{D}}$$

• large depletion zone achievable with highly asymmetric doping and/or bias voltage

Semiconductor sensor

- Ionisation leads to creation of electrons and holes (also phonon excitation) in depletion region (used as active volume)
 - electric field leads to drift (with similar drift velocities for electrons and holes)

semiconductor analogue of ionisation chamber

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Silicon drift sensors

• Electrodes on surface of sensor

- parabolic potential → charge collection in central plane
- longitudinal potential \rightarrow drift to collection electrode
- readout of charge incl. drift time \rightarrow position information (2D)

Examples

• Inner trackers at LHC

Silicon strip sensors

- Strips as collection electrodes → position information
 - microstrips, typical pitch $O(10 \ \mu m)$
 - for 2d information: combination of two sensor layers or perpendicular strips on both surfaces

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Silicon pixel sensors

- Small pads as collection electrodes
 → 2d position information
 - good position resolution
 - large number of readout channels

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Examples

• Inner trackers @ LHC

Hybrid vs monolithic

• Hybrid sensors

- → separate chips for sensor and readout
- can be produced in different processes
- requires bonding
 e.g. bump bonding, wafer to wafer
- Monolithic sensors
 - → readout circuitry integrated with sensor
 - produced in a single process,
 e.g. CMOS imaging
 - avoids cost and complexity
 of multiple chips and interconnects

Bump bonding

Charge amplification

Charge amplification

- Charge from ionisation limited, in particular for gas detectors (lower ionisation yields!)
 - poor signal-to-noise ratio

• Amplification of primary signal

- in electronics → front-end (not discussed here)
- Amplification of ionisation charge in sensors by feeding energy for additional ionisation
 - high electric field around thin wires (gaseous detectors)
 - high electric field in amplification layer (semiconductor detectors)

Gas amplification

- High electric field around thin metal wire $\propto 1/r$, typical radii: 10 - 50 µm
 - avalanche formation within few wire radii
- Gain from avalanche in gas

 $N(x) = N_0 \cdot \exp(\alpha x)$ and $G = \exp\left(\int_{r}^{r_2} dx \,\alpha(x)\right)$

- exponential growth with first Townsend coefficient a
- breakdown for alpha $x \ge 20$ (Raether limit)
- excitation of gas \rightarrow UV photons \rightarrow additional avalanches
- quencher (e.g. CO₂) to absorb UV photons \rightarrow stable operation with higher gain

Operational regimes

Ionisation chamber

 collect all charge from ionisation, no gas gain

• Proportional counter

- gain from avalanches
 - proportional to initial ionisation
 - exponential dependence on voltage

• Geiger counter

- gain from avalanches
 - independent of initial ionisation (saturation)

Voltage applied - linear scale

in proportional region: gain depends exponentially on voltage

Multi-Wire Proportional Chamber

- Combination of
 - primary ionisation in gas
 - drift towards anode wires
 - gas amplification around anode wires
 → larger signal
 - segmented cathode plane for induced charge
 → more precise position information
- Operation in proportional regime
 → provides information on
 - position
 - energy loss (dE/dx)

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Multiwire Proportional Chamber

Instrumentation of large areas (2d position and energy loss)

Time Projection Chamber

• combination of different techniques

- primary ionisation in gas
- charge collection through drift in electric field
- read-out at the end of drift volume, e.g. MWPC, GEM

• very powerful detector with some limitations

rate limited by ions entering drift region
 → distortions

Readout chamber of ALICE TPC

Micro pattern gas detectors (MPGD)

- Reduce structure size in gaseous detectors to cope with high particle flux, e.g.
 - Gas electron multiplier (GEM)
 - thin Kapton foil, $O(50 \mu m)$
 - copper coating
 - etched holes, $\mathcal{O}(50 \ \mu m)$
 - MICRO-MEsh Gasesous Structure
 (Micromegas)
 - drift and amplification regions separated by thin mesh
 - strong field above micro strips

Charge amplification in semiconductors

• Amplification also possible in semiconductors

- addition of doped layer
 - → strong electric field
 - \rightarrow amplification

• Advantages

- larger signal
- faster charge collection

• Applications

- Avalanche Photo Diode (APD, gain 100-1000) → photon detection Single Photon Avalanche Diode (SPAD, breakdown) → single photon detection Low-Gain Avalanche Diode (LGAD, gain 10-100) → timing detectors

