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Statistics & Machine Learning

• A really vast topic on which you could spend an entire week lecturing

• Have only 4 hours - so will make some selection of topics here
• Will mostly focus on statistics methods and model building – with a 

modest excursion into machine learning

• General idea of the course 
– start with simple models – focus on fundamental concepts for those (p-values, 

bayes vs frequentist)
– then gradually make models more complex and look at how statistical procedures 

deal with these (nuisance parameters, systematic uncertainties), but also look on 
the practical side for phycisists – do you understand what happens and how can 
you debug and validate your complex fits

– Excursion in multivariate methods and machine learning, when discussing multi-
dimensional models (nice connection via NP lemma)

Wouter Verkerke, NIKHEF



What do we want to know?

• Physics questions we have…
– Does the (SM) Higgs boson exist?
– What is its production cross-section?
– What is its boson mass?

• Statistical tests construct
probabilistic statements:
p(theo|data), or p(data|theo)
– Hypothesis testing (discovery)
– (Confidence) intervals

Measurements & uncertainties

• Result: Decision based on tests

Wouter Verkerke, NIKHEF

“As a layman I would now say: I think we have it”



How do we do this?

• Statistics: if you know distribution f(x|μ,θ) for your observable(s) x
in terms of your parameter of interest μ (and other parameters θ)
then in principle solvable problem
– In other words if f(x|μ,θ) is known then problem is ‘simple’ (‘just’ follow 

prescription of statistical procedures)

• Particle physics: connection of theory (SM or its extension) with 
your parameter μ is highly non-trivially connected to your 
observables x. 

• Relation between x and μ can in almost all cases 
not be analytically formulated, but distribution f(x|μ,θ) can be 
sampled through (chain of simulation packages)

• Simulation-based knowledge of f(x|μ,θ) often approximate,
often in ways that cannot be exactly quantified

Wouter Verkerke, NIKHEF

Root of many of the complexities of HEP data analysis

Often the really thorny problems (‘theory systematics’) – root of problem
is not statistical in nature, but must somehow be accounted for in statistical procedures



Particle physics data analysis – chain of simulation steps
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Statistical analysis with HEP data – a multi-step approach

• To make HEP data analysis tractable with only samples of f(x|μ,θ) 
known (instead of function itself), inference of μ from f(x|μ,θ)
often performed as a multi-step process

Wouter Verkerke, NIKHEF

‘Event selection’ 
Classification of events according to
approximate signal purity using only 
MC samples of f(x|μ,θ)

‘Statistical analysis’ 
Analysis of the reduced data sample
for which a probability model f’(x’|μ,θ) 
can be formulated 

‘reduced sample D(x’) where only a subset of
of the observables is present, or original observables

have been replaced with a ‘summary observable’
(e.g. an MVA-based signal purity score)



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 
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Modeling distributions
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Counting models

• Central concept in statistics is the ‘probability model’

• A probability model assigns a probability to each possible 
experimental outcome.

• Example: a HEP counting experiment
– Count number of ‘events’ in a fixed time interval à Poisson distribution
– Given the expected event count, the probability model is fully specified

Wouter Verkerke, NIKHEFà Experimental outcome
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Probabilities vs conditional probabilities

• Note that probability models strictly give conditional probabilities
(with the condition being that the underlying hypothesis is true)

• Suppose we measure N=7 then can calculate

L(N=7|Hbkg)=2.2%       L(N=7|Hsig+bkg)=14.9%

• Data is more likely under sig+bkg hypothesis than bkg-only hypo
• Is this what we want to know? Or do we want to know L(Hs+b|N=7)?

Wouter Verkerke, NIKHEF

P(N )→ P(N |Hbkg ) P(N )→ P(N |Hsig+bkg )

Definition: 
P(data|hypo) is called 

the likelihood



Inverting the conditionality on probabilities

• Do L(7|Hb) and L(7|Hsb) provide you 
enough information to calculate P(Hb|7) and P(Hsb|7)

• No!
• Image the ‘whole space’ and two subsets A and B

Wouter Verkerke, NIKHEF

A
(=Hx)

B
(=Nobs)

P(A|B) ≠ P(B|A)

P(7|Hb) ≠ P(Hb|7)



Inverting the conditionality on probabilities

Wouter Verkerke, NIKHEF

A
(=Hx)

B
(=Nobs)

P(A|B) ≠ P(B|A)

but you can deduce
their relation



Inverting the conditionality on probabilities

• This conditionality inversion relation is known as Bayes Theorem

• And choosing  A=data and B=theory

• Return to original question:

Do you L(7|Hb) and L(7|Hsb) provide you 
enough information to calculate P(Hb|7) and P(Hsb|7)

• No! à Need P(A) and P(B) à Need P(Hb), P(Hsb) and P(7)
Wouter Verkerke, NIKHEF

Essay “Essay Towards Solving a Problem in the Doctrine of 
Chances”  published in Philosophical Transactions of the 
Royal Society of London in 1764

Thomas Bayes (1702-61)

P(B|A) = P(A|B) × P(B)/P(A)

P(theo|data) = P(data|theo) × P(theo) / P(data)



Inverting the conditionality on probabilities

• What is P(data)?

• It is the probability of the data under any hypothesis
– For Example for two competing hypothesis Hb and Hsb

and generally for N hypotheses

• Bayes theorem reformulated using law of total probability

• Return to original question: Do you L(7|Hb) and L(7|Hsb) provide you 
enough information to calculate P(Hb|7) and P(Hsb|7) 
No! à Still need P(Hb) and P(Hsb)

Wouter Verkerke, NIKHEF

P(N) = L(N|Hb)P(Hb) + L(N|Hsb)P(Hsb)

P(N) = Σi P(N|Hi)P(Hi)

P(theo|data) =  L(data|theo) × P(theo)  
Σi L(data|theo-i)P(theo-i)

P(theo|data) = P(data|theo) × P(theo) / P(data)



Prior probabilities

• What is the meaning of P(Hb) and P(Hsb)? 
– They are the probability assigned to hypothesis Hb prior to the experiment.

• What are the values of P(Hb) and P(Hsb)?
– Can be result of an earlier measurement
– Or more generally (e.g. when there are no prior measurement) 

they quantify a prior degree of belief in the hypothesis

• Example – suppose prior belief P(Hsb)=50% and P(Hb)=50%

• Observation N=7 strengthens belief in hypothesis Hsb
(and weakens belief in Hb à 13%) Wouter Verkerke, NIKHEF

P(Hsb|N=7) =               P(N=7|Hsb) × P(Hsb) 
[ P(N=7|Hsb)P(Hsb)+P(N=7|Hb)P(Hb) ]

=             0.149 × 0.50              = 87% 
[ 0.149×0.5+0.022x0.5 ]



Interpreting probabilities

• We have seen 

probabilities assigned observed experimental outcomes
(probability to observed 7 events under some hypothesis)

probabilities assigned to hypotheses
(prior probability for hypothesis Hsb is 50%)

which are conceptually different.

