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Statistical 
methods 3b 
(continued)

Expected results, upper limits 
and asymptotic formulae



What can we do with composite hypothesis

• With simple hypotheses – inference is restricted to making 
statements about P(D|hypo) or P(hypo|D)

• With composite hypotheses – many more options
• 1 Parameter estimation and variance estimation

– What is value of s for which the observed data is most probable?
– What is the variance (std deviation squared) in the estimate of s?

• 2 Confidence intervals
– Statements about model parameters using frequentist concept of probability
– s<12.7 at 95% confidence level
– 4.5 < s < 6.8 at 68% confidence level

• 3 Bayesian credible intervals 
– Bayesian statements about model parameters
– s<12.7 at 95% credibility

Wouter Verkerke, NIKHEF

s=5.5 ± 1.3



Interval estimation with fundamental methods

• Can also construct parameters intervals using ‘fundamental’ 
methods explored earlier (Bayesian or Frequentist)

• Construct Confidence Intervals or Credible Intervals with defined 
probabilistic meaning, independent of assumptions on normality of 
distribution (Central Limit Theorem) à “95% C.L.”

• With fundamental methods you greater flexibility in types of 
interval.  E.g when no signal observed à usually wish to set an 
upper limit (construct ‘upper limit interval’)

Wouter Verkerke, NIKHEF



Reminder - Frequentist test statistics and p-values

• Definition of ‘p-value’: Probability to observe this outcome or more 
extreme in future repeated measurements is x%, if hypothesis is 
true

• Note that the definition of p-value assumes an explicit ordering of 
possible outcomes in the ‘or more extreme’ part

Wouter Verkerke, NIKHEF
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P-values with a likelihood ratio test statistic

• With the introduction of a (likelihood ratio) test statistic, hypothesis 
testing of models of arbitrary complexity is now reduced to the 
same procedure as the Poisson example

• Except that we generally 
don’t know distribution f(λ)…

λ(
!
N ) = L(

!
N |Hs+b )

L(
!
N |Hb )

log(λ)

λobs

p− value = f (λ |Hb )
λobs

∞

∫



A different Likelihood ratio for composite hypothesis testing

• On composite hypotheses, where both null and alternate 
hypothesis map to values of μ, we can define an alternative
likelihood-ratio test statistics that has better properties

• Advantage: distribution of new λμ has known asymptotic form

• Wilks theorem: distribution of –log(λμ) is asymptotically distribution 
as a χ2 with Nparam degrees of freedom*

*Some regularity conditions apply

• à Asymptotically, we can directly calculate p-value from λμobs

Wouter Verkerke, NIKHEF

λ(

N ) = L(


N |H0 )

L(

N |H1)

λµ (

Nobs ) =

L(

N |µ)

L(

N | µ̂)

‘simple hypothesis’ ‘composite hypothesis’ 

‘Best-fit value’

Hypothesis 
μ that is being 
tested



What does a χ2 distribution look like for n=1?

• Note that it for n=1, it does not peak at 1, but rather at 0…

Wouter Verkerke, NIKHEF



Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

− logµ

t0 = 34.77

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

Wilks: f(λ|0) à χ2 distribution



Composite hypothesis testing in the asymptotic regime

• For ‘histogram example’: what is p-value of null-hypothesis

t0 = 34.77 t0 = 0.02

t0 = −2 ln
L(data |µ = 0)
L(data | µ̂)

μ is best fit 
value of μ
^

‘likelihood of best fit’

‘likelihood assuming zero signal strength’

On signal-like data t0 is large On background-like data t0 is small

P-value = TMath::Prob(34.77,1) 
= 3.7x10-9

P-value = TMath::Prob(0.02,1) 
= 0.88

Use
Wilks

Theorem



How quickly does f(λμ|μ) converge to its asymptotic form

• Pretty quickly –

Wouter Verkerke, NIKHEF

Here is an example of likelihood function
for 10-bin distribution with 200 events

Here is an example for event
counting at various s,b



From hypothesis testing to confidence intervals

• Next step for composite hypothesis is to go from p-values for a 
hypothesis defined by fixed value of μ to an interval statement on μ 

• Definition: A interval on μ at X% confidence level is defined such that 
the true of value of μ is contained X% of the time in the interval.
– Note that the output is not a probabilistic statement on the true s value 
– The true μ is fixed but unknown – each observation will result in an estimated 

interval [μ-,μ+]. X% of those intervals will contain the true value of μ
– Coverage = guarantee that probabilistic statements is true (i.e. repeated future 

experiments do reproduce results in X% of cases)

• Definition of confidence intervals does not make 
any assumption on shape of interval 

à Can choose one-sided intervals (‘limits’), 
two-sided intervals (‘measurements’),
or even disjoint intervals (‘complicated measurements’)

Wouter Verkerke, NIKHEF



Exact confidence intervals – the Neyman construction

• Simplest experiment: one measurement (x), one theory parameter (q)
• For each value of parameter θ, determine distribution in in observable 

x

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval

• Focus on a slice in θ

– For a 1-a% confidence Interval, define acceptance interval
that contains 100%-a% of the distribution

Wouter Verkerke, NIKHEF

observable x

pdf for observable x
given a parameter value θ0



How to construct a Neyman Confidence Interval
• Definition of acceptance interval is not unique 

à Choose shape of interval you want to set here.
– Algorithm to define acceptance interval is called ‘ordering rule’

Wouter Verkerke, NIKHEF

observable x

pdf for observable x given a parameter value θ0

observable x

observable x

Lower Limit

Central Interval

Other options, are e.g. 
‘symmetric’ and ‘shortest’



How to construct a Neyman Confidence Interval

• Now make an acceptance interval in observable x
for each value of parameter θ

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval
• This makes the confidence belt

Wouter Verkerke, NIKHEF
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How to construct a Neyman Confidence Interval
• This makes the confidence belt
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How to construct a Neyman Confidence Interval

• The confidence belt can constructed in advance of any 
measurement, it is a property of the model, not the data

• Given a measurement x0, a confidence interval [θ+,θ-] can be 
constructed as follows

• The interval [θ-,θ+] has a 68% probability to cover the true value

Wouter Verkerke, NIKHEF
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What confidence interval means & concept of coverage

• A confidence interval is an interval on a parameter that contains 
the true value X% of the time

• This is a property of the procedure, and should be interpreted in 
the concept of repeated identical measurements:

Each future measurement will result a confidence interval that has 
somewhat different limits every time
(‘confidence interval limits are a random variable’)

But procedure is constructed such that true value is in X% of the 
intervals in a series of repeated measurements
(this calibration concept is called ‘coverage’. The Neyman
constructions guarantees coverage)

• It is explicitly not a probability statement on the true value 
you are trying to measure. In the frequentist the true value is fixed 
(but unknown)

Wouter Verkerke, NIKHEF



The confidence interval – Poisson counting example

• Given the probability model for Poisson counting example: for 
every hypothesized value of s, plot the expected distribution N

Wouter Verkerke, NIKHEF

Wouter Verkerke, NIKHEF

Confidence belt for
68% and 90% central intervals

Confidence belt for
68% and 90% lower limit

‘central’
ordering
rule

‘lower limit’
ordering
rule



The confidence interval – Poisson counting example

• Given confidence belt and observed data, confidence interval on 
parameter is defined by belt intersection

Confidence belt for
68% and 90% central intervals

Confidence belt for
68% and 90% lower limit

Nobs Nobs
Central interval on s at 68% C.L. Lower limit on s at 90% C.L.



Confidence intervals using the Likelihood Ratio test statistic

• Neyman Construction on Poisson counting looks like ‘textbook’ belt. 
• In practice we’ll use the Likelihood Ratio test statistic to summarize the 

measurement of a (multivariate) distribution for the purpose of 
hypothesis testing.

• Procedure to construct belt with LR is  identical: 
obtain distribution of λ for every value of μ to construct confidence belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

λμ(x,μ)

Likelihood Ratio λ

pa
ra

m
et

er
 μ

?



The asymptotic distribution of the likelihood ratio test statistic

• Given the likelihood ratio 

Q: What do we know about asymptotic distribution of λ(μ)? 