Particle identification

Particle identification

- Idea: extract mass from combination of momentum and
 - **specific energy loss** dE/dx
 - time of flight separation $\propto L/\sigma_{tof}$ Iarge path length with fast time resolution
 - Cherenkov radiation with angle $\cos \vartheta = 1 / n\beta$ refractive index to optimise coverage angular resolution
 - transition Radiation
 - electromagnetic shower (electrons)
 - hadron absorption (muons)

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Combination of techniques to achieve PID goals

- Specific energy loss (Bethe Bloch) function of $\beta \gamma = p/m$
 - for given momentum \rightarrow function of mass
 - ambiguities at line crossings
- Requires **combined measurement** of
 - momentum → tracker
 - $dE/dx \rightarrow$ deposited charge

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Specific energy loss

ALICE TPC

• Velocity of particle (at given momentum) depends on mass \rightarrow different time of flight for different mass hypotheses:

 $\Delta t = \frac{L}{c} \left(\frac{1}{\beta_1} - \frac{1}{\beta_2} \right) \approx \frac{Lc}{2n^2} (m_1^2 - m_2^2)$

separation requires

- Requires fast detectors with time resolutions on the order of 50 ps
 - Scintillators + PMT
 - MRPCs
 - LGADs (already discussed in context of charge amplification)
 - Cherenkov counters

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Time of flight

Scintillators

- Production of (visible) light from energy deposited by charged particles (via excitation and ionisation/recombination)
- Inorganic crystals (solid)
 - based on crystals with activator doping (high density)
 - typical photon yield ~40 photons / 100 eV of energy deposit (Nal)
 - decay times in the order of µs
 - complicated crystal growth \rightarrow expensive

- Organic scintillators (solid and liquid)
 - based on aromatic matrix, e.g. benzene
 - typical wavelengths 370 750 nm, typically peaking around 425 nm
 - typical photon yield ~1 photon / 100 eV of energy deposit
 - decay times in the order of ns
 - easy to produce \rightarrow cheap
- **Polymers**
 - based on plastics
 - Easy to manufacture (incl. extrusion)

Resistive Plate Chambers

- Resistive Plate Chamber (RPC) with
 - high-resistivity electrodes
 - high fields
 → immediate formation of avalanche
 - quenching in high-resistivity electrode (suppression of continuous discharge)

 Multi-gap Resistive Plate Chamber (MRPC):
 Extension to multi-gap device with floating inner plates
 Examples

• ALICE TOF

Cherenkov radiation

- Cherenkov effect
 → emission of light by particles above speed of light
 - emission under characteristic angle
 - spectrum
- Applications
 - timing
 - threshold
 - RICH
 - DIRC

Transition Radiation

- Generation of real photons
 - when highly-relativistic charged particle traverses boundary between two dielectrics
 - onset for $\gamma \approx 1000$
 - photons typically in UV range
- At accelerator energies only relevant for electrons → electron identification
 - demonstration with highly energetic muons from cosmic rays

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

 10^{2}

10

Electromagnetic showers → interactions of electrons and photons

Bremsstrahlung

- Accelerated charge radiates bremsstrahlung (mostly relevant for electrons)
 - Interaction with field of nucleus $Z^2 \alpha^3$

$$\sigma_{\rm brems} \propto \frac{1}{(m_{\rm e}c^2)^2}$$

- energy spectrum approximately $\frac{\mathrm{d}\sigma}{\mathrm{d}k} \approx \frac{A}{X_0 N_A} \frac{1}{k} \left(\frac{4}{3} - \frac{4}{3}y + y^2 \right) \text{ with } y = k/E$
- **Radiation length X**₀ to characterise energy loss $E(x) = E_0 \exp(-x/X_0)$

Contributions from

- ionisation (Bethe Bloch)
- bremsstrahlung ($\propto -E/X_0$)

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Energy loss of e[±]

• At critical energy transition from dominance of ionisation and bremsstrahlung $E_{\rm c} \approx \frac{580}{Z}$ MeV (for electrons and Z > 13)

Interactions of photons

- Absorption (elimination of photon) instead of energy loss
 → Lambert-Beer law for attenuation (exponential)
- Mechanisms (increasingly important with increasing energy)
 - photo effect
 - Compton scattering (incoherent)
 - pair production (in nuclear field)
- Neglected effects
 - Rayleigh scattering (coherent)
 - photo-nuclear absorption
 - pair production (in electron field)

Photo effect

- ionisation of atom $\gamma + X \rightarrow X + e^{-1}$
 - cross section with strong Z dependence $\sigma_{\rm ph} = \alpha \pi a_b Z^5 \left(\frac{I_0}{E_v}\right)^{\frac{1}{2}}$ with $I_0 = 13.6 \,\mathrm{eV}, a_b = 0.53 \cdot 10^{-10} \,\mathrm{m}$
 - characteristic edges from shell structure
- subsequently, de-excitation with emission of
 - X-ray photon
 - Auger electron