• How to interpret probabilities – two schools

Bayesian probability = (subjective) degree of belief 

Frequentist probability = fraction of outcomes in 
future repeated identical experiments

Wouter Verkerke, NIKHEF
“If you’d repeat this experiment identically many times, 
in a fraction P you will observe the same outcome”

P(theo|data)
P(data|theo)

P(data|theo)



Interpreting probabilities

• Frequentist: 
Constants of nature are fixed – you cannot assign a probability to 
these. Probability are restricted to observable experimental results
– “The Higgs either exists, or it doesn’t” – you can’t assign a probability to that
– Definition of P(data|hypo) is objective (and technical)

• Bayesian:
Probabilities can be assigned to constants of nature
– Quantify your belief in the existence of the Higgs – can assign a probablity
– But is can very difficult to assign a meaningful number (e.g. Higgs)

• Example of weather forecast

Bayesian: “The probability it will rain tomorrow is 95%”
– Assigns probability to constant of nature (“rain tomorrow”)

P(rain-tomorrow|satellite-data) = 95%

Frequentist: “If it rains tomorrow, 
95% of time satellite data looks like what we observe now”

– Only states P(satellite-data|rain-tomorrow) Wouter Verkerke, NIKHEF



Back to Hb/Hsb - Formulating evidence for discovery of Hsb

• Given a scenario with exactly two competing hypotheses

• In the Bayesian school you can cast evidence as an odd-ratio

Wouter Verkerke, NIKHEF

Oprior ≡
P(Hsb )
P(Hb)

=
P(Hsb )
1−P(Hsb )

If p(Hsb)=p(Hb) à Odds are 1:1

Oposterior ≡
L(x |Hsb )P(Hsb )
L(x |Hb )P(Hb )

=
L(x |Hsb )
L(x |Hb )

Oprior

‘Bayes Factor’ K multiplies prior odds

P(data|Hb)=10-7

P(data|Hsb)=0.5If                              K=2.000.000 à Posterior odds are 2.000.000 : 1



Formulating evidence for discovery

• In the frequentist school you restrict yourself to P(data|theory)
and there is no concept of ‘priors’
– But given that you consider (exactly) 2 competing hypothesis,

very low probability for data under Hb lends credence to ‘discovery’ of Hsb
(since Hb is ‘ruled out’). Example

• Given importance to interpretation of the lower probability, it is 
customary to quote it in “physics intuitive” form: Gaussian σ.
– E.g. ‘5 sigma’ à probability of 5 sigma Gaussian fluctuation =2.87x10-7

• No formal rules for ‘discovery threshold’
– Discovery also assumes data is not too unlikely under Hsb. If not, no discovery,

but again no formal rules (“your good physics judgment”)
– NB: In Bayesian case, both likelihoods low à reduces Bayes factor K to O(1)    

Wouter Verkerke, NIKHEF

P(data|Hb)=10-7

P(data|Hsb)=0.5 “Hb ruled out” à “Discovery of Hsb”



Taking decisions based on your result

• What are you going to do with the results of your measurement?

• Usually basis for a decision
– Science: declare discovery of Higgs boson (or not), make press release,

write new grant proposal
– Finance: buy stocks or sell

• Suppose you believe P(Higgs|data)=99%.

• Should declare discovery, make a press release? 
A: Cannot be determined from the given information!

• Need in addition: the utility function (or cost function), 
– The cost function specifies the relative costs (to You) of a Type I error 

(declaring model false when it is true) and a Type II error (not declaring model 
false when it is false).

Wouter Verkerke, NIKHEF



Taking decisions based on your result

• Thus, your decision, such as where to invest your time or money, 
requires two subjective inputs: 

Your prior probabilities, and 

the relative costs to You of outcomes.

• Statisticians often focus on decision-making; 
in HEP, the tradition thus far is to communicate experimental 
results (well) short of formal decision calculations.

• Costs can be difficult to quantify in science. 
– What is the cost of declaring a false discovery? 
– Can be high (“Fleischman and Pons”), but hard to quantify 
– What is the cost of missing a discovery (“Nobel prize to someone else”),

but also hard to quantify
Wouter Verkerke, NIKHEF



Summary on statistical test with simple hypotheses

• So far we considered simplest possible experiment we can do: 
counting experiment

• For a set of 2 or more completely specified (i.e. simple) hypotheses 

• In principle, any potentially complex measurement (for Higgs, SUSY, 
top quarks) can ultimately take this a simple form.
But there is some ‘pre-work’ to get here – examining (multivariate) 
discriminating distributions à Now try to incorporate that 

Wouter Verkerke, NIKHEF

à Given probability models P(N|bkg), and P(N|sig) 
we can calculate P(Nobs|Hx) under either hypothesis

à With additional information on P(Hi) we can also calculate P(Hx|Nobs)

[Recap]



Wouter Verkerke, NIKHEF

Model building 2 
Modelling distributions –

template based models or 
analytical models
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Discriminating observables & counting experiments

• HEP experimental data usually has many discriminating observables 
that carry information that can distinguish signal from background 
hypothesis

• In principle can use them all directly in an elaborate hypothesis test.
– But would need to formulate a model that describe the expected distribution of all 

of these à Complicated
– If expectations are uncertain (from simulation or theory) process of modeling 

becomes even more complex

• A pragmatic solution to reduce complexity is to split task in two
– Define empirical selection of events enriched in signal using one or more 

observable properties of the event (invariant masses, distributions, angles etc)
– Perform statistical test (hypothesis test, parameter estimation etc) on sample that 

reduced in size and in dimensionality of discriminating observables that are 
modeled

– Most extreme reduction of dimensionality is to zero à counting experiment 

Wouter Verkerke, NIKHEF



Discriminating observables & counting experiments

• Example 1 – Discrimination in selection stage only

s=0
s=5

s=10
s=15

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Poisson(N|s+b)

Statistical inference:
L(15|5) = 1.5 10-4

NB1: All discriminating power in selection step, 
none in inference step. This is a design choice!

NB2: Selection must be tuned on a ‘figure of merit’
usually a simplified statistical inference test



Modeling discriminating observables

• Example 2 – Discrimination in inference stage

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Nbkg*Uniform(x) +Nsig*Gaussian(x) 

Statistical inference:
L(data|hypo)=something

NB1: Most discrimination power in inference step. 
This is again design choice!

NB2: Optimal selection less critical
NB3: Correct description of selected sample

more complex



Modeling discriminating observables

• Example 2 – full dataset has one discriminating observable: x 

Event selection: 
reduce sample size 
and dimensionality

Formulation of probability model of reduced sample:
Nbkg*Uniform(x) +Nsig*Gaussian(x) 

Statistical inference:
L(data|hypo)=something

NB1: Most discrimination power in inference step. 
This is again design choice!

NB2: Optimal selection less critical
NB3: Correct description of selected sample

more complex
Q: Which strategy is better?

A: Depends on how ‘better’ is defined?

For hypothesis testing ‘discovery of a new particle’

the ‘power’ of the test can be the same, but doesn’t need to be

Choice is real life largely dictated by practicalities

• How easy is it to formulate a description of the observables?

• How many observables are important?



Formulating probability models for discriminating observables

• For counting experiments could derive Poisson(N|μ) from first 
principles (‘random discrete events measured in fixed time interval)

• For experiments with discriminating observables, description should 
ideally also derive from underlying (physics) hypothesis/theory
– In many cases this is possible, but not always without assumptions. 
– Assumptions lead to uncertainties in predictions à we’ll revisit later how to deal 

with those.