• A: Wilks theorem à Asymptotic form of  f(t|μ) is a χ2 distribution

f(tμ|μ) = c2(tμ,n)

• Note that f(tμ|μ) is independent of μ!
à Distribution of tμ is the same for every ‘horizontal slice’ of the belt

Wouter Verkerke, NIKHEF

tµ = −2 logλµ (x) = −2 log
L(x |µ)
L(x | µ̂)

Where 
μ is the hypothesis being tested and 
n is the number of parameters (here 1: μ )



Confidence intervals using the Likelihood Ratio test statistic

• Procedure to construct belt with LR is identical: 
obtain distribution of λ for every value of μ to construct belt   

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood 
Ratio

pa
ra

m
et

er
 μ

Confidence 
belt now 
range in LR



What does the observed data look like with a LR?

• Note that while belt is (asymptotically) independent of parameter μ, 
observed quantity now is dependent of the assumed μ

x=3.2

observable x

pa
ra

m
et

er
 μ

tμ(x,μ)

Likelihood Ratio
pa

ra
m

et
er

 μ

Measurement = tμ(xobs,μ) 
is now a function of μ



Connection with likelihood ratio intervals

• If you assume the asymptotic distribution for tμ, 
– Then the confidence belt is exactly a box 
– And the constructed confidence interval can be simplified

to finding the range in μ where tμ=½×Z2

à This is exactly the MINOS error

Wouter Verkerke, NIKHEF
tμ
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FC interval with Wilks Theorem MINOS / Likelihood ratio interval

‘ex10_roostats_plr_interval.C’



Recap on confidence intervals

• Confidence intervals on parameters are constructed 
to have precisely defined probabilistic meaning
– This calibration is called “coverage” 

The Neyman Construction has coverage by construction
– This is different from parameter variance estimates 

(or Bayesian methods) that don’t have (a guaranteed) coverage
– For most realistic models confidence intervals are calculated using 

(Likelihood Ratio) test statistics to define the confidence belt

• Asymptotic properties
– In the asymptotic limit (Wilks theorem), 

Likelihood Ratio interval converges to a 
Neyman Construction interval 
(with guaranteed coverage) “Minos Error”
NB: the likelihood does not need to be
parabolic for Wilks theorem to hold

– Separately, in the limit of normal distributions the 
likelihood becomes exactly parabolic and 
the ML Variance estimate converges to 
the Likelihood Ratio interval Wouter Verkerke, NIKHEF



Bayesian inference with composite hypothesis

• With change LàL(μ) the prior and posterior model probabilities 
become probability density functions

Wouter Verkerke, NIKHEF

P(Hs+b |
!
N ) = L(

!
N |Hs+b )P(Hs+b )

L(
!
N |Hs+b )P(Hs+b )+ L(

!
N |Hb )P(Hb )

P(µ |
!
N ) = L(

!
N |µ)P(µ)

L(
!
N |µ)P(µ)dµ∫

Hb Hs+b

H(μ)

P(µ |
!
N )∝ L(

!
N |µ)P(µ)

Prior 
probability density

Posterior
probability density

NB: Likelihood is not a probability density



Bayesian credible intervals

• From the posterior density function, a credible interval can be 
constructed through integration

• Note that Bayesian interval estimation require no minimization 
of –logL, just integration Wouter Verkerke, NIKHEF

95% credible central interval 95% credible upper limit

Posterior on μ Posterior on μ

‘ex10_roostats_bayes_interval.C’



Bayesian parameter estimation

• Bayesian parameter estimate is the posterior mean

• Bayesian variance is the posterior variance 

Wouter Verkerke, NIKHEF

Mean= 
<x>

Variance = 
<x2>-<x>2

V̂ = (µ̂ −µ)2P(µ | N )∫ dµ

µ̂ = µP(µ | N )∫ dµ



Choosing Priors

• As for simple models, Bayesian inference always in involves a prior 
à now a prior probability density on your parameter

• When there is clear prior knowledge, it is usually straightforward to 
express that knowledge as prior density function
– Example: prior measurement of μ = 50 ± 10

– Posterior represents updated belief à It incorporates information from 
measurement and prior belief

– But sometimes we only want to publish result of this experiment, or there is no prior 
information. What to do? Wouter Verkerke, NIKHEF

prior p(μ)

posterior 
p(μ|x0)

likelihood
L(x0|μ)



Choosing Priors

• Common but thoughtless choice: a flat prior
– Flat implies choice of metric. Flat in x, is not flat in x2

• Flat prior implies choice on of metric
– A prior that is flat in μ is not flat in μ2

– ‘Preferred metric’ has often no clear-cut answer. 
(E.g. when measuring neutrino-mass-squared, state answer in m or m2)

– In multiple dimensions even complicated (prior flat in x,y or is prior flat in r,φ?)
Wouter Verkerke, NIKHEF

prior p(μ)

posterior 
p(μ|x0)

likelihood
L(x0|μ) prior p(μ’)

posterior 
p(μ’|x0)

likelihood
L(x0|μ’)

distribution in μ distribution in μ2



Is it possible to formulate an ‘objective’ prior?

• Can one define a prior p(μ) which contains as little information as 
possible, so that the posterior pdf is dominated by the likelihood?
– A bright idea, vigorously pursued by physicist Harold Jeffreys in in mid-

20thcentury:
– This is a really really thoughtless idea, recognized by Jeffreys as such, but 

dismayingly common in HEP: just choose p(μ) uniform in whatever metric you 
happen to be using! 

• “Jeffreys Prior” answers the question using a prior uniform in a 
metric related to the Fisher information.

– Unbounded mean μ of gaussian: p(μ) = 1
– Poisson signal mean μ, no background: p(μ) = 1/√μ

• Many ideas and names around on non-subjective priors
– Advanced subject well beyond scope of this course.
– Many ideas (see e.g. summary by Kass & Wasserman), 

but very much an open/active in area of research Wouter Verkerke, NIKHEF

I(θ ) = −E ∂2

∂θ 2
log f (x |θ )θ
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Sensitivity Analysis

• Since a Bayesian result depends on the prior probabilities, which are 
either personalistic or with elements of arbitrariness, it is widely 
recommended by Bayesian statisticians to study the sensitivity of the 
result to varying the prior.

• Sensitivity generally decreases with precision of experiment

• Some level of arbitrariness – what variations to consider in sensitivity 
analysis Wouter Verkerke, NIKHEF 



Summary
• Maximum Likelihood

– Point and variance estimation
– Variance estimate assumes normal

distribution. No upper/lower limits

• Frequentist confidence intervals
– Extend hypothesis testing to composite hypothesis
– Neyman construction provides exact “coverage” 

= calibration of quoted probabilities
– Strictly p(data|theory)
– Asymptotically identical to likelihood ratio intervals

(MINOS errors, does not assume parabolic L)

• Bayesian credible intervals
– Extend P(theo) to p.d.f. in model parameters
– Integrals over posterior density à credible intervals
– Always involves prior density function

in parameter space Wouter Verkerke, NIKHEF
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Model building 4 
Models with parameters II -

simultaneous fits, representing 
external information as subsidiary 
measurements (‘profile likelihood 

fits’)
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So far we’ve only considered the ideal experiment

• The “only thing” you need to do (as an experimental physicist) is to 
formulate the likelihood function for your measurement

• For an ideal experiment, where signal and background are 
assumed to have perfectly known properties, this is trivial

• So far only considered a single parameter in the likelihood:
the physics parameter of interest, usually denoted as μ

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏



The imperfect experiment

• In realistic measurements many effect that we don’t control 
exactly influence measurements of parameter of interest

• How do you model these uncertainties in the likelihood? 

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions
are affected by (systematic) uncertainties



Adding parameters to the model

• We can describe uncertainties in our model by adding new 
parameters of which the value is uncertain

• These additional model parameters are not ‘of interest’, but we 
need them to model uncertainties à ‘Nuisance parameters’

Wouter Verkerke, NIKHEF

L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )

L(
!
N |µ) = Poisson(Ni |µ ⋅ !si + !bi )

bins
∏



What are the nuisance parameters of your physics model?

• Empirical modeling of uncertainties, e.g. polynomial for background, 
Gaussian for signal, is easy to do, but may lead to hard questions

• Is your model correct? (Is true signal distr. captured by a Gaussian?)
• Is your model flexible enough? (4th order polynomial, or better 6th)?
• How do model parameters connect to known detector/theory 

uncertainties in your distribution? 
– what conceptual uncertainty do your parameters represent?