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

47

Compton scattering

• Scattering of photon off quasi-free electron

- extension of Thomson scattering $\sigma_{\rm Th} = \frac{8\pi}{3} r_e^2$ to higher energies (Klein-Nishina)
- kinematics limits energy transfer → Compton edge
- strongly forward peaked for high energy photons

 $E = mc^2$, p = mvE = hv $P = \frac{hv}{c}$ E = hv

Pair production (Bethe Heitler)

- Production of e+e- pair from photon
 - requires scattering centre (nucleus) for recoil
 - cross section described by $\sigma_{\text{pair}} = 4Z^2 \alpha r_e^2 \left(\frac{7}{9} \log \frac{183}{Z^{1/3}} - \frac{1}{54}\right)$ $\approx \frac{7}{9} 4\alpha r_e^2 Z^2 \log \frac{183}{Z^{1/3}}$
 - $=(A/N_A)X_0$ with radiation length X₀
 - asymmetric energy sharing favoured

Photon interactions

- Different effects dominate depending on energy (in order of increasing relevance with higher energy)
 - photo effect
 - Compton scattering (incoherent)
 - pair production (in nuclear field)
- Sub-dominant effects
 - Rayleigh scattering (coherent)
 - photo-nuclear absorption
 - pair production (in electron field)

Photon mass attenuation length

- Photon absorption described by absorption length λ (independent of density)
 - multiply by density to obtain absolute length $L = \lambda \cdot \rho$

100

10

 10^{-6}

51

• PhotoMultiplier Tube (PMT)

- amplify electrons from photo effect
- classic detector, still actively used
- difficult to operate in B field

• Avalanche Photo Diode (APD)

• amplify charge carriers in amplification layer

• Single Photon Avalanche Diode (SPAD)

- strong gain (break-down, quenching) \rightarrow sensitive to single photons
- Silicon Photo Multiplier (SiPM) → array of SPADs

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Photon detectors

photon conversion

acceleration \rightarrow gain

intrinsic, only electron drift

Electromagnetic showers

- Cascade of
 - bremsstrahlung $e^{\pm} (+ X) \rightarrow e^{\pm} (+X) + \gamma$
 - pair production ($\gamma \rightarrow e^+ + e^-$)
- Shower modelling
 - E < E_c: only ionisation
 - $E > E_c$: only radiation

Longitudinal shower evolution

- Number of particles in units of radiation lengths (t := x/X_0) $N(t) = 2^{t}, E(t) = \frac{E_{0}}{2^{t}} \Rightarrow t = \ln \frac{E_{0}}{E} / \ln 2$ $N(E_{0}, E_{1}) = 2^{t_{1}} = 2^{\ln \frac{E_{0}}{E} / \ln 2} \approx \frac{E_{0}}{E_{1}}$
- Shower maximum $t_{\rm max} \approx \ln \frac{E_0}{E}$ and $N(E_0, E_c) \approx E_0/E_c \propto E_0$

• Integrated track length proportional to energy $T = X_0 \sum_{i=1}^{t_m ax} 2^{\mu} + t_0 \cdot N_m ax = (4 + t_0) \frac{E_0}{E_c} X_0 \propto E_0$ $\mu = 1$

Transverse shower evolution

- Transverse shower development dominated by multiple scattering of electrons (Molière theory) $\langle \vartheta^2 \rangle = \left(\frac{21.2 \,\mathrm{MeV}^2}{\beta pc} \right) t$
- Molière radius $R_{\rm M} = \vartheta_{\rm rms} \big|_{x=X_0} \approx \frac{21 \,{\rm MeV}}{E_c} X_0$

material	Ζ	E _c (MeV)	X ₀ (cm)	R _M (cm)
Ar (liq)	18	35	13.9	9.5
Fe	26	21	1.76	1.77
BGO		10	1.12	2.33
Pb	82	7.4	0.56	1.60
U	92	6.8	0.32	1.00

Critical energy $E_{\rm c} \propto \frac{1}{Z}$ **Radiation length** $X_0 \propto \frac{180A}{Z^2}$ (g cm⁻²) Molière radius $R_{\rm M} \approx \frac{19.2 \,{\rm MeV}}{E_c} X_0 \propto \frac{1}{Z}$