• Example: common underlying principle in (signal) model is that 
discriminating observable is sum/average of many components
– E.g. light collected by photomultiplier has contributions from >>1 photons
– Tracks reconstructed in detector have contributions >>1 hits
– Central Limit Theorem: for large N à Can be analytically described by Gaussian

• In case there is no easy analytical solution à empirical models 
(polynomial) or numerical solution (simulation-based histogram)

Wouter Verkerke, NIKHEF



Empirical probability models

• In case no description from first principles exists for a differential 
distribution, empirical or simulation-based models can be deployed

Wouter Verkerke, NIKHEF

Empirical models Simulation-based models

B(x) = a0+a1x+a2x2+a3x3… B(x) = histogram

Drawbacks: 
• Arbitrariness in parameterization,

e.g. which order to choose
for a polynomial

Drawbacks: 
• Quantization of model prediction in bins
• Poor modeling in regions 

with low simulation statistics



Modeling low-statistics simulation predictions

• For low-statistics simulation predictions, 
kernel estimation techniques can improve modeling substantially

• Procedure: 
– Assign a Gaussian probability density distribution to each simulated event.
– Sum Gaussian probability densities of all events
– Started from unbinned data à no binning effects

Wouter Verkerke, NIKHEF

Sample of events

Gaussian 
probability distributions 

for each event

Summed
probability distribution
for all events in sample



Modeling low-statistics simulation predictions

• Technique does not require that all Gaussian kernels have same 
width

• Improved procedure: ‘adaptive kernel’
– Adjust with of Gaussian kernels depending on local event density
– High density à narrow kernels à preserve more detail
– Low density à wide kernels à promote smoothness

Wouter Verkerke, NIKHEF

Static Kernel
(with of all Gaussian identical)

Adaptive Kernel
(width of all Gaussian depends

on local density of events)



Wouter Verkerke, NIKHEF

Statistical methods 2 
Adapting statistical methods to use with distributions: 

test statistics as ordering principle, likelihood 
ratios, contrast with Bayesian methods, the likelihood 

principle. Practical aspects of toy MC sampling
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Working with Likelihood functions for distributions

• How do the statistical inference procedures change 
for Likelihoods describing distributions?

• Bayesian calculation of P(theo|data) they are exactly the same.
– Simply substitute counting model with binned distribution model 

Wouter Verkerke, NIKHEF
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Simply fill in new Likelihood function
Calculation otherwise unchanged



Working with Likelihood functions for distributions

• Frequentist calculation of P(data|hypo) also unchanged, 
but question arises if P(data|hypo) is still relevant?

• L(N|H) is probability to obtain exactly the histogram observed.
• Is that what we want to know? Not really.. We are interested in 

probability to observe any ‘similar’ dataset to given dataset,
or in practice dataset ‘similar or more extreme’ that observed data

• Need a way to quantify ‘similarity’ or ‘extremity’ of observed data
Wouter Verkerke, NIKHEF
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!
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i
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Working with Likelihood functions for distributions

• Definition: a test statistic T(x) is any function of the data x

• We need a test statistic that will classify (‘order’) all possible 
observations in terms of ‘extremity’ (definition to be chosen by 
physicist)

• NB: For a counting measurement the count itself is already 
a useful test statistic for such an ordering (i.e. T(x) = x)

Wouter Verkerke, NIKHEF

Test statistic T(N)=Nobs orders observed
events count by estimated signal yield

Low N à low estimated signal
High N à large estimated signal



• Now make a measurement N=Nobs (example Nobs=7)

• Definition: p-value: 
probability to obtain the observed data, or more extreme
in future repeated identical experiments
– Example: p-value for background-only hypothesis

P-values for counting experiments

)23.0()0;( =+= ò
¥

obsN
b dNbNPoissonp

s=0

s=5
s=10

s=15



Ordering distributions by ‘signal-likeness’ aka ‘extremity’

• How to define ‘extremity’ if observed data is a distribution
Counting Histogram

Observation

Median expected
by hypothesis

Predicted distribution
of observables

Nobs=7

Nexp(s=0) = 5
Nexp(s=5) = 10

Which histogram is more ‘extreme’?



The Likelihood Ratio as a test statistic

• Given two hypothesis Hb and Hs+b the ratio of likelihoods
is a useful test statistic

• Intuitive picture: 

à If data is likely under Hb,                à If data is likely under Hs+b
L(N|Hb) is large,                                 L(N|Hs+b) is large,
L(N|Hs+b) is smaller                            L(N|Hb) is smaller 

Wouter Verkerke, NIKHEF

λ(
!
N ) = L(

!
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L(
!
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!
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!
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= large



Visualizing the Likelihood Ratio as ordering principle

• The Likelihood ratio as ordering principle

• Frequentist solution to ‘relevance of P(data|theory’) is to order all 
observed data samples using a (Likelihood Ratio) test statistic
– Probability to observe ‘similar data or more extreme’ then amounts to 

calculating ‘probability to observe test statistic λ(N) as large or larger than the 
observed test statistic λ(Nobs)

Wouter Verkerke, NIKHEF

L(N|Hs+b)=small
L(N|Hb)=large

L(N|Hs+b)=soso
L(N|Hb)=soso

L(N|Hs+b)=large
L(N|Hb)=small

λ(N)=0.0005 λ(N)=0.47 λ(N)=5000



The distribution of the test statistic

• Distribution of a test statistic is generally not known

• Use toy MC approach to approximate distribution
– Generate many toy datasets N under Hb and Hs+b

and evaluate λ(N) for each dataset

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for 
data sampled under Hs+b

Distribution of λ for 
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫



The distribution of the test statistic

• Definition: p-value: 
probability to obtain the observed data, or more extreme
in future repeated identical experiments
(extremity define in the precise sense of the (LR) ordering rule)

Wouter Verkerke, NIKHEF

log(λ)

Distribution of λ for 
data sampled under Hs+b

Distribution of λ for 
data sampled under Hb

λobs

p− value = f (λ |Hb )
λobs

∞

∫



Likelihoods for distributions - summary

• Bayesian inference unchanged

à simply insert L of distribution to calculate P(H|data)

• Frequentist inference procedure modified

à Pure P(data|hypo) not useful for non-counting data
à Order all possible data with a (LR) test statistic in ‘extremity’
à Quote p(data|hypo) as ‘p-value’ for hypothesis

Probability to obtain observed data, or more extreme, is X%   

Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

‘Probability to obtain 13 or more 4-lepton events
under the no-Higgs hypothesis is 10-7’

‘Probability to obtain 13 or more 4-lepton events
under the SM Higgs hypothesis is 50%’



The likelihood principle

• Note that ‘ordering procedure’ introduced by test statistic 
also has a profound implication on interpretation

• Bayesian inference only uses the Likelihood of the observed data

• While the observed Likelihood Ratio also 
only uses likelihood of observed data.

• Distribution f(λ|N), and thus p-value, also uses likelihood of 
non-observed outcomes (in fact Likelihood of every possible 
outcome is used) Wouter Verkerke, NIKHEF
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!
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!
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L(
!
N |Hb )



Likelihood Principle

• In Bayesian methods and likelihood-ratio based methods, the 
probability (density) for obtaining the data at hand is used (via the 
likelihood function), but probabilities for obtaining other data are 
not used!

• In contrast, in typical frequentist calculations (e.g., a p-value 
which is the probability of obtaining a value as extreme or more 
extreme than that observed), one uses probabilities of data not 
seen.

• This difference is captured by the Likelihood Principle*: 

If two experiments yield likelihood functions which are 
proportional, then Your inferences from the two experiments 
should be identical.