Wouter Verkerke, NIKHEF

L(x | f ,m,σ ,a0,a1,a2 ) = fG(x,m,σ )+ (1− f )Poly(x,a0,a1,a2 )



What information constrains nuisance parameters?

• Some datasets contain sufficient information to constrain nuisance 
parameters, other do not.

Wouter Verkerke, NIKHEF

Example 1 – Shape fit Example 2 – Counting experiment

f(x|S,B)=S*Gaussian(x)+B*Uniform(x) f(N|S,B)=Poisson(N|S+B)

Sufficient information
in data to constrain both S,B

Insufficient information
in data to constrain both S,B

à Need additional measurement of B



Simultaneous fits / joint likelihoods

• If >1 measurements exist that constrain (nuisance) parameters,
can combine information by formulating a joint likelihood

• No constraints shapes or forms of Likelihood
– Can combine counting measurement, shape measurement
– Likelihoods can have same observables, different observables, all OK
– Only condition is that parameter have same meaning in all measurements   

Wouter Verkerke, NIKHEF

LA(x|S,B) LB(y|B)

L(x,y|S,B)A+B = LA(x|S,B)*LB(y|B)

‘ex17_combined.C’



Constraining a nuisance parameter from a control region

• Solution for Poisson counting measurement P(N|S+B) 
with unconstrained B is to join with 
measurement in a control region that measures B only

Wouter Verkerke, NIKHEF

LSIG(Nsig|S,B)=Poisson(Nsig|S+B) LCTL=Poisson(NCTL|τ*B)

Ljoint(NSIG,NCTL|S,B)A+B = Poisson(Nsig|S+B)*Poisson(NCTL|τ*B)

Sufficient information in joint Likelihood to solve for both S and B



Constraining parameters from >>1 region

• Inference from joint likelihood models combines information from 
all measurements that carry information on a given parameter
– Can also combine many measurements that constrain the same parameter

• So can also do LSIG1 + LSIG2 +…+ LSIGN instead of LSIG + LCTL
or any combination of signal and control regions 

Wouter Verkerke, NIKHEF

W+b(b) enriched
control region

Z+b(b) enriched
control regionExample: 

Higgs channels from ATLAS and CMS, 
along with the background control regions

All channels measure common 
Higgs signal strength modifier

(=deviation of expectation from SM)



Splitting signal regions by expected purity

• Another common strategy that results in >>1 signal region,
is to split an existing (big) signal region in multiple regions
that have different expected purity

• Prototypical problem – MVA classifier sorts observed events by purity
– If MVA shape is trusted (well understood in simulation) à fit MVA distribution
– But MVA classification is not well trusted, then what?

• If another discriminating observable exists (e.g. invariant mass)
– Train MVA without this observable
– Fit ‘invariant mass’ in bins of MVA observable 

à Measures signal count independent of MVA prediction
– Exploits difference in purity across MVA prediction range 

without relying on its predicted distribution

Wouter Verkerke, NIKHEF



Visualization of signal region splitting

• Split data in regions by BDT score, fit each region with inv. mass

fbin−i (m | S,B) =
S
fsig
bin−i

fS (m)+ Bbin−i fB (s)

(S / fsig
bin−i )

(S / fsig
bin−i )+ B

BDT bin

Fitted purity
in each bin

Scale factor that ensures
that every bin interprets 
S as the total signal yield



Visualization of signal region splitting

• Split data in regions by BDT score, fit each region with inv. mass

fbin−i (m | S,B) =
S
fsig
bin−i

fS (m)+ Bbin−i fB (s)

(S / fsig
bin−i )

(S / fsig
bin−i )+ B

BDT bin

Fitted purity
in each bin

Scale factor that ensures
that every bin interprets 
S as the total signal yield

fbin−0 (m | S,B0 ) =
S
fsig
bin−0

fS (m)+ Bbin−0 fB (s)

fbin−1(m | S,B1) =
S
fsig
bin−1

fS (m)+ Bbin−1 fB (s)

fbin−2 (m | S,B2 ) =
S
fsig
bin−2

fS (m)+ Bbin−2 fB (s)

fbin−3(m | S,B3) =
S
fsig
bin−3

fS (m)+ Bbin−3 fB (s)

fbin−N (m | S,BN ) =
S
fsig
bin−N

fS (m)+ Bbin−N fB (s)

f (m,nBDT | S,
!
B) = lookup(nBDT )

!

Joint PDF for 
this model

// Construct template model
w.factory("SUM::fit_template(prod(Nsig[30,0,100],frac[1])*sig1,

Nbkg[1000,0,10000]*bkg1)") ;

// Construct joint model from template clones
w.factory("SIMCLONE::fitmodel(fit_template,

$SplitParam({Nbkg,frac},bdtBin))") ;



The imperfect experiment

• When relying on simulation templates to build models, a whole 
world of problems awaits when considering that simulation 
predictions have many systematic uncertainties associated with 
them?

Wouter Verkerke, NIKHEF

L(
!
N |µ) =

Poisson(Ni |µ ⋅ !si + !bi )
bins
∏

Signal and background predictions
are affected by (systematic) uncertainties

‘ex13_build_binned.C’



The simulation workflow and origin of uncertainties

Wouter Verkerke, NIKHEF
Wouter Verkerke, NIKHEF 
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Typical systematic uncertainties in HEP

• Detector-simulation related
– “The Jet Energy scale uncertainty is 5%”
– “The b-tagging efficiency uncertainty is 20% for jets with pT<40”

• Physics/Theory related
– The top cross-section uncertainty is 8%
– “Vary the factorization scale by a factor 0.5 and 2.0 and consider the 

difference the systematic uncertainty”
– “Evaluate the effect of using Herwig and Pythia and consider the difference 

the systematic uncertainty”

• MC simulation statistical uncertainty
– Effect of (bin-by-bin) statistical uncertainties in MC samples 

Wouter Verkerke, NIKHEF



What can you do with systematic uncertainties

• As most of the typical systematic prescriptions have no immediately 
apparent parametric formulation in your likelihood, common approach 
is ‘vary setting, rerun analysis, observe the difference’ 

• This common ‘naïve’ approach to assess effect of systematic 
uncertainties amounts to simple error propagation

• Error propagation procedure in a nutshell
– Make nominal measurement (using your favorite statistical inference procedure)
– Change setting in detector simulation or theory (e.g. shift Jet Calibration scale by ‘1 

sigma’ up and down ) Redo measurement procedure for each shift
– Consider propagated effect of shifted setting the systematic uncertainty

Wouter Verkerke, NIKHEF

µ = µnom ±σ stat ± (µsyst
up −µsyst

down ) / 2±...

From statistical
analysis

Systematic uncertainty
from error propagation



Pros and cons of the ‘naïve’ approach

• Pros
– It’s easy to do
– It results in a seemingly easy-to-interpret table of systematics

• Cons
– Uncorrelated source of systematic uncertainty can have correlated effect on 

measurement à Completely ignored
– Magnitude of stated systematic uncertainty may be incompatible with 

measurement result à Completely ignored 
– You lost the connection with fundamental statistical techniques 

(i.e. evaluation of systematic uncertainties is completely detached from 
statistical procedure used to estimate physics quantity of interest) à No 
prescription to make confidence intervals, Bayesian posteriors etc in this way

– No calibrated probabilistic statements possible (95% C.L.)

• ‘Profiling’ à Incorporate a description of systematic uncertainties 
in the likelihood function that is used in statistical procedures 

Wouter Verkerke, NIKHEF



Introducing uncertainties – a non-systematic example

• The original model (with fixed b)

• Now consider b to be uncertain

• The experimental data contains insufficient to constrain both
s and b à Need to add an additional measurement to constrain b

Wouter Verkerke, NIKHEF

s=0

s=5

s=10
s=15

L(N|s) à L(N|s,b)



The sideband measurement

• Suppose your data 
in reality looks like this è

Can estimate level of background in the ‘signal region’ from event 
count in a ‘control region’ elsewhere in phase space 

• Full likelihood of the measurement (‘simultaneous fit’)

LSR (s,b) = Poisson(NSR | s+ b)
LCR (b) = Poisson(NCR | !τ ⋅b)

NB: Define parameter ‘b’ to represents 
the amount of bkg is the SR. 