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Material properties

Calorimeters

• Exploit electromagnetic shower to measure energy

- homogeneous calorimeter shower material also detection material
- sampling calorimeter separate materials for shower and detection
- Performance characterised by **energy resolution** given by $\frac{\sigma_E}{E} = \frac{A}{\sqrt{E}} \oplus \frac{B}{E} \oplus C$

- Performance improves with energy
 - cf. momentum resolution from tracking deteriorating with p

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

with contributions from shower fluctuations (A), electronic noise (B), leakage (C)

Homogeneous calorimeter

• Requires a material serving as absorber and detector → scintillating crystals, e.g. PbWO₄

• **Properties**

- dense material \rightarrow compact detector
- fast detector response
- full sampling of shower \rightarrow good energy resolution
- low light yield, better at low temperatures \rightarrow cooling
- crystals are complex to grow \rightarrow expensive

Examples

- ALICE PHOS
- CMS crystal calo

Combination of

- dense converter material, e.g. Pb, W, U, Fe
- convenient detection material, e.g. plastic scintillators, liquid argon, ...

• **Properties**

- materials readily available \rightarrow cost effective and scalable
- sampling fluctuations → reduced energy resolution

Sampling calorimeter

Examples

• ATLAS LAr calo • ALICE ECal (Pb + scintillator)

liquid Argon used for operation as ionisation chambers

59

Hadronic interactions
→ hadronic showers

- Interaction of hadron with nucleon or nucleus (E > 1 GeV)
 - elastic (about 10 mb)
 - inelastic p + N \rightarrow X (dominant) $\sigma_{tot}(pA) \approx \sigma_{tot}(pp) \cdot A^{\frac{2}{3}}$

 Hadronic interaction length $\lambda = \frac{A}{N_{\Lambda} \rho \sigma_{\text{inel}}} \propto 35 \cdot A^{\frac{1}{3}} (\text{g cm}^{-2})$ $N_{\rm A} \rho \sigma_{\rm inel}$ for Z \geq 15 and $\sqrt{s} \approx 1 - 100 \,\text{GeV}$

Hadronic interactions

material	λ (cm)	X ₀ (cm)
С	38.8	19.3
Ar (liq)	85.7	14.0
Fe	16.8	1.76
U	11.0	0.32
scintillator	79.5	42.4

hadronic interaction length much larger than elm. radiation length

Hadronic shower

- Hadronic shower emerges from sequential inelastic scatterings
 - inelastic scatterings, e.g. $p + N \rightarrow \pi^+ + \pi^- + \pi^0 + ... + N^*$
 - further scatterings of secondary particles down to pion production threshold, NB: much higher than E_c
 - sequential decays of produced particles
 - average number of secondary particles proportional to log E
 - about half the energy in production of secondaries (on average)
- Part of energy remains invisible (strong fluctuations)

- Much more complex than electromagnetic calorimeters
 - hadronic and electromagnetic components
 - fluctuating fraction of invisible energy
 - longer detectors needed
- Sampling calorimeter combining • passive absorber (Fe, Pb, U) • sampling elements (scintillators, ...)

Hadronic calorimeters

Examples • CMS HCal

Additional methods very brief overview

Muon detection

• Unique signature

- electromagnetic interaction
- no electromagnetic shower (because of mass)
- no hadronic shower

Identification from

- behaviour in thick thick calorimeter
- detection behind thick (hadron) absorber

Examples

• muon chambers

Unstable particles

- Unstable particles incl. neutral ones, e.g. K^0 , Λ , Ξ , Ω , ... can often be detected through their decay products
 - identification of decay daughters
 - reconstruction of decay vertices
 - reconstruction of invariant mass

Neutral particles

- No electromagnetic interaction
 - neutrons \rightarrow hadronic shower
 - neutrinos \rightarrow detection of products from weak interactions
 - dark matter \rightarrow open search

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

→ exploit effects converting energy from neutral particles to charged particles

Detector R&D

some examples

Silicon pixel sensors

- Established TPSCo 65 nm process for pixel sensors (extensive R&D run with 55 different prototypes)
 - excellent performance, also after irradiation
- Established bending of silicon sensors
 - performance of ALPIDEs not affected at radii down to 1.8 cm
 - prototypes with wafer-scale silicon
- Developing wafer-scale sensors
 - stitching of repeated sensor unit
 - first wafers from engineering run received

Excellent progress with ITS3 R&D paving the way for ALICE 3

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

DPTS **APTS**

Silicon timing sensors

• Monolithic timing sensor

test gain layer
 in L-foundry process

- Beam test of SiPMs
 for charged particle detection
 - Cherenkov radiation, here in protection layer
 - multiple hits
 improve time resolution