Wouter Verkerke, NIKHEF 



Generalizing to multiple dimensions

• Can also generalize likelihood models to distributions in multiple
observables

• Neither generalization (binnedàcontinuous, oneàmultiple
observables) has any further consequences for Bayesian or 
Frequentist inference procedures 

Wouter Verkerke, NIKHEF

L(!x) = f (xi )
i
∏ L(!x, !y) = f (xi, yi )

i
∏



The Likelihood Ratio test statistic as tool for event selection

• Note that hypothesis testing with two simple hypotheses for 
observable distributions, exactly describes ‘event selection’ problem

• In fact we have already ‘solved’ the optimal event selection problem! 
Given two hypothesis Hs+b and Hb that predict an complex 
multivariate distribution of observables, you can always 
classify all events in terms of ‘signal-likeness’ (a.k.a ‘extremity’)
with a likelihood ratio

• So far we have exploited λ to calculate a frequentist p-value
now explore properties ‘cut on λ’ as basis of (optimal) event 
selection Wouter Verkerke, NIKHEF

λ(!x, !y, !z,...) = L(
!x, !y, !z,... |Hs+b )

L(!x, !y, !z,... |Hb )
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Relation of test statistics to event selection



Deciding on a split 

• HEP data analysis often a 
2-step process: 

first selection, 
then inference

• Focus in this course on inference, but Likelihood Ratio as test 
statistics shows that there is a general optimal solution for any event 
selection problem: the ratio will order all event by signal-likeness

• Hence if we can construct λ, a selection defined by λ>λc will always 
be optimal for some stated level of desired purity

Wouter Verkerke, NIKHEF
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Event selection

• The event selection problem:
– Input: Two classes of events “signal” and “background”
– Output: Two categories of events “selected” and “rejected”

• Goal: select as many signal events as possible,
reject as many background events as possible

• Note that optimization goal as stated is ambiguous. 
– But can choose a well-defined by optimization goal by e.g. fixing desired 

background acceptance rate, and then choose procedure that has highest 
signal acceptance.

• Relates to “classical hypothesis testing”
– Two competing hypothesis (traditionally named ‘null’ and ‘alternate’)
– Here null = background, alternate = signal

Wouter Verkerke, NIKHEF



Terminology of classical hypothesis testing

• Definition of terms
– Rate of type-I error = a
– Rate of type-II error = b
– Power of test is 1-b

• Treat hypotheses 
asymmetrically 

– Null hypo is usually special à Fix rate of type-I error
– Criminal convictions: Fix rate of unjust convictions 
– Higgs discovery: Fix rate of false discovery
– Event selection: Fix rate of background that is accepted

• Now can define a well stated goal for optimal testing
– Maximize the power of test (minimized rate of type-II error) for given a
– Event selection: Maximize fraction of signal accepted

Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

• In 1932-1938 Neyman and Pearson developed a 
theory in which one must consider competing hypotheses
– Null hypothesis (H0) = Background only
– Alternate hypotheses (H1) = e.g. Signal + Background

and proved that
• The region W that minimizes the rate of the type-II error (not 

reporting true discovery) is a contour of the Likelihood Ratio

• Any other region of the same size will have less power

Wouter Verkerke, NIKHEF



The Neyman-Pearson lemma

• Example of application of NP-lemma with two observables

• Cut-off value c controls type-I error rate (‘size’ = bkg rate)
Neyman-Pearson: LR cut gives best possible ‘power’ = signal eff. 

• So why don’t we always do this? (instead of training neural 
networks, boosted decision trees etc)

Wouter Verkerke, NIKHEF
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Why Neyman-Pearson doesn’t always help

• The problem is that we usually don’t have explicit formulae for the 
pdfs

• Instead we may have Monte Carlo samples for signal and  
background processes
– Difficult to reconstruct analytical distributions of pdfs from MC samples, 

especially if number of dimensions is large

• If physics problem has only few observables can still estimate 
estimate pdfs with histograms or kernel estimation,
– But in such cases one can also forego event selection and go straight to 

hypothesis testing / paramater estimation with all events

Wouter Verkerke, NIKHEF

Approximation of true f(x|s)

Approximation of true f(x|b)



Hypothesis testing with a large number of observables

• When number of observables is large follow different strategy

• Instead of aiming at approximating p.d.f.s f(x|s) and f(x|b) aim to 
approximate decision boundary with an empirical parametric form 

Wouter Verkerke, NIKHEF
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Empirical parametric forms of decision boundaries

• Can in principle choose any type of Ansatz parametric shape

• Goal of Ansatz form is estimate of a ‘signal probability’ for every 
event in the observable space x (just like the LR)

• Choice of desired type-I error rate (selected background rate), can 
be set later by choosing appropriate cut on Ansatz test statistic.

accept
H0

H1

accept
H0

H1

accept
H0

H1

Rectangular cut Linear cut Non-linear cut
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Machine learning and all that

• A wide range of modern tools exist to perform supervised learning 
of a multivariate discriminant with the aim to approximate the 
optimal Neyman-Pearson discriminant.
– Deep Learning, Boosted Decision Trees, GAN’s etc etc.

• Variation in
– Ansatz (empirical parametric form 

of discriminant)
– Learning process 

(error back propagation, Bayesian)

• Commonality in
– Input (labeled simulation samples)
– Output (single function that maps 

signal probability)

• In all cases output functions is functionally comparable to 
likelihood ratio discriminant (modulo some trivial transformations)

Wouter Verkerke, NIKHEF
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Classification with 
Machine Learning



Machine Learning

• What is Machine Learning?
– Giving computers the ability to learn without explicitly 

programming them (Arthur Samuel, 1959) 
– Mathematical models learnt from data that characterize the 

patterns, regularities, and relationships amongst variables in 
the system 

• Huge variety of choices in goals, formulations, training procedures
• Mathematical structure of model: (deep) neural networks, 

convolutional networks, transformer models, (boosted) decision 
trees, etc etc

• Input data: supervised learning (learn from simulation with truth-
labels), unsupervised learning (learn from data without truth labels)

• Learning goal: classification, regression
• Scope of model: discrimination or generative

Wouter Verkerke, NIKHEF



Machine Learning in HEP

• ML used in HEP in many places any in many ways

• Dominant use case: Supervised learning for classification
– Signal/background separation, object tagging – trained on simulation samples
– Will largely focus on this use case today

• But also many other uses
– Unsupervised learning: anomaly detection
– Regression: improving mass estimate of e.g. jets in events Wouter Verkerke, NIKHEF

(Image: J. Raine)
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Multivariate Discriminants – the simplest case: the linear discriminant

• A linear discriminant constructs t(x) 
from a  linear combination of the variables xi

– Optimize discriminant by chosing ai to maximize separation between signal 
and background

• Most common form of the linear discriminant is the Fisher 
discriminant
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Ansatz test statistics – The Fisher discriminant

• Advantage of Fisher Discriminant: 
– Ingredients µs,µb,V can all be calculated directly from 

data or simulation samples. No ‘training’ or ‘tuning’

• Disadvantages of Fisher Discriminant
– Fisher discriminant only exploits difference in means.
– If signal and background have different variance, this information is not used.
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Example of Fisher discriminant

• The “CLEO” Fisher discriminant
– Goal: distinguish between 

e+e- à Y4s à bb and uu,dd,ss,cc
– Method: Measure energy flow

in 9 concentric cones around 
direction of B candidate

F(x)

Energy flow 
in bb

Energy flow 
in u,d,s,c

1
2
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4
5

678
9

Cone
Energy
flows

1 2 3

4 5 6
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When is Fisher discriminant is the optimal discriminant?