Scale factor τ accounts for difference 
in size between SR and CR

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

CR SR

“Background uncertainty constrained from the data”

‘ex11_build_PoissonPoisson.C’



Generalizing the concept of the sideband measurement

• Background uncertainty from sideband clearly clearly not a 
‘systematic uncertainty’

• Now consider scenario where b is not measured from a sideband, 
but is taken from MC simulation with an 8% cross-section 
‘systematic’ uncertainty

– We can model this in the same way, because the cross-section uncertainty is 
also (ultimately) the result of a measurement

Wouter Verkerke, NIKHEF

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Poisson(NCR | !τ ⋅b)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)

‘Measured background rate by MC simulation’

‘Subsidiary measurement’
of background rate

Generalize: ‘sideband’ à ‘subsidiary measurement’

‘ex12_build_PoissonGaussGlobs.C’



What is a systematic uncertainty?

• Concept & definitions of ‘systematic uncertainties’ originates from 
physics, not from fundamental statistical methodology.
– E.g. Glen Cowans (excellent) 198pp book “statistical data analysis” 

does not discuss systematic uncertainties at all

• A common definition is
– “Systematic uncertainties are all uncertainties that are 

not directly due to the statistics of the data”

• But the notion of ‘the data’ is a key source of ambiguity: 
– does it include control measurements?
– does it include measurements that were used to perform basic 

(energy scale) calibrations?

Wouter Verkerke, NIKHEF



Typical systematic uncertainties in HEP

• Detector-simulation related
– “The Jet Energy scale uncertainty is 5%”
– “The b-tagging efficiency uncertainty is 20% 

for jets with pT<40”

• Physics/Theory related
– The top cross-section uncertainty is 8%
– “Vary the factorization scale by a factor 0.5 

and 2.0 and consider the difference 
the systematic uncertainty”

– “Evaluate the effect of using 
Herwig and Pythia and consider the difference 
the systematic uncertainty”

• MC simulation statistical uncertainty
– Effect of (bin-by-bin) statistical uncertainties

in MC samples 

Wouter Verkerke, NIKHEF

Subsidiary measurement
is an actual measurement
à conceptually similar to 

a ‘sideband’ fit

Subsidiary measurement
unclear, but origin of
prescription may well
be another measurement
(if yes, like sideband, if
no, what is source of info?)

Subsidiary measurement
is a Poisson counting
experiment (but now in
MC events), otherwise
conceptually identical to
a ‘sideband fit’



Typical systematic uncertainties in HEP

• Detector-simulation related
– “The Jet Energy scale uncertainty is 5%”
– “The b-tagging efficiency uncertainty is 20% 

for jets with pT<40”

• Physics/Theory related
– The top cross-section uncertainty is 8%
– “Vary the factorization scale by a factor 0.5 

and 2.0 and consider the difference 
the systematic uncertainty”

– “Evaluate the effect of using 
Herwig and Pythia and consider the difference 
the systematic uncertainty”

• MC simulation statistical uncertainty
– Effect of (bin-by-bin) statistical uncertainties

in MC samples 

Wouter Verkerke, NIKHEF

Subsidiary measurement
is an actual measurement
à conceptually to 

a ‘sideband’ fit

Subsidiary measurement
unclear, but origin of
prescription may well
be another measurement
(if yes, like sideband, if
no, what is source of info?)

Subsidiary measurement
is a Poisson counting
experiment (but now in
MC events), otherwise
conceptually identical to
a ‘sideband fit’

Almost all systematic uncertainties are similar in nature 
to ‘sidebands’ measurements of some form or shape

à Can always model systematics like sidebands 
in the Likelihood

And even when the are not the (in)direct result of 
some measurement (certainty theory uncertainties)
we can still model them in that form



Modeling a detector calibration uncertainty

• Now consider a detector uncertainty, e.g. jet energy scale 
calibration, which can affect the analysis acceptance in a non-trivial 
way (unlike the cross-section example) 

L(N, !α | s,α) = Poisson(N | s+ !b(α / !α) ⋅2)) ⋅Gauss( !α |α,σα )

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant), obtained
with a=a˜

Response function
for JES uncertainty
(a 1% JES change 

results in a 2% 
acceptance change)

“Subsidiary measurement”
Encodes ‘external knowledge’ 
on JES calibration

Nominal calibration
Assumed calibration

Uncertainty
on nominal
calibration
(here 5%)

Lfull (s,b) = Poisson(NSR | s+ b) ⋅Gauss( !b | b, 0.08)



Modeling a detector calibration uncertainty

• Simplify expression by renormalizing “subsidiary measurement”

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ !b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Signal rate (our parameter of interest)

Observed event count

Nominal background 
expectation from MC
(a constant)

Response function
for normalized JES 

parameter
[a unit change in α 

– a 5% JES change –
still results in a 10% 
acceptance change]

“Normalized 
subsidiary measurement”

The scale of parameter
α is now chosen such that 
values ±1 corresponds to the 
nominal uncertainty
(in this example 5%)

Gauss( α |α,σα )



The response function as empirical model of full simulation

• Note that the response function is generally not linear, but can in 
principle always be determined by your full simulation chain
– But you cannot run your full simulation chain for any arbitrary ‘systematic 

uncertainty variation’ à Too much time consuming
– Typically, run full MC chain for nominal and ±1σ variation of systematic 

uncertainty, and approximate response for other values of NP with interpolation
– For example run at nominal JES and with JES shifted up and down by ±5%

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

α

b(
α)

-1 0 +1 0.9

1.0

1.1

Full MC result for JES at -5%

Full MC result for JES at +5%
Empirical approximation
of true response



What is a systematic uncertainty?

• It is an uncertainty in the Likelihood of your physics measurement
that is characterized deterministically, up to a set of parameters,
of which the true value is unknown.

• A fully specified systematic uncertainty defines 
– 1: A set of one or more parameters 

of which the true value is unknown, 

– 2: A response model that describes the effect of those 
parameters on the measurement
(sampled from full simulation, and interpolation)

– 3: A subsidiary measurement of the parameters
that constrains the values the parameters can take
(implies a specific distribution: Gaussian (default, CLT),
Poisson (low-stats counting), or otherwise)

Wouter Verkerke, NIKHEF



Names and conventions – ‘profiling’ & ‘constraints’

• The full likelihood function of the form 

is usually referred to by physicists as a ‘profile likelihood’, and 
systematics are said to be ‘profiled’ when incorporated this way
– Note: statisticians use the word profiling for something else

• Physicists often refer to the subsidiary measurement as a 
‘constraint term’
– This is correct in the sense that it constrains the parameter α, but this labeling

commonly lead to mistaken statements (e.g. that it is a pdf for α)
– But it is not a pdf in the NP

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(α)) ⋅Gauss(0 |α,1)

Gauss(0 |α,1)Gauss(α | 0,1)

‘ex12_build_PoissonGaussGlobs.C’



Names and conventions

• The ‘subsidiary measurement’ as simplified form of the ‘full 
calibration measurement’ also illustrates another important point
– The full likelihood is simply a joint likelihood of a physics measurement and a 

calibration measurement where both terms are treated on equal footing in the 
statistical procedure

– In a perfect world, not bound by technical modelling constraints
you would use this likelihood

where LJES is the full calibration measurement as performed by the Jet 
calibration group, based on a dataset y, and which may have other 
parameters θ specific to the calibration measurement.

• Since we are bound by technical constrains, we substitute LJES
with simplified (Gaussian) form, but the statistical treatment and 
interpretation remains the same

Wouter Verkerke, NIKHEF

L(N, y | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅LJES (
y |α,


θ )



Gamma and logNormal distributions

Wouter Verkerke, NIKHEF, 68

Gamma distribution
=distribution of µ resulting from
a Poisson measurement L(N|µ)

logNormal distribution



MC statistical uncertainties as systematic uncertainty

• Another example of modeling a systematic uncertainty:
MC statistical uncertainty

• Follow same procedure again as before: 
– Define response function (this is trivial for MC statistics: 

it is the luminosity ratio of the MC sample and the data sample)
– Define distribution for the ‘subsidiary measurement’ – This is a Poisson 

distribution – since MC simulation is also a Poisson process
– Construct full likelihood (‘profile likelihood’)

• Note uncanny similarity to full likelihood of a sideband measurement! 