80.5					
8210					
	L				

Demonstrator submitted to L-foundry

Delivered in January 2023

With protection layer, front-side beam shows large clusters

Further R&D topics

- European Strategy and CERN committed to reducing the consumption of greenhouse gases in gaseous detectors, e.g. SF₆, C₂H₂F₄, CF₄
 - consolidation of gas systems and minimisation of losses
 - R&D towards alternative gases ongoing
- Advances in 3d printing allow production of detector components, e.g. for
 - precise production of metal **absorber for electromagnetic calorimeters**, incl. holes for wave-length shifting fibres
 - production of scintillators in (almost) arbitrary shapes

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

71

Experiments

ATLAS phase II upgrades

LAr calorimeter

 Segmented super-cells: shower-shape discrimination at trigger level

Trigger and DAQ

- L1 and HLT improvements
- Further upgrades

High-granularity timing detector

- Based on LGADs
- PID with $\sigma_{TOF} \approx 35$ ps
- Baseline trigger for HI

Muon system

- New Small Wheels installed \rightarrow sTGC + MicroMegas
- New muon chambers

Extend tracker acceptance to $|\eta| < 4$ \rightarrow Time-of-flight PID 2.5 < $|\eta|$ < 4 **Endcap calorimeters with higher granularity**

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Electronics upgrades

Luminosity detectors

HL-ZDC

- JZCaP (jointly with CMS)
- adapt to new optics
- increase radiation hardness
- Reaction plane detector

New Inner Tracker (ITk)

- hybrid silicon pixel and strip sensors
- coverage up to $|\eta| < 4$

Endcap calorimeters

- higher granularity

73

MIP timing detector

- barrel: LYSO + SiPMs
- endcaps: LGADs
- σ_{TOF} ≈ 30 ps

Tracker

- inner: hybrid silicon pixels
- outer: hybrid silicon pixels + strips

HCal

• HPD \rightarrow SiPMs

L1 trigger, HLT, DAQ

Luminosity detectors

 \rightarrow Charged particle tracking up to $|\eta| < 4$, muons up to $|\eta| < 3$ \Rightarrow Time-of-flight PID up to $|\eta| < 3$

- High-precision vertexing
- Wide coverage calorimetry

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

CMS phase II upgrades

New readout for muon system

- JZCaP (jointly with CMS)
- adapt to new optics
- increase radiation hardness
- Reaction plane detector

Endcap calorimeter High-granular ECal + HCal \rightarrow 4d showers ($\sigma_t \approx 20$ ps)

Forward muon system

- All GEM chambers
- new frontend electronics for CSC endcaps

Run 1 Run 2 Run 3 Run 4 Run 5 Run 6

74

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

ALICE 3 upgrade

Superconducting magnet system

Elm. calorimeter

 PbWO4 in central region Pb/Sci for large acceptance

Time-of-flight detector

monolithic CMOS sensors with gain layer

Ring-imaging Cherenkov detector

- Aerogel radiator
- SiPM read-out

Muon ID

- Iron absorber
- Scintillating bars, WLS, SiPM

 Run 1
 Run 2
 Run 3
 Run 4
 Run 5
 Run 6

• Physics goals

- proton decay
- solar neutrinos (ne O(MeV))
- neutrinos from super-novae

• Detector concept

- 50 million litre water tank, 1.6 km under ground
- neutrino detection through Cherenkov radiation e and µ (bkg) distinguishable through ring sharpness

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

(Super-)Kamiokande

Kamioka Nucleon Decay Experiment

• Physics goals

- neutrino oscillations
- determination of mass hierarchy
- super-novae
- proton decay
- Detector concept
 - LArTPC (70 kt in 4 modules) incl. photon detection system
 - R&D: wavelength shifting through Xe doping

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

DUNE Deep Underground Neutrino Experiment

78

- Particle detectors remain at the core of fundamental research
- Many interesting developments in R&D programmes
- Applications in major upgrade programmes and new experiments

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

References & further reading

- **PDG reviews** concise treatments of particle interaction in matter and particle detectors
- Leo: Techniques for Nuclear and Particle Physics Experiments a bit dated but a good reference
- Kolanoski, Wermes: Particle Detectors recent overview of particle detector
- Riegler: CERN summer student lectures on Particle Detectors more detailed lectures
- Stachel: Lectures on Particle detectors university course

Particle Detectors | August 28th, 2023 | jochen.klein@cern.ch