• A very simple dataset

• Fisher is optimal discriminant for this case
– In this case we can also directly correlate F(x) 

to absolute signal probability
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Multivariate data selection – Neural networks

• Neural networks are used in neurobiology, pattern recognition, 
financial forecasting (and also HEP)

• This formula corresponds to the ‘single layer perceptron’
– Visualization of single layer network topology
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Since activation function s(t) is monotonic, 

the single layer N(x) is equivalent 
to the Fisher discriminant F(x)



Wouter Verkerke, UCSB

Neural networks – general structure

• The single layer model and easily be generalized to a multilayer
perceptron

– Easy to generalize to arbitrary number of layers
– Feed-forward net: values of a node depend only on earlier layers (usually only 

on preceding layer) ‘the network architecture’
– More nodes bring N(x) close to optimal t(x)=S(x)/B(x) but with much more 

parameters to be determined
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Deep Neural Networks

• Availability of much more computing power,  and notably GPUs 
have, and intense efforts worldwide outside HEP on algorithm and 
archivecture development have increased ambitions (and results) 
of ML by many orders of magnitude

• Generally networks are labeled ‘deep’ if they reach a level of 
complexity where specialized nodes inside the network serve to 
extract specific ’features’ of the data Wouter Verkerke, NIKHEF



Example deep NN - convolutional NLL

• Convolutions NNs primarily designed to process ‘image data’
– Scan for features defined by convolutions of local image data with a specific 

kernel function. Network designed to be insensitive to spatial location of 
feature

– Structure allows for capturing local structure in early convolutions, and long 
range structure in later stage convolutions and in fully connected layers 

Wouter Verkerke, NIKHEF



Example deep NN - convolutional NLL

• Example here on generic image data, but many HEP problems are 
similar to image data (e.g. jet particles projected on a calorimeter 
surface)

Wouter Verkerke, NIKHEF



Many network structures 
possible for many purposes

Wouter Verkerke, NIKHEF

• For more information
see specialized lectures
in e.g. IN2P3 school of 
statistics, Terascale school of 
statistics, CERN academic 
lectures by M. Kagan…

• Generally, continuous rapid 
developments in ML/AI 
community 



Activation functions

• So far only discussion logistic sigmoid as activation function

• Other functions are generally possible and useful. In particular the 
Rectified Linear Unit (ReLU) activiation function improves Deep NN 
training as its derivative is constant (rather than vanishing) is 
therefore often used 

Wouter Verkerke, NIKHEF
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Training (Deep) Neural Networks

• Training Deep Networks computationally very challenging

• Why did this take off in the last decade (or so)?
• Big data à large training sets

• Wide availability of cheap GPUs has increased computational 
power by orders of magnitude

• Many assorted improvedment in many areas: Improved 
optimization algorithms, new regulatization techniques, new 
activations functions

Wouter Verkerke, NIKHEF



Supervised learning – general procedure

1. Design a (D)NN with adjustable parameters 
2. Design a Loss function 
3. Find best parameters which minimize loss 

Wouter Verkerke, NIKHEF

[M. Kagan]



Supervised learning – Loss function

• General form

compares MVA prediction h() with (training) target data y

Additional term Ω(w) penalizes certain values of parameters w with 
the aim to regularize the minimization process.  

• Specific choice of loss function depends among others on training 
goal

Wouter Verkerke, NIKHEF

Square error loss Cross-entropy loss

(often used in regression) (often used in classification)



Supervised learning – minimization of loss function

• Minimize loss function using back-propagation
– Compute gradient on each training set or batch

• Update weights with gradient descent
– where α is the learning rate

• Often advantageous to compute gradient
only on subset of data (mini batch) 
‘Mini Batch Gradient Descent’
– Less computation required
– Noise in gradient descent helps to avoid

local minima 
Wouter Verkerke, NIKHEF



Supervised learning – Loss function

• General form

• Add regularization term to penalize overly complex models

Wouter Verkerke, NIKHEF



Some notes on model complexity

• Simple models under-fit: will deviate from data (high bias) but will 
not be influenced by peculiarities of data (low variance). 

• Complex models over-fit: will not deviate systematically from data 
(low bias) but will be very sensitive to data (high variance). 

Wouter Verkerke, NIKHEF

Regularization term
can help to control 
model complexity



Modeling unordered data

• So far (implicitly) assumed input data is structured, i.e. similar to a 
fixed-length vector where each element has same meaning for 
every event.
– Maps well to classical ML approach in HEP à inputs are precalculated 

quantities, often using some physics input (invariant masses, highest-pT of 
lepton in event etc etc)

• But with ever increasing power and success of automatic feature 
extraction by deep networks on HEP data, question arises, why 
not simply give all event information to the DNN?
– Apart from scale of problem, presents a small logistical challenge in the data 

format: full event reconstructed event record of events is not ‘structured’ in 
the sense above: 4-vectors are not ordered in a particular way, nor is the data 
set fixed size.

– Other network structures can help here, notable Graph Neural Networks are 
very suitable for this type of data 

Wouter Verkerke, NIKHEF



Graph Neural Networks

• Modeling of ordered data as matrix or vector

• Modeling of graph data 

Wouter Verkerke, NIKHEF
[Images: J. Pata ]



Graph Neural Networks

• Graph structures common in HEP data

[Image: J. Pata ]

à GNNs very succesful in flavor tagging for LHC experiments



ML Classification in HEP – some summarizing thoughts

• Tremendous progress over past decade in better, more powerful 
techniques to use ML for classification, regression. 
– Only discussed in the briefest possible terms at the conceptual level here
– Many practical online courses available for many of these tools
– Tendency to move away from letting ML deal with ‘pre-cooked’ physics 

observables, to letting ML analyse complete event records 

• Many other aspects of ML not discussed at all here (unsupervised 
learning, generative models (not discussed), decision trees)
– Also with many use cases other than sig/bkg classification (regression, fast 

simulation)

• It is quite likely that in a few years even newer ML techniques in 
will replace the current best performing ones..   

Wouter Verkerke, NIKHEF



ML Classification in HEP – some summarizing thoughts

• But keep in mind that ML/AI techniques are not magic 
à their performance is also bound by the Neyman-Pearson limit

– There is a well-defined upper bound on the reachable performance by any 
algorithm. This bound is not calculable for many complex models, but it is 
nevertheless there

• ML/AI techniques take their inputs quite literally à simulation samples 
used in supervised training are known to be subject to uncertainties. 

– If simulation differs from data, ML-based results may be suboptimal, or even wrong, 
depending on how ML was used  

– Impact of ML training on imperfect simuation depends on analysis design à more 
on this later

– There is also room to take some uncertainty on input samples into account, 
sometimes this is trivial (e.g. if the total cross-section is uncertain)

– But in other cases this is exceeding difficult if the specification of what is uncertain 
is fuzzy or incomplete. (e.g. hadronization uncertainties that are only expressed as 
different outcomes for two different generators)

• Bottom line – if systematic effects are non-negligible, great care must 
be taken in the use of ML discriminants in the analysis

Wouter Verkerke, NIKHEF



• In the limit of an optimal discriminant – the (ML) event selection step is 
effectively (and only) a reduction of dimensionality of the data without 
loss of information (in the optimal case)

• In case the full discriminant distribution
is tested à no loss of information

– But need for pdf that model distribution

• But can also select high-signal region
and perform simplified inference

– e.g. counting model in that region

Event selection as dimensionality reduction



The simplest analysis design: cut-and-count

• A common scenario for searches in a low-statistics 
regime is to perform a simplified analysis
1. Train MVA to obtain discriminant D
2. Apply a cut on D
3. Perform only a counting analysis

• And a common question is then – what is the ‘optimal cut on D’?
– To answer question, a ‘figure of merit’ (FOM) must be chosen that quantifies 

the optimality of the selection. 
– The FOM for a search is usually the expected signal significance.
– A ‘traditional’ choice is FOM=s/√b. For low-statistic searches s/√b is a bad 

choice! It assumes Gaussian distribution, whereas the true distribution is 
Poisson, which is quite unlike Gaussian especially in the tails at low N 

• A better, and equally easy to use, equation exists based on a Poisson calculation

– NB: the question arise due to choice for simplified counting in step 3).
If a probability density model is used for the analysis of the selected data,
then the answer is always ‘the full range of the discriminant’

Wouter Verkerke, NIKHEF



A better FOM for discovery - the ‘Expected Poisson Z’

• The expected counting significance for a Poisson process is 
analytically calculable:

• For discovery, the traditional FOM s/√b shows significant 
deviations from the ‘exact’ expected Poisson significance at low b 