Wouter Verkerke, NIKHEF

L(N,NMC | s,b) = Poisson(N | s+ b) ⋅Poisson(NMC |τ ⋅b)
Constant factor τ = L(MC)/L(data)

L(N,Nctl | s,b) = Poisson(N | s+ b) ⋅Poisson(Nctl |τ ⋅b)



Modeling multiple systematic uncertainties

• Introduction of multiple systematic uncertainties presents no 
special issues

• Example JES uncertainty plus generator ISR uncertainty

• A brief note on correlations
– Word “correlations” often used sloppily – proper way is to think of correlations 

of parameter estimators. Likelihood defines parameters αJES, αISR. 
The (ML) estimates of these are denoted

– The ML estimators of               using the Likelihood of the subsidiary 
measurements are uncorrelated (since the product factorize in this example)

– The ML estimators of               using the full Likelihood may be correlated.
This is due to physics modeling effects encoded in the joint response function 

Wouter Verkerke, NIKHEF

L(N, 0 | s,αJES,α ISR ) = P(N | s+ b(1+ 0.1αJES + 0.05α ISR )) ⋅G(0 |αJES,1) ⋅G(0 |α ISR,1)

Joint response function
for both systematics

One subsidiary
measurement for each
source of uncertainty

α̂JES,α̂ ISR

α̂JES,α̂ ISR

α̂JES,α̂ ISR



Modeling systematic uncertainties in multiple channels

• Systematic effects that affect multiple measurements should be 
modeled coherently.
– Example – Likelihood of two Poisson counting measurements

– Effect of changing JES parameter αJES coherently affects both measurement.
– Magnitude and sign effect does not need to be same, this is dictated by the 

physics of the measurement 

Wouter Verkerke, NIKHEF

L(NA,NB | s,αJES ) = P(NA | s ⋅ fA + bA (1+ 0.1αJES )) ⋅P(NB | s ⋅ fB + bB (1− 0.3αJES )) ⋅G(0 |αJES,1) ⋅
JES response 
function for 
channel A

JES response 
function for 
channel B

JES
subsidiary

measurement



Introducing response functions for shape uncertainties 

• Modeling of systematic uncertainties in Likelihoods describing 
distributions follows the same procedure as for counting models
– Example: Likelihood modeling 

distribution in a di-lepton invariant
mass. POI is the signal strength μ

• Consider a lepton energy scale 
systematic uncertainty that affects this measurement
– The LES has been measured with a 1% precision
– The effect of LES on mll has been determined to a 2% shift for 1% LES change

Wouter Verkerke, NIKHEF

L( mll |µ) = µ ⋅Gauss(mll
(i), 91,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)

Response function Subsidiary measurement



Response modeling for distributions

• For a change in the rate, response 
modeling of histogram-shaped 
distribution is straightforward:
simply scale entire distribution

• But what about a systematic uncertainty that shifts the mean,
or affects the distribution in another way?

Wouter Verkerke, NIKHEF

L(
!
N |µ) = Poisson(

i
∏ Ni |µ !si + !bi )

L(
!
N |µ,α) = Poisson(

i
∏ Ni |µ !si ⋅ (1+3.75α)+ !bi ) ⋅Gauss(0 |α,1)

Response function
for signal rate

Subsidiary 
measurement



Modeling of shape systematics in the likelihood

• Effect of any systematic uncertainty that affects the shape of a 
distribution can in principle be obtained from MC simulation chain
– Obtain histogram templates for distributions at ‘+1σ’ and ‘-1σ’ 

settings of systematic effect

• Challenge: construct an empirical response function based on 
the interpolation of the shapes of these three templates. 

Wouter Verkerke, NIKHEF

‘-1σ’ ‘nominal’ ‘+1σ’



Need to interpolate between template models

• Need to define ‘morphing’ algorithm to define 
distribution s(x) for each value of α

Wouter Verkerke, NIKHEF
s(x,α=-1)

s(x,α=0)

s(x,α=+1)
s(x)|α=-1

s(x)|α=0

s(x)|α=+1



Piecewise linear interpolation

• Simplest solution is piece-wise linear interpolation for each bin

Wouter Verkerke, NIKHEF

Piecewise linear
interpolation
response model
for a one bin

Extrapolation to |α|>1

Kink at α=0

Ensure si(α)≥0



Visualization of bin-by-bin linear interpolation of distribution

Wouter Verkerke, NIKHEF

xα

‘ex15_build_binned_morphing.C’



There are other morphing algorithms to choose from

Wouter Verkerke, NIKHEF, 78

Vertical
Morphing

Horizontal
Morphing

Moment
Morphing

Gaussian
varying
width

Gaussian
varying
mean

Gaussian
to

Uniform
(this is

conceptually ambigous!)

n-dimensional
morphing? ✔ ✗ ✔



Piece-wise interpolation for >1 nuisance parameter

• Concept of piece-wise linear interpolation can be trivially extended 
to apply to morphing of >1 nuisance parameter.
– Difficult to visualize effect on full distribution, but easy to understand concept 

at the individual bin level

Wouter Verkerke, NIKHEF

Visualization of 2D interpolation



Shape, rate or no systematic?

• Be judicious with modeling of systematic with little or no significant 
change in shape (w.r.t MC template statistics)
– Example morphing of a very subtle change in the background model
– Is this a meaningful new degree of freedom in the likelihood model?

– A χ2 or KS test between
nominal and alternate
template can help to decide 
if a shape uncertainty is meaningul

– Most systematic uncertainties
affect both rate and shape, but can make
independent decision on modeling rate (which less likely to affect fit stability)

Wouter Verkerke, NIKHEF



Fit stability due to insignificant shape systematics

• Shape of profile likelihood in NP α clearly raises two points

• 1) Numerical minimization process will be ‘interesting’
• 2) MC statistical effects induce strongly defined minima that are fake

– Because for this example all three templates were sampled from the same parent 
distribution (a uniform distribution)

Wouter Verkerke, NIKHEF

+ à
− logλ(α) = − log L(α,

ˆ̂µ)
L(α̂, µ̂)



Recap on shape systematics & template morphing 

• Implementation of shape systematic in 
likelihoods modeling distributions conceptually 
no different that rate systematics in counting 
experiments

• For template modes obtained from MC simulation template 
provides a technical solution to implement response function
– Simplest strategy piecewise linear interpolation,

but only works well for small changes
– Moment morphing better adapted to modeling

of shifting distributions
– Both algorithms extend to n-dimensional

interpolation to model multiple systematic NPs
in response function

– Be judicious in modeling ‘weak’ systematics:
MC systematic uncertainties will dominate likelihood Wouter Verkerke, NIKHEF

L( mll |µ,αLES ) = µ ⋅Gauss(mll
(i), 91⋅ (1+ 2αLES,1)+ (1−µ) ⋅Uniform(mll

(i) )#$ %&
i
∏ ⋅Gauss(0 |αLES,1)



Wouter Verkerke, NIKHEF

Statistical 
methods 4 

Parameters of interest vs
nuisance parameters, dealing 
with nuisance parameters in 

inference methods



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Advanced signal modeling techniques 

Model building Statistical methods



The statisticians view on nuisance parameters

• In general, our model of the data is not perfect

• Can improve modeling by including additional adjustable parameters
• Goal: some point in the parameter space of the enlarged model 

should be “true”

• Presence of nuisance parameters decreases the sensitivity of the 
analysis of the parameter(s) of interest

Wouter Verkerke, NIKHEF



Treatment of nuisance parameters in variance estimation

• Maximum likelihood estimator of parameter variance 
is based on 2nd derivative of Likelihood 
– For multi-parameter problems this 2nd derivative is generalized 

by the Hessian Matrix of partial second derivatives

• For multi-parameter likelihoods estimate of covariance Vij of pair
of 2 parameters in addition to variance of individual parameters
– Usually re-expressed in terms dimensionless correlation coefficients ρ

Wouter Verkerke, NIKHEF
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Treatment of nuisance parameters in variance estimation

• Effect of NPs on variance estimates visualized

Wouter Verkerke, NIKHEF
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Treatment of NPs in hypothesis testing and conf. intervals

• We’ve covered frequentist hypothesis testing and interval 
calculation using likelihood ratios based on a likelihood with a 
single parameter (of interest) L(μ)
– Result is p-value on hypothesis with given μ value, or
– Result is a confidence interval [μ-,μ+] with values of μ for which p-value is at or 

above a certain level (the confidence level)

• How do you do this with a likelihood L(μ,θ) where θ is a nuisance 
parameter?
– With a test statistics qμ, we calculate p-value for hypothesis θ as

• But what values of θ do we use for f(qμ|μ,θ)?
Fundamentally, we want to reject μ only if p<α for all θ
à Exact confidence interval

ò
¥

=
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dqqfp
,

),|(
µ

µµµ qµ



Hypothesis testing & conf. intervals with nuisance parameters

• The goal is that the parameter of interest should be covered at the 
stated confidence for every value of the nuisance parameter

• if there is any value of the nuisance parameter which makes the 
data consistent with the parameter of interest, that value of the 
POI should be considered: 
– e.g. don’t claim discovery if any background scenario is compatible with data

• But: technically very challenging and significant problems with 
over-coverage
– Example: how broadly should ‘any background scenario’ be defined?  Should 

we include background scenarios that are clearly incompatible with the 
observed data?

