PAUL SCHERRER INSTITUT

Instrument control library and server for detector construction and testing

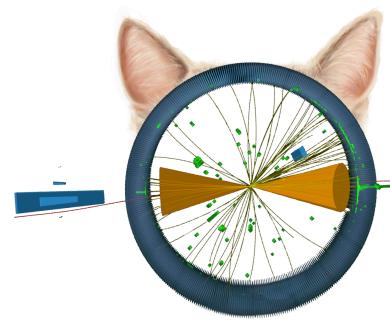
plus some other stuff

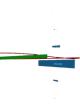
Clemens Lange (Paul Scherrer Institute PSI) PyHEP.dev

27th July 2023

Intro

Tenure-Track Scientist in the High-Energy Physics group at Paul Scherrer Institute (PSI) close to Zurich, Switzerland


>Physics analysis interests:

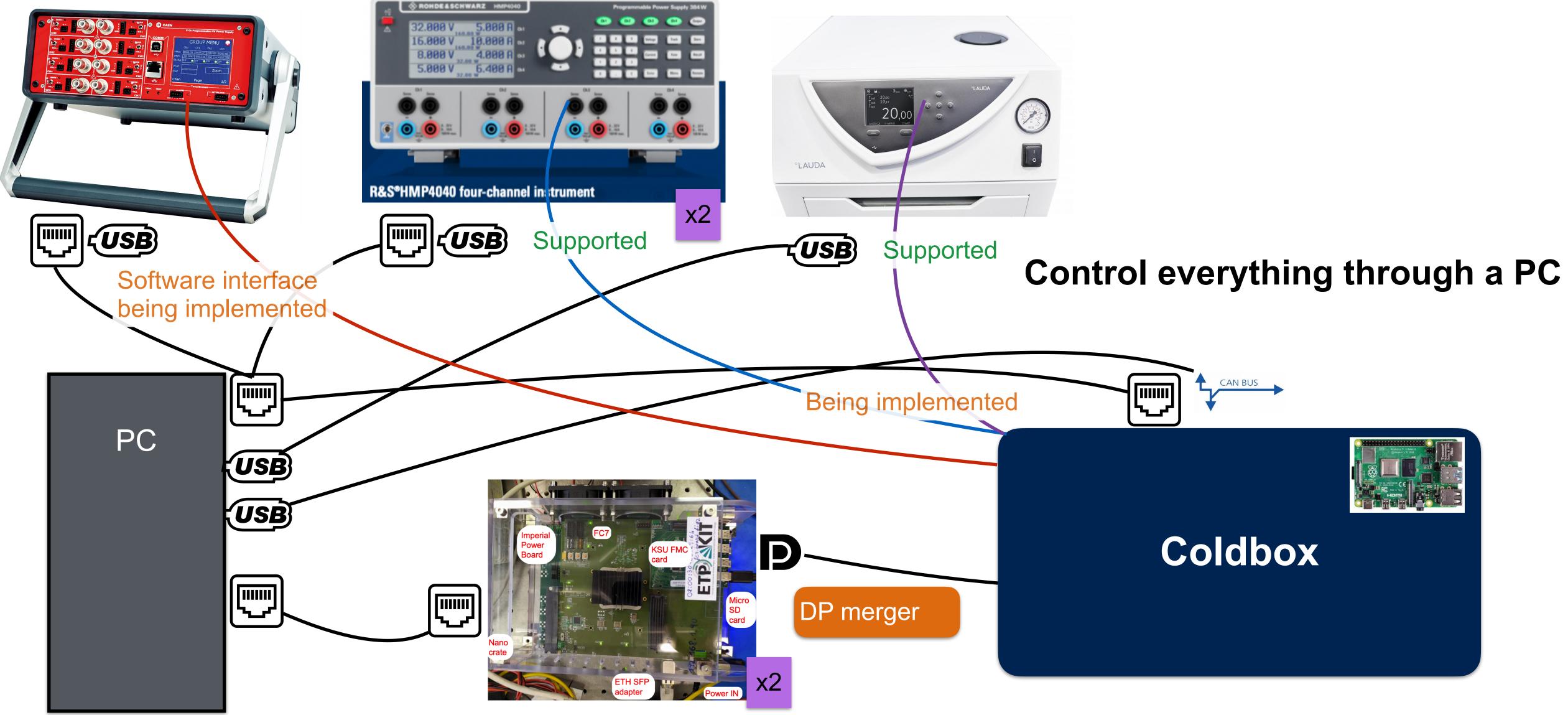

- PhD performing precision measurements of the tt pair production cross section (ATLAS) Interpretation of the second secon
- Rare and BSM Higgs boson production modes

>Other interests:

- Pixel detector operation and construction (currently Phase-2 upgrade) Inner Tracker modules group convener)
- Analysis reusability, software containers, and cloud computing Physics analysis tools and training (currently Common Analysis Tools)
- group convener)
- (by now) sole <u>hepdata</u> lib developer and maintainer

Overall setup for an 8-channel module test stand

- ideally also slight forwardbiasing possible



Overall setup example: PSI

CAEN DT8032 HV (8 channels, fixed polarity)

07.07.2023

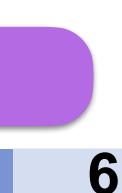
Lauda Variocool VC 2000

4

Coldbox

07.07.2023

Test several hundred modules over the course of ~three years


Communicating with hardware can be painful

- •USB communication can be flaky
- Devices can block if wrong commands are sent
- Manuals are often wrong and incomplete
- Difficult to test without actual devices
- >Requirements:
 - Robust retry (e.g. redo) and blocking mechanisms (e.g. flock?)
 - Logging and monitoring (interface with InfluxDB and/or Grafana)
 - •GUI accessible remotely preventing parallel access \rightarrow control server
- >Several libraries exist, but none seem to have all required features
 - e.g. <u>pymeasure</u>, <u>labRemote</u>, <u>lcicle</u>, <u>Powder</u>, ...
 - so everyone writes their own library (and some even write documentation)

A well-designed library (with typing etc.) would make a difference

27.07.2023

Clemens Lange

>Physics analysis requires access to lots of metadata information

- Require small tools to provide them (web services, utility libraries, ...) \rightarrow this kind of work seems underrated
- >Most collaborators will not contribute any code or documentation
 - •Even if making/proposing changes is easy, people will not do it \rightarrow how can we change this?
- >A large number of physicists don't know about Python virtual environments and experiment software makes this more difficult
 - Personal experience: put everything into a container image, deploy as unpacked image, and hide that users are running apptainer
- >Python packaging, testing, and library maintenance
 - Open source can be hard and tiring, automation (e.g. GitHub actions) helps a lot keeping things up-to-date and maintainable