•

Wouter Verkerke, NIKHEF

Si
gn

ific
an

ce
 in

 G
au

ss
ian

 s
ig

m
a'

s



Wouter Verkerke, NIKHEF

Model building 3 
Models with parameters I -

analytical parametric models,
template morphing approach for 

histogram-based models



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



Introduce concept of composite hypotheses

• In most cases in physics, a hypothesis is not “simple”, 
but “composite”

• Composite hypothesis = Any hypothesis which does not specify 
the population distribution completely

• Example: counting experiment with signal and background,
that leaves signal expectation unspecified

Wouter Verkerke, NIKHEF

L = Poisson(N | !s + !b)

L(s) = Poisson(N | s+ !b)

Simple hypothesis 

Composite hypothesis 

s=0

s=5

s=10
s=15

(My) notation convention: all symbols with ~ are constants 

With b=5
~



A common convention in the meaning of model parameters

• A common convention is to recast signal rate parameters into a 
normalized form (e.g. w.r.t the Standard Model rate)

Wouter Verkerke, NIKHEF

L = Poisson(N | !s + !b)

L(s) = Poisson(N | s+ !b)

Simple hypothesis 

Composite hypothesis 

s=0

s=5

s=10
s=15

With b=5
~

L(µ) = Poisson(N |µ ⋅ !s + !b)
Composite hypothesis 

with normalized rate parameter

μ=0 à no signal
μ=1 à expected signal
μ>1 à more than expected signal

‘Universal’ parameter interpretation 
makes it easier to work with your models



Model building for measurements à shape parameter 

• Beyond discovery/rate measurements, can also build models to 
measure properties of particles (e.g mass) 
à introduce shape parameters

• Often trivial for analytical models, 
less so for simulation-based models

Wouter Verkerke, NIKHEF

F(x|m) = Gaussian(x,m,σ)+bkg F(x|m) = ??



Modeling of shape variations in the likelihood

• If underlying simulation has free parameter θ, can assess impact on 
reconstructed shapes by rerunning simulation at different values
– Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ 

settings of systematic effect

• Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 

Wouter Verkerke, NIKHEF

‘-1σ’ ‘nominal’ ‘+1σ’



Need to interpolate between template models

• Need to define ‘morphing’ algorithm to define 
distribution s(x) for each value of α

Wouter Verkerke, NIKHEF
s(x,α=-1)

s(x,α=0)

s(x,α=+1)
s(x)|α=-1

s(x)|α=0

s(x)|α=+1



Piecewise linear interpolation

• Simplest solution is piece-wise linear interpolation for each bin

Wouter Verkerke, NIKHEF

Piecewise linear
interpolation
response model
for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0



Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF
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Other morphing strategies – ‘horizontal morphing’

• Other template morphing strategies exist that are less 
prone to unintended side effects

• A ‘horizontal morphing’ strategy was invented by Alex Read. 
– Interpolates the cumulative distribution function instead of the distribution
– Especially suitable for shifting distributions
– Here shown on a continuous distribution, but also works on histograms
– Drawback: computationally expensive, algorithm only worked out for 1 NP

Wouter Verkerke, NIKHEF

Integrate

Integrate

Interpolate
Differentiate



Yet another morphing strategy – ‘Moment morphing’

• Given two template model f-(x) and f+(x) the strategy of moment 
morphing considers first two moment of template models
(mean and variance)

• The goal of moment morphing is to construct an interpolated function 
that has linearly interpolated moments

• It constructs this morphed function as combination of linearly 
transformed input models

– Where constants a,b,c,d are chosen such so that f(x,α) satisfies conditions [1]
Wouter Verkerke, NIKHEF

f (x,α)→α f−(ax + b)+ (1−α) f+(cx − d)

µ− = x ⋅ f−(x)∫ dx

V− = (x −µ− )
2 ⋅ f−(x)∫ dx

µ+ = x ⋅ f+(x)∫ dx

V+ = (x −µ+ )
2 ⋅ f+(x)∫ dx

µ(α) =αµ− + (1−α)µ+

V (α) =αV− + (1−α)V+
[1]

M. Baak & S. Gadatsch



There are other morphing algorithms to choose from

Wouter Verkerke, NIKHEF, 99

Vertical
Morphing

Horizontal
Morphing

Moment
Morphing

Gaussian
varying
width

Gaussian
varying
mean

Gaussian
to

Uniform
(this is

conceptually ambigous!)

n-dimensional
morphing? ✔ ✗ ✔
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Statistical 
methods 3 

Inference with parameters: 
maximum likelihood, confidence 
intervals, upper limits, likelihood 
ratio and asymptotic formulae



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



What can we do with composite hypothesis

• With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)

• With composite hypotheses – many more options
• 1 Parameter estimation and variance estimation

– What is value of s for which the observed data is most probable?
– What is the variance (std deviation squared) in the estimate of s?

• 2 Confidence intervals
– Statements about model parameters using frequentist concept of probability
– s<12.7 at 95% confidence level
– 4.5 < s < 6.8 at 68% confidence level

• 3 Bayesian credible intervals 
– Bayesian statements about model parameters
– s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF

s=5.5 ± 1.3



Parameter estimation using Maximum Likelihood

• Likelihood is high for values of p that result in distribution similar to 
data

• Define the maximum likelihood (ML) estimator to be the procedure 
that finds the parameter value for which the likelihood is maximal.

Wouter Verkerke, NIKHEF
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Parameter estimation – Maximum likelihood

• Practical estimation of maximum likelihood performed 
by minimizing the negative log-Likelihood

– Advantage of log-Likelihood is that contributions from events can be summed, 
rather than multiplied (computationally easier)

• In practice, find point where derivative of –logL is zero

• Standard notation for ML estimation of p is p
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Example of Maximum Likelihood estimation

• Illustration of ML estimate on Poisson counting model

• Note that Poisson model is discrete in N, but continuous in s!
Wouter Verkerke, NIKHEF

-log L(N|s) versus s   [N=7]

s=2

s=0

s=5
s=10

s=15

L(N | s) = Poisson(N | s+ !b)

-log L(N|s) versus N   [s=0,5,10,15]

^
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Properties of Maximum Likelihood estimators

• In general, Maximum Likelihood estimators are

– Consistent (gives right answer for Nà¥)

– Mostly unbiased (bias µ1/N, may need to worry at small N)

– Efficient for large N (you get the smallest possible error)

– Invariant:                 (a transformation of parameters 
will Not change your answer, e.g

• MLE efficiency theorem: the MLE will be unbiased and efficient if 
an unbiased efficient estimator exists
– Proof not discussed here
– Of course this does not guarantee that any MLE is unbiased and efficient for 

any given problem

( ) ( )22ˆ pp =
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Relation between Likelihood and c2 estimators

• Properties of c2 estimator follow from properties of ML estimator 
using Gaussian probability density functions

• The c2 estimator follows from ML estimator, i.e it is
– Efficient, consistent, bias 1/N, invariant,
– But only in the limit that the error on xi is truly Gaussian
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Take log,
Sum over all points (xi ,yi ,si)

The Likelihood function in p
for given points xi(si)
and function f(xi;p)

Gaussian Probability Density Function
in p for single measurement y±σ
from a predictive function f(x|p)



Estimating parameter variance

• Note that ‘uncertainty’ on a parameter estimate is an ambiguous 
statement

• Can either mean an interval with a stated confidence or credible, 
level (e.g. 68%), or simply assume it is the square-root of the 
variance of a distribution

Wouter Verkerke, NIKHEF

Mean= 
<x>

Variance = 
<x2>-<x>2

For a Gaussian distribution
mean and variance
map to parameters
for mean and sigma2

and interval defined by 
√V contains 68%
of the distribution
(=‘1 sigma’ by definition)

Thus for Gaussian distributions
all common definitions of
‘error’ work out to the same
numeric value



Estimating parameter variance

• Note that ‘uncertainty’ on a parameter estimate is an ambiguous 
statement

• Can either mean an interval with a stated confidence or credible, 
level (e.g. 68%), or simply assume it is the square-root of the 
variance of a distribution

Wouter Verkerke, NIKHEF

Mean= 
<x>

Variance = 
<x2>-<x>2

For other distributions
intervals by √V do
not necessarily contain
68% of the distribution 



Estimating variance on parameters
• Variance on of parameter can also be estimated from Likelihood 

using the variance estimator

• Valid if estimator is efficient and unbiased!