Wouter Verkerke, NIKHEF, 89



Example of over-coverage

• The 1958 thought expt of David R. Cox focused the issue:
– Your procedure for weighing an object consists of flipping a coin to decide 

whether to use a weighing machine with a 10% error or one with a 1% error; 
and then measuring the weight.

• Then “surely” the error you quote for your measurement should 
reflect which weighing machine you actually used, and not the 
average error of the “whole space” of all measurements!

• But this is not how the classical frequentist confidence interval 
works!
– Suppose weight=100, coin=‘1% error’ Can you exclude weight=90 at 95% 

C.L? 
– No: because for ‘coin=10% error‘ weight=90 cannot be excluded at 95% C.L.

• Solution: conditioning on observed data will make result more 
relevant (at expense of exact frequentist coverage)
– Restricting whole space of probabilities to ‘coin=1% error’ only if that is 

observed allows to exclude weight=90 at 95% C.L. 



The profile likelihood construction as compromise

• For LHC the following prescription is used: 

Given L(μ,θ)

perform hypothesis test for each value of μ (the POI), 

using values of nuisance parameter(s) θ that best fit the data 
under the hypothesis μ

• Introduce the following notation

• The resulting confidence interval will have exact coverage for the 
points
– Elsewhere it may overcover or undercover (but this can be checked)

Wouter Verkerke, NIKHEF, 91

)(ˆ̂ µq M.L. estimate of θ for a given value of μ
(i.e. a conditional ML estimate)

))(ˆ̂,( µqµ

POI

NPs



The profile likelihood ratio

• With this prescription we can construct the profile likelihood ratio 
as test statistic

• NB: value profile likelihood ratio does not depend on θ

Wouter Verkerke, NIKHEF, 92
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Profiling illustration with one nuisance parameter

Wouter Verkerke, NIKHEF, 93
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Profile scan of a Gaussian plus Polynomial probability model

Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)



Profile scan of a Gaussian plus Polynomial probability model

Wouter Verkerke, NIKHEF

Likelihood Ratio

Profile Likelihood Ratio

Minimizes –log(L) 
for each value of fsig
by changing bkg shape params
(a 6th order Chebychev Pol)

Interval on μ widens
due to effect of uncertain NPs



PLR Confidence interval vs MINOS

tμ(x,μ)

Profile Likelihood Ratio

pa
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m
et

er
 μ

Confidence 
belt now 
range in PLR tμ(x,μ)

Profile Likelihood Ratio

pa
ra

m
et

er
 θ

Measurement = tμ(xobs,μ) 
is now a function of μ

Asymptotically,
distribution is identical
for all μ

NB: asymptotically, distribution 
is also independent of true 
values of θ



Link between MINOS errors and profile likelihood

• Note that MINOS algorithm in 
MINUIT gives same errors as 
Profile Likelihood Ratio
– MINOS errors is bounding box 

around l(s) contour
– Profile Likelihood = Likelihood

minimized w.r.t. all nuisance 
parameters

Wouter Verkerke, NIKHEF
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NB: Similar to graphical interpretation of variance estimators, but those
always assume an elliptical contour from a perfectly parabolic likelihood 



Summary on NPs in confidence intervals

• Exact confidence intervals are difficult with nuisance parameters
– Interval should cover for any value of nuisance parameters
– Technically difficult and significant over-coverage common

• LHC solution Profile Likelihood ratio à Guaranteed coverage at 
measured values of nuisance parameters only
– Technically replace likelihood ratio with profile likelihood ratio
– Computationally more intensive (need to minimize likelihood w.r.t all nuisance 

parameters for each evaluation of the test statistic), but still very tractable

• Asymptotically confidence intervals constructed with profile 
likelihood ratio test statistics correspond to (MINOS) likelihood 
ratio intervals
– As distribution of profile likelihood becomes asymptotically independent of θ,

coverage for all values of θ restored  

Wouter Verkerke, NIKHEF, 98



Dealing with nuisance parameters in Bayesian intervals

• Elimination of nuisance parameters in Bayesian interval: Integrate 
over the full subspace of all nuisance parameters;

• You are left with posterior pdf for µ

P(µ | x)∝ L(x |µ,

θ )π (µ)π (


θ )( )d


θ∫

µ

θ

)ˆ,ˆ( qµ∫ ´ =),( qµp

Credible interval:
area that integrates 
X% of posterior

P(µ | x)∝ L(x |µ) ⋅π (µ)



Computational aspects of dealing with nuisance parameters

• Dealing with many nuisance parameters is computationally 
intensive in both Bayesian and (LHC) Frequentist approach

• Profile Likelihood approach
– Computational challenge = Minimization of likelihood w.r.t. all nuisance 

parameters for every point in the profile likelihood curve
– Minimization can be a difficult problem, 

e.g. if there are strong correlations, or multiple minima

• Bayesian approach
– Computational challenge = Integration of posterior density of all nuisance 

parameters
– Requires sampling of very potentially very large space.
– Markov Chain MC and importance sampling techniques can help, but still very 

CPU consuming 

Wouter Verkerke, NIKHEF



Nuisance parameters also impact event selection optimization!

• xx

Wouter Verkerke, NIKHEF

If the estimate of the background 
rate B is uncertain then

Figure of Merit 
√q0,A (and also S√B)

overestimate counting model 
significance. Effect depends both 
on B and σ(B) à can also effect 

location of optimum



Nuisance parameters also impact event selection optimization!

• xx

Wouter Verkerke, NIKHEF

Can improve counting model significance estimate used as Figure of 
Merit by including background uncertainty (if known and sizable)

Approximate counting probability model with B uncertainty as

Poisson(Non|μS+B)Poisson(Noff|τB)

NB: Assumes Poisson (not Gaussian) model for B uncertainty.
For x% fractional uncertainty on B choose 

Noff=1/x2 and   τ=Noff/Bnom à B=Bnom,   σ(B)=x%

Signal significance for this model is analytically known in terms of the 
‘Incomplete Beta funtion’

à Easy to use implementation in ROOT (returns significance Z)

^ ^

RooStats::NumberCountingUtils::BinomialObsZ(Double_t nObs, 
Double_t bExp, Double_t fracBUnc) ;



Summary of statistical treatment of nuisance parameters

• Each statistical method has an associated technique to propagate 
the effect of uncertain NPs on the estimate of the POI
– Parameter estimation à Joint unconditional estimation
– Variance estimation à Replace d2L/dp2 with Hessian matrix
– Hypothesis tests & confidence intervals à Use profile likelihood ratio
– Bayesian credible intervals à Integration (‘Marginalization’)

• Be sure to use the right procedure with the right method
– Anytime you integrate a Likelihood you are a Bayesian
– If you are minimizing the likelihood you are usually a Frequentist
– If you sample something chances are you performing either a (Bayesian) 

Monte Carlo integral, or are doing glorified error propagation

• Answers can differ substantially between methods!
– This is not always a problem, but can also be a consequence of a difference in 

the problem statement 

• Don’t forget large nuisance parameters in your event selection 
optimization Wouter Verkerke, NIKHEF



Wouter Verkerke, NIKHEF

Model building 5 
Diagnostics (understanding MINUIT, fit 

stability and convergence) and Validation 
(understanding your fit, overconstraining

parameters, 2-point systematics etc)



Roadmap of this course

• Start with basics, gradually build up to complexity

Counting models

Statistical tests with counting experiments

Signal parameterization strategies 

Inference with nuisance parameters

Modeling distributions

Test statistics for models describing distributions

Parameter estimation, confidence intervals & limits

Models with nuisance parameters, joint models,
modeling systematic uncertainties

Diagnosing inference on complex models

Model building Statistical methods



Being a good physicist – Understand your model!

• Full (profile) likelihood treats physics and subsidiary measurement 
on equal footing

• Our mental picture:

• Is this picture (always) correct?

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement

“measures s” “measures α”

“dependence on α
weakens inference on s”



Understanding your model – what constrains your NP

• The answer is no – not always! Your physics measurement
may in some circumstances constrain α better than your 
subsidiary measurement.

• Doesn’t happen in Poisson counting example 
– Physics likelihood has no information to distinguish effect of s from effect of α

• But if physics measurement is based on a distribution or 
comprises multiple distributions this is well possible 

Wouter Verkerke, NIKHEF

L(N, 0 | s,α) = Poisson(N | s+ b(1+ 0.1α)) ⋅Gauss(0 |α,1)

Physics measurement Subsidiary measurement



Understanding your model – what constrains your NP

• A case study – measuring jet multiplicity (3j,4j,5j)

• Signal mildly peaks in 4j bin, sits on top of a falling background

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)

Effect of changing µEffect of changing αJES



Understanding your model – what constrains your NP

• Now measure (μ,α) from data – 80 events

• Is this fit OK?
– Effect of JES uncertainty propagated in to μ via response modeling in 

likelihood. Increases total uncertainty by about a factor of 2
– Estimated uncertainty on α is not precisely 1, as one would expect

from unit Gaussian subsidiary measurement…  
Wouter Verkerke, NIKHEF

µ̂ =1.0± 0.37

α̂ = 0.01± 0.83

Estimators of
μ, α correlated
due to similar

response in physics
measurement

Uncertainty
on μ with/without 
effect of JES



Understanding your model – what constrains your NP

• The next year – 10x more data  (800 events)
repeat measurement with same model

• Is this fit OK?
– Uncertainty of JES NP much reduced w.r.t. subsidiary meas. (α = 0 ± 1)
– Because the physics likelihood can measure it better than the subsidiary 

measurement (the effect of μ, α are sufficiently distinct that both can be 
constrained at high precision) Wouter Verkerke, NIKHEF

µ̂ = 0.90± 0.13

α̂ = −0.23± 0.31

Estimators of
μ, α correlated
due to similar

response in physics
measurement



Understanding your model – what constrains your NP

• Is it OK if the physics measurement constrains NP associated with 
a systematic uncertainty better than the designated subsidiary 
measurement?
– From the statisticians point of view: no problem, simply a product of two 

likelihood that are treated on equal footing ‘simultaneous measurement’
– From physicists point of view? Measurement is only valid is model is valid.

• Is the probability model of the physics measurement valid?

• Reasons for concern
– Incomplete modeling of systematic uncertainties,
– Or more generally, model insufficiently detailed 

Wouter Verkerke, NIKHEF

L(

N |µ,αJES ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1)



Understanding your model – what constrains your NP

• What did we overlook in the example model?
– The background rate has no uncertainty!

• Insert modeling of background uncertainty

• With improved model
accuracy estimated
uncertainty on both
αJES, μ goes up again…

– Inference weakened
by new degree of
freedom αbkg

– NB αJES estimate still
deviates a bit from normal
distribution estimate… Wouter Verkerke, NIKHEF

L(

N |µ,αJES,αbkg ) = Poisson(

i=3,4,5
∏ Ni | (µ ⋅ si ⋅+ bi ⋅ rb(αbkg )) ⋅ rs (αJES ))) ⋅Gauss(0 |αJES,1) ⋅Gauss(0 |αbkg,1)

Background rate
subsidiary measurement

Background rate
response function

µ̂ = 0.93± 0.29

α̂JES = 0.90± 0.70

(α̂bkg =1.36± 0.20)



Understanding your model – what constrains your NP

• Lesson learned: if probability model of a physics measurement is 
insufficiently detailed (i.e. flexible) you can underestimate
uncertainties

• Normalized subsidiary measurement provide an excellent 
diagnostic tool
– Whenever estimates of a NP associated with unit Gaussian subsidiary 

measurement deviate from α = 0 ± 1then physics measurement is 
constraining or biases this NP.

• Is ‘over-constraining’ of systematics NPs always bad?
– No, sometimes there are good arguments why a physics measurement can 

measure a systematic uncertainty better than a dedicated calibration 
measurement (that is represented by the subsidiary measurement)

– Example: in sample of reconstructed hadronic top quarks tàbW(qq), the pair 
of light jets should always have m(jj)=mW.  For this special sample of jets it will 
possible to calibrate the JES better than with generic calibration measurement

Wouter Verkerke, NIKHEF



Commonly heard  arguments in discussion on over-constraining

• Overconstraining of a certain systematic is OK “because this is what 
the data tell us”

– It is what the data tells you under the hypothesis that your model is correct. The 
problem is usually in the latter condition

• “The parameter αJES should not be interpreted as Jet Energy Scale 
uncertainty provided by the jet calibration group”

– A systematic uncertainty is always combination of response prescription and one or 
more nuisance parameters uncertainties.

– If you implement the response prescription of the systematic, then the NP in your 
model really is the same as the prescriptions uncertainty 

• “My estimate of αJES = 0 ± 0.4 doesn’t mean that the ‘real’ Jet Energy 
Scale systematic is reduced from 5% to 2%

– It certainly means that in your analysis a 2% JES uncertainty is propagated to the 
POI instead of the “official” 5%.

– One can argue that the 5% shouldn’t apply because your sample is special and can 
be calibrated better by a clever model, but this is a physics argument that should 
be documented with evidence for that (e.g. argument JES in tàbW(qq) decays)

Wouter Verkerke, NIKHEF



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• Does “the JES uncertainty is 5% for all jets” mean one NP
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i.e. JES miscalibration is coherent for all jets
à You can calibrate high pT jets with a low pT jet sample

5%



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• Or does “the JES uncertainty is 5% for all jets” mean 5 NPs?
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Jet pT

i.e. JES miscalibration is not coherent across pT
but still has 5% uncertainty for each pT bin

αJES1
αJES2

αJES3
αJES4

αJES5
5%

5%

5%
5%

5%



Dealing with over-constraining – introducing more NPs

• Some systematic uncertainties are not captured well by one 
nuisance parameter. 

• Written prescription often not clear on number of nuisance 
parameters: 

• If you assume one NP – chances are that your physics Likelihood 
will exploit this oversimplified JES model 
to overconstrain JES for high pT jets!
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i.e. JES miscalibration is coherent for all jets
à You can calibrate high pT jets with a low pT jet sample

5%



Modeling theory uncertainties

• Modeling of systematic uncertainties originating from theory 
sources can pose some extra & thorny problems

Wouter Verkerke, NIKHEF



Modeling theory uncertainties

• Difficulties are not in the modeling procedure, but in quantifying what 
precisely we know

• Difficulty 1 – What is distribution of the subsidiary measurement?
• Easy example – Top cross-section uncertainty

• Difficult example – Factorization scale uncertainty

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+εtt ⋅σ tt ) ⋅Gauss( !σ tt |σ tt, 0.08)

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“XS Uncertainty  is 8%” à Gaussian subsidiary with 8% uncertainty
(because XS uncertainty is ultimately from a measurement)  

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian
So what distribution was meant?



Modeling theory uncertainties

• Difficult example – Factorization scale uncertainty

• Difficult arises from imprecision in original prescription.
– NB: Issue is physics question, not a statistical procedure question. Answer will also 

need to be motivated with physics arguments

• Note that you always assume some distribution (even if you do error 
propagation) à Profiling approach requires you to write
it out explicitly. This is good!

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )

“Vary Factorization Scale by x0.5 and x” à F(α) is probably not Gaussian
So what distribution was meant?



Modeling theory uncertainties

• Difficulty 2 – What are the parameters of the systematic model?

• Easy example – Factorization scale uncertainty

– One parameter: the factorization scale à Clearly described and connected to the 
underlying theory model

– You can ask yourself if there are additional uncertainties in the theory model 
(renormalization scale etc), this a valid, but distinct issue. 