• Illustration of Likelihood Variance estimate on a Gaussian distribution

Wouter Verkerke, NIKHEF
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Bayesian parameter estimation

• Bayesian parameter estimate is the posterior mean

• Bayesian variance is the posterior variance 

Wouter Verkerke, NIKHEF

Mean= 
<x>

Variance = 
<x2>-<x>2

V̂ = (µ̂ −µ)2P(µ | N )∫ dµ

µ̂ = µP(µ | N )∫ dµ



What can we do with composite hypothesis

• With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)

• With composite hypotheses – many more options
• 1 Parameter estimation and variance estimation

– What is value of s for which the observed data is most probable?
– What is the variance (std deviation squared) in the estimate of s?

• 2 Confidence intervals
– Statements about model parameters using frequentist concept of probability
– s<12.7 at 95% confidence level
– 4.5 < s < 6.8 at 68% confidence level

• 3 Bayesian credible intervals 
– Bayesian statements about model parameters
– s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF

s=5.5 ± 1.3



Interval estimation with fundamental methods

• Can also construct parameters intervals using ‘fundamental’ 
methods explored earlier (Bayesian or Frequentist)

• Construct Confidence Intervals or Credible Intervals with defined 
probabilistic meaning, independent of assumptions on normality of 
distribution (Central Limit Theorem) à “95% C.L.”

• With fundamental methods you greater flexibility in types of 
interval.  E.g when no signal observed à usually wish to set an 
upper limit (construct ‘upper limit interval’)

Wouter Verkerke, NIKHEF



Reminder - Frequentist test statistics and p-values

• Definition of ‘p-value’: Probability to observe this outcome or more 
extreme in future repeated measurements is x%, if hypothesis is 
true

• Note that the definition of p-value assumes an explicit ordering of 
possible outcomes in the ‘or more extreme’ part

Wouter Verkerke, NIKHEF
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P-values with a likelihood ratio test statistic

• With the introduction of a (likelihood ratio) test statistic, hypothesis 
testing of models of arbitrary complexity is now reduced to the 
same procedure as the Poisson example

• Except that we generally 
don’t know distribution f(λ)…

λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

log(λ)

λobs

p− value = f (λ |Hb )
λobs

∞

∫



A different Likelihood ratio for composite hypothesis testing

• On composite hypotheses, where both null and alternate 
hypothesis map to values of μ, we can define an alternative
likelihood-ratio test statistics that has better properties

• Advantage: distribution of new λμ has known asymptotic form

• Wilks theorem: distribution of –log(λμ) is asymptotically distribution 
as a χ2 with Nparam degrees of freedom*

*Some regularity conditions apply

• à Asymptotically, we can directly calculate p-value from λμobs

Wouter Verkerke, NIKHEF

λ(

N ) = L(


N |H0 )

L(

N |H1)

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

‘simple hypothesis’ ‘composite hypothesis’ 

‘Best-fit value’

Hypothesis 
μ that is being 
tested



What does a χ2 distribution look like for n=1?

• Note that it for n=1, it does not peak at 1, but rather at 0…

Wouter Verkerke, NIKHEF



Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

− logµ

t0 = 34.77

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

Wilks: f(λ|0) à χ2 distribution



Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

t0 = 34.77 t0 = 0.02

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large On background-like data t0 is small

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

P-value = TMath::Prob(0.02,1) 
= 0.88

Use
Wilks

Theorem



How quickly does f(λμ|μ) converge to its asymptotic form

• Pretty quickly –

Wouter Verkerke, NIKHEF

Here is an example of likelihood function
for 10-bin distribution with 200 events

Here is an example for event
counting at various s,b



From hypothesis testing to confidence intervals

• Next step for composite hypothesis is to go from p-values for a 
hypothesis defined by fixed value of μ to an interval statement on μ 

• Definition: A interval on μ at X% confidence level is defined such that 
the true of value of μ is contained X% of the time in the interval.
– Note that the output is not a probabilistic statement on the true s value 
– The true μ is fixed but unknown – each observation will result in an estimated 

interval [μ-,μ+]. X% of those intervals will contain the true value of μ
– Coverage = guarantee that probabilistic statements is true (i.e. repeated future 

experiments do reproduce results in X% of cases)

• Definition of confidence intervals does not make 
any assumption on shape of interval 

à Can choose one-sided intervals (‘limits’), 
two-sided intervals (‘measurements’),
or even disjoint intervals (‘complicated measurements’)

Wouter Verkerke, NIKHEF



Exact confidence intervals – the Neyman construction

• Simplest experiment: one measurement (x), one theory parameter (q)
• For each value of parameter θ, determine distribution in in observable 

x

Wouter Verkerke, NIKHEF

observable x

pa
ra

mete
r θ



How to construct a Neyman Confidence Interval

• Focus on a slice in θ

– For a 1-a% confidence Interval, define acceptance interval
that contains 100%-a% of the distribution

Wouter Verkerke, NIKHEF

observable x

pdf for observable x
given a parameter value θ0



How to construct a Neyman Confidence Interval
• Definition of acceptance interval is not unique 

à Choose shape of interval you want to set here.
– Algorithm to define acceptance interval is called ‘ordering rule’

Wouter Verkerke, NIKHEF

observable x

pdf for observable x given a parameter value θ0

observable x

observable x

Lower Limit

Central Interval

Other options, are e.g. 
‘symmetric’ and ‘shortest’



How to construct a Neyman Confidence Interval

• Now make an acceptance interval in observable x
for each value of parameter θ

Wouter Verkerke, NIKHEF

observable x

pa
ra

mete
r θ



How to construct a Neyman Confidence Interval
• This makes the confidence belt

Wouter Verkerke, NIKHEF

observable x

pa
ra

mete
r θ



How to construct a Neyman Confidence Interval
• This makes the confidence belt

Wouter Verkerke, NIKHEF

observable x

pa
ra

mete
r θ



How to construct a Neyman Confidence Interval

• The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data

• Given a measurement x0, a confidence interval [θ+,θ-] can be 
constructed as follows

• The interval [θ-,θ+] has a 68% probability to cover the true value

Wouter Verkerke, NIKHEF

observable x

pa
ra

mete
r θ



What confidence interval means & concept of coverage

• A confidence interval is an interval on a parameter that contains 
the true value X% of the time

• This is a property of the procedure, and should be interpreted in 
the concept of repeated identical measurements:

Each future measurement will result a confidence interval that has 
somewhat different limits every time
(‘confidence interval limits are a random variable’)

But procedure is constructed such that true value is in X% of the 
intervals in a series of repeated measurements
(this calibration concept is called ‘coverage’. The Neyman
constructions guarantees coverage)

• It is explicitly not a probability statement on the true value 
you are trying to measure. In the frequentist the true value is fixed 
(but unknown)

Wouter Verkerke, NIKHEF



The confidence interval – Poisson counting example

• Given the probability model for Poisson counting example: for 
every hypothesized value of s, plot the expected distribution N

Wouter Verkerke, NIKHEF
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Confidence belt for
68% and 90% central intervals

Confidence belt for
68% and 90% lower limit

‘central’
ordering
rule

‘lower limit’
ordering
rule



The confidence interval – Poisson counting example

• Given confidence belt and observed data, confidence interval on 
parameter is defined by belt intersection

Confidence belt for
68% and 90% central intervals

Confidence belt for
68% and 90% lower limit

Nobs Nobs
Central interval on s at 68% C.L. Lower limit on s at 90% C.L.