• Difficult example – Hadronization/Fragmentation model
– Source uncertainty: you run different showering MC generators (e.g. HERWIG 

and PYTHIA) and you observe you get different results from your physics analysis
– How do you model this in the likelihood?

Wouter Verkerke, NIKHEF

Lfull (s,σ tt ) = Poisson(NSR | s+ b(αFS )) ⋅F( !αFS |αFS )



Modeling theory uncertainties

• Worst type of ‘theory’ uncertainty are prescriptions that result in 
an observable difference that cannot be ascribed to clearly 
identifiable effects. Examples of such systematic prescriptions
– Evaluate measurement with Herwig and Pythia showering Monte Carlos and 

take the difference as systematic uncertainty
– Evaluate measurement with CTEQ and MRST parton density functions and 

take the difference as systematic uncertainty.

• I call these ‘2-point systematics’. 
– You have the technical means to evaluate (typically) two known different 

configurations, but reasons for underlying difference are not clearly identified.

Wouter Verkerke, NIKHEF



Specific issue with theory uncertainties

• It is difficult to define rigorous statistical procedures to deal with 
such 2-point uncertainties. So you need to decide

• If their estimated effect is small, you can pragmatically ignore 
these lack of proper knowledge and ‘just do something 
reasonable’ to model these effects in a likelihood

• If their estimated effect is large, your leading uncertainty is related 
to an effect that largely ununderstood effect. This is bad for 
physics reasons! 
– You should go back to the drawing board and design a new measurement 

that is less sensitive to these issues.
– E.g. If your inclusive cross-section uncertainty is dominated by fullàfiducial

acceptance uncertainty due to Herwig/Pythia issue, shouldn’t you rather be 
publishing the fiducial cross-section?

Wouter Verkerke, NIKHEF



Specific issues with theory uncertainties

• Pragmatic solutions to likelihood modeling of ‘2-point systematics’

• Final solution will need to follow usual pattern

• Defining an (empirical) response 
function b(α) is the easy part

• A thorny question remains: 
What is the subsidiary measurement for α?
This should reflect you current knowledge on α.  

Wouter Verkerke, NIKHEF

L(N | s,α) = Poisson(N | s+ b(α)) ⋅SomePdf (0 |α)
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Specific issues with theory uncertainties

• Subsidiary measurement of a theoretical 2-point uncertainty 
effectively quantifies the ‘knowledge’ on these models
– Extra difficult to make meaningful statement about this, since meaning of 

parameter is not well embedded in underlying theory model
– But again, all procedures need to assume some distribution… Profiling requires 

you to spell it out

• Some options and their effects

Wouter Verkerke, NIKHEF

HerwigPythia Pythia HerwigPythia Pythia HerwigPythia Pythia

Prefers Herwig at 1σ All predictions ‘between’
Herwig and Pythia equally
probable

Only ‘pure’ Herwig
and Pythia exist

Gaussian
Box with 

Gaussian wings Delta fuctions

Not c
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patib
le w

ith 
MINUIT



Two-point systematics on non-counting measurements

• In a counting experiment you can argue 
that for every conceivable background rate 
there exists a value of the NP that 
corresponds to that rate
– Even if ‘SHERPA’ was never used to construct

the model, you can still represent its outcome

• This is not generally true for distributions.
A shape interpolation between 
‘pythia’ and ‘herwig’ does not
necessarily describe shape of 
‘sherpa’ (or of Nature!)
– Fundamental modeling

problem!
– You may need more

parameters… 

Wouter Verkerke, NIKHEF
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Dealing with ‘two-point’ uncertainties
• Key issue: How many d.o.f. does you systematic uncertainty 

have?

• Especially important in the discussion to what extent a two-point 
response function can be over-constrained.
– A result α2p = 0.5 ± 1 has ‘reasonable’ odds to cover the ‘true generator’ 

assuming all generators are normally scattered in an imaginary ‘generator 
space’

Wouter Verkerke, NIKHEF

Pythia

Herwig

Sherpa

Nature

Next years
generator

Modeled uncertainty (1 dimension)
assuming ‘nature is on line’
Effectively captured uncertainty

under the assumption that effect
of ‘position in model space’ in 
any dimension is similar on
response function 



Dealing with ‘two-point’ uncertainties
• Key issue: How many d.o.f. does you systematic uncertainty 

have?

• Especially important in the discussion to what extent a two-point 
response function can be over-constrained.
– Does a hypothetical overconstrained result α2p = 0.1 ± 0.2 ‘reasonably’ cover 

the generator model space?

Wouter Verkerke, NIKHEF

Pythia

Herwig

Sherpa

Nature

Next years
generator

Modeled uncertainty (1 dimension)
assuming ‘nature’ is on line

Effectively captured uncertainty

under the assumption that effect
of ‘position in model space’ in 
any dimension is similar on
response function 



Summary

• The key challenge for experimental physicist is to construct the 
likelihood function describing his analysis/experiment

• ‘Profiling’ is a technique allows to effectively incorporate all model 
uncertainties that are traditionally thought of as ‘systematic 
uncertainties’ 
– By empirically parametrizing the response of the full simulation chain

• Profiling enable used of all fundamental statistical inference 
techniques (frequentist/Bayesian), which start with the likelihood
– A ‘profile likelihood’ allows execution of fundamental statistical techniques 

without cutting corners
– Confidence intervals with guaranteed coverage, Bayesian posteriors, etc

Wouter Verkerke, NIKHEF



Summary

• Profile likelihood implements and diagnoses many analysis issues that 
are missed by naïve approaches to systematic uncertainties (e.g. 
error prop)
– “Posterior correlation” – Effect of correlations between systematics introduced by 

features of the physics measurement
– “Overconstraining” – Either input magnitude was too conservative, or response 

model for systematic uncertainty was too simple (you’d like to know in either case)
– “Imprecisely specified systematics” – Profiling requires physicist to explicit spell out 

precise model that is used

• But is important to run diagnostics on a profile likelihood model
– Default interpretation in case of overconstraining is ‘input uncertainty too 

conservative’, which may lead to underestimated uncertainties if simplistic 
response model was the real problem

• ‘Profiling’ is the best way we know to incorporate systematic 
uncertainties is probability models

Wouter Verkerke, NIKHEF



Fit diagnostics – NP ranking/impact plots

Wouter Verkerke, NIKHEF

Physics data biases / constrains
systematic uncertainty if not 0 +/- 1

Impact quantifies correlation
with POI. Small impact à NP is
(almost) irrelevant for this analysis

Does the fit constrain (reduce) the systematic uncertainty from the data, 
based on the choice of NP model, w.r.t. the input specifications?  
à Diagnostics are crucial!



Fit diagnostics – NP ranking/impact plots

Wouter Verkerke, NIKHEF

Physics data biases / constrains
systematic uncertainty if not 0 +/- 1

NP bias or constraint can be due to
1) Statistical fluctuation in data or template (common)
2) Invalid (over)somplified NP model (common)
3) Genuine physics information (not common)

If impact large: always investigate and fix as needed
If impact is small, may ignore, use your judgement

Impact quantifies correlation
with POI. Small impact à NP is
(almost) irrelevant for this analysis

Instructive to look both at expected and observed
NP rankings
• Expected has no data fluctuations (Asimov)
• Additional pulls/constraints in ‘observed’ NP rankings 

have origin in data



Fit diagnostics – NP ranking/impact plots

Wouter Verkerke, NIKHEF

Physics data biases / constrains
systematic uncertainty if not 0 +/- 1

NP bias or constraint can be due to
1) Statistical fluctuation in data or template (common)
2) Invalid (over)somplified NP model (common)
3) Genuine physics information (not common)

If impact large: always investigate and fix as needed
If impact is small, may ignore, use your judgement

Impact quantifies correlation
with POI. Small impact à NP is
(almost) irrelevant for this analysis

Instructive to look both at expected and observed
NP rankings
• Expected has no data fluctuations (Asimov)
• Additional pulls/constraints in ‘observed’ NP rankings 

have origin in data

Visualization of model predictions in observable space useful diagnostic!

• Localize fluctuations in templates that
constrain/pull fits

• Observe magnitude of model change
with variation of NPs within uncertainty 

‘ex16.C’