Confidence intervals using the Likelihood Ratio test statistic

• Neyman Construction on Poisson counting looks like ‘textbook’ belt. 
• In practice we’ll use the Likelihood Ratio test statistic to summarize the 

measurement of a (multivariate) distribution for the purpose of 
hypothesis testing.

• Procedure to construct belt with LR is  identical: 
obtain distribution of λ for every value of μ to construct confidence belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

λμ(x,μ)

Likelihood Ratio λ

pa
ra

m
et

er
 μ

?



The asymptotic distribution of the likelihood ratio test statistic

• Given the likelihood ratio 

Q: What do we know about asymptotic distribution of λ(μ)? 

• A: Wilks theorem à Asymptotic form of  f(t|μ) is a χ2 distribution

f(tμ|μ) = c2(tμ,n)

• Note that f(tμ|μ) is independent of μ!
à Distribution of tμ is the same for every ‘horizontal slice’ of the belt

Wouter Verkerke, NIKHEF

tµ = −2 logλµ (x) = −2 log
L(x |µ)
L(x | µ̂)

Where 
μ is the hypothesis being tested and 
n is the number of parameters (here 1: μ )



Confidence intervals using the Likelihood Ratio test statistic

• Procedure to construct belt with LR is identical: 
obtain distribution of λ for every value of μ to construct belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood 
Ratio

pa
ra

m
et

er
 μ

Confidence 
belt now 
range in LR



What does the observed data look like with a LR?

• Note that while belt is (asymptotically) independent of parameter μ, 
observed quantity now is dependent of the assumed μ

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood Ratio
pa

ra
m

et
er

 μ

Measurement = tμ(xobs,μ) 
is now a function of μ



Connection with likelihood ratio intervals

• If you assume the asymptotic distribution for tμ, 
– Then the confidence belt is exactly a box 
– And the constructed confidence interval can be simplified

to finding the range in μ where tμ=½×Z2

à This is exactly the MINOS error

Wouter Verkerke, NIKHEF
tμ

pa
ra

m
et

er
 μ

FC interval with Wilks Theorem MINOS / Likelihood ratio interval

‘ex10_roostats_plr_interval.C’



Recap on confidence intervals

• Confidence intervals on parameters are constructed 
to have precisely defined probabilistic meaning
– This calibration is called “coverage” 

The Neyman Construction has coverage by construction
– This is different from parameter variance estimates 

(or Bayesian methods) that don’t have (a guaranteed) coverage
– For most realistic models confidence intervals are calculated using 

(Likelihood Ratio) test statistics to define the confidence belt

• Asymptotic properties
– In the asymptotic limit (Wilks theorem), 

Likelihood Ratio interval converges to a 
Neyman Construction interval 
(with guaranteed coverage) “Minos Error”
NB: the likelihood does not need to be
parabolic for Wilks theorem to hold

– Separately, in the limit of normal distributions the 
likelihood becomes exactly parabolic and 
the ML Variance estimate converges to 
the Likelihood Ratio interval Wouter Verkerke, NIKHEF



Bayesian inference with composite hypothesis

• With change LàL(μ) the prior and posterior model probabilities 
become probability density functions

Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(µ |
!
N ) = L(

!
N |µ)P(µ)

L(
!
N |µ)P(µ)dµ∫

Hb Hs+b

H(μ)

P(µ |
!
N )∝ L(

!
N |µ)P(µ)

Prior 
probability density

Posterior
probability density

NB: Likelihood is not a probability density



Bayesian credible intervals

• From the posterior density function, a credible interval can be 
constructed through integration

• Note that Bayesian interval estimation require no minimization 
of –logL, just integration Wouter Verkerke, NIKHEF

95% credible central interval 95% credible upper limit

Posterior on μ Posterior on μ

‘ex10_roostats_bayes_interval.C’



Bayesian parameter estimation

• Bayesian parameter estimate is the posterior mean

• Bayesian variance is the posterior variance 

Wouter Verkerke, NIKHEF

Mean= 
<x>

Variance = 
<x2>-<x>2

V̂ = (µ̂ −µ)2P(µ | N )∫ dµ

µ̂ = µP(µ | N )∫ dµ



Choosing Priors

• As for simple models, Bayesian inference always in involves a prior 
à now a prior probability density on your parameter

• When there is clear prior knowledge, it is usually straightforward to 
express that knowledge as prior density function
– Example: prior measurement of μ = 50 ± 10

– Posterior represents updated belief à It incorporates information from 
measurement and prior belief

– But sometimes we only want to publish result of this experiment, or there is no prior 
information. What to do? Wouter Verkerke, NIKHEF

prior p(μ)

posterior 
p(μ|x0)

likelihood
L(x0|μ)



Choosing Priors

• Common but thoughtless choice: a flat prior
– Flat implies choice of metric. Flat in x, is not flat in x2

• Flat prior implies choice on of metric
– A prior that is flat in μ is not flat in μ2

– ‘Preferred metric’ has often no clear-cut answer. 
(E.g. when measuring neutrino-mass-squared, state answer in m or m2)

– In multiple dimensions even complicated (prior flat in x,y or is prior flat in r,φ?)
Wouter Verkerke, NIKHEF

prior p(μ)

posterior 
p(μ|x0)

likelihood
L(x0|μ) prior p(μ’)

posterior 
p(μ’|x0)

likelihood
L(x0|μ’)

distribution in μ distribution in μ2



Is it possible to formulate an ‘objective’ prior?

• Can one define a prior p(μ) which contains as little information as 
possible, so that the posterior pdf is dominated by the likelihood?
– A bright idea, vigorously pursued by physicist Harold Jeffreys in in mid-

20thcentury:
– This is a really really thoughtless idea, recognized by Jeffreys as such, but 

dismayingly common in HEP: just choose p(μ) uniform in whatever metric you 
happen to be using! 

• “Jeffreys Prior” answers the question using a prior uniform in a 
metric related to the Fisher information.

– Unbounded mean μ of gaussian: p(μ) = 1
– Poisson signal mean μ, no background: p(μ) = 1/√μ

• Many ideas and names around on non-subjective priors
– Advanced subject well beyond scope of this course.
– Many ideas (see e.g. summary by Kass & Wasserman), 

but very much an open/active in area of research Wouter Verkerke, NIKHEF

I(θ ) = −E ∂2

∂θ 2
log f (x |θ )θ
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Sensitivity Analysis

• Since a Bayesian result depends on the prior probabilities, which are 
either personalistic or with elements of arbitrariness, it is widely 
recommended by Bayesian statisticians to study the sensitivity of the 
result to varying the prior.

• Sensitivity generally decreases with precision of experiment

• Some level of arbitrariness – what variations to consider in sensitivity 
analysis Wouter Verkerke, NIKHEF 



Summary
• Maximum Likelihood

– Point and variance estimation
– Variance estimate assumes normal

distribution. No upper/lower limits

• Frequentist confidence intervals
– Extend hypothesis testing to composite hypothesis
– Neyman construction provides exact “coverage” 

= calibration of quoted probabilities
– Strictly p(data|theory)
– Asymptotically identical to likelihood ratio intervals

(MINOS errors, does not assume parabolic L)

• Bayesian credible intervals
– Extend P(theo) to p.d.f. in model parameters
– Integrals over posterior density à credible intervals
– Always involves prior density function

in parameter space Wouter Verkerke, NIKHEF


