
Self-documenting model building and improved fit performance
with a Computer Algebra System
26 July 2023

The ComPWA project

PyHEP.dev Workshop Remco de Boer

https://colab.research.google.com/github/ComPWA/demo/blob/main/2021.12.13/tensorwaves.ipynb
https://colab.research.google.com/github/ComPWA/demo/blob/main/2021.12.13/tensorwaves.ipynb
https://colab.research.google.com/github/ComPWA/demo/blob/main/2021.12.13/tensorwaves.ipynb

compwa-org.rtfd.io

Self-introduction
Remco de Boer, PhD Student at Ruhr University Bochum
(finishing April, then postdoc)

▪ Research: amplitude analysis (partial wave analysis)

▪ Analyzing 𝑁∗ resonances in 𝐽/𝜓 decays for the BESIII collaboration

▪ Also in PANDA collaboration at FAIR, Darmstadt

▪ Developer for the Common Partial Wave Analysis project (ComPWA)
→ Next slides: symbolic amplitude models + JAX, TF, …

▪ Additional interests:

▪ Differentiable programming for PWA

▪ Documentation: big fan of Executable Book Project (Jupyter Book etc.)

▪ Code quality and software maintainability

→ Narrowing gab between users and developers

26 July 2023Self-documenting model building and improved fitting performance with a CAS1

https://compwa-org.rtfd.io/
https://executablebooks.org/

compwa-org.rtfd.io

Context: amplitude analysis software

2 26 July 2023Self-documenting model building and improved fitting performance with a CAS

arXiv:2301.07010

What makes amplitude analysis challenging?

▪ Unbinned, multidimensional problem set

▪ Complicated (complex!) parametrizations and estimators

▪ need to quickly try out different parameterizations

▪ fits can take several weeks

▪ Theory is hard to get into

▪ Relatively small community (but growing interest!)

https://compwa-org.rtfd.io/
https://arxiv.org/abs/2301.07010

compwa-org.rtfd.io

Context: amplitude analysis software

2 26 July 2023Self-documenting model building and improved fitting performance with a CAS

arXiv:2301.07010

fast computations
What makes amplitude analysis challenging?

▪ Unbinned, multidimensional problem set

▪ Complicated (complex!) parametrizations and estimators

▪ need to quickly try out different parameterizations

▪ fits can take several weeks

▪ Theory is hard to get into

▪ Relatively small community (but growing interest!)
flexibility

documentation

https://compwa-org.rtfd.io/
https://arxiv.org/abs/2301.07010

compwa-org.rtfd.io

Mission: bring code closer to theory

3 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

High performance through computational back-ends
from ML and data science

Flexibility through a CAS-assisted model building

Academic continuity through living documentation

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

…01101000101

Computational backends

Tools from the ML and data science community that
allow us to outsource heavy computations:

▪ Vectorization

▪ Just-in-time compilation

▪ XLA (Accelerated Linear Algebra)

▪ Automatic differentiation

▪ Support for multithreading, GPUs, …

26 July 2023Self-documenting model building and improved fitting performance with a CAS

Heavy lifting by

optimized backend

Converted to device-

agnostic XLA code

{ lambda ; a:i32[] b:i32[] c:i32[]. let

d:i32[] = mul b c

e:i32[] = add a d

in (e,) }

@tf.function(jit_compile=True)

def my_expression(x, y, z):

return x + y * z

4

https://compwa-org.rtfd.io/
https://www.tensorflow.org/xla
https://github.com/google/jax
https://numpy.org/
https://www.tensorflow.org/
https://numba.pydata.org/
https://pytorch.org/

compwa-org.rtfd.io

…01101000101

Computational backends

Tools from the ML and data science community that
allow us to outsource heavy computations:

▪ Vectorization

▪ Just-in-time compilation

▪ XLA (Accelerated Linear Algebra)

▪ Automatic differentiation

▪ Support for multithreading, GPUs, …

26 July 2023Self-documenting model building and improved fitting performance with a CAS

Heavy lifting by

optimized backend

Converted to device-

agnostic XLA code

{ lambda ; a:i32[] b:i32[] c:i32[]. let

d:i32[] = mul b c

e:i32[] = add a d

in (e,) }

@tf.function(jit_compile=True)

def my_expression(x, y, z):

return x + y * z

Usually all that the

user needs to do

4

https://compwa-org.rtfd.io/
https://github.com/google/jax
https://numpy.org/
https://www.tensorflow.org/
https://numba.pydata.org/
https://pytorch.org/
https://www.tensorflow.org/xla

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

Quite common already for theoreticians:
quickly inspect and visualize some lineshape

with Maple, Mathematica, Matlab, etc…

import sympy as sp

N, s, m0, w0 = sp.symbols("N s m0 Gamma0")

N / (m0**2 - sp.I * m0 * w0 - s)

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

CAS represents

expression as a tree

import sympy as sp

N, s, m0, w0 = sp.symbols("N s m0 Gamma0")

N / (m0**2 - sp.I * m0 * w0 - s)

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

Analytic substitution

and simplification

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

function out1 = my_expr(Gamma0, N, m0, s)

out1 = N./(-1i*Gamma0.*m0.^3.*sqrt((s - 0.25).*(s - 0.01)./s).*(1

+ (m0.^2 - 0.25).*(m0.^2 - 0.01)./(4*m0.^2)).*(s - 0.25).*(s -

0.01).*sqrt(m0.^2)./(s.^(3/2).*sqrt((m0.^2 - 0.25).*(m0.^2 -

0.01)./m0.^2).*(1 + (s - 0.25).*(s - 0.01)./(4*s)).*(m0.^2 -

0.25).*(m0.^2 - 0.01)) + m0.^2 - s);

end

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

SymPy lambdification

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

SymPy lambdification

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

REAL*8 function my_expr(Gamma0, N, m0, s)

implicit none

REAL*8, intent(in) :: Gamma0

REAL*8, intent(in) :: N

REAL*8, intent(in) :: m0

REAL*8, intent(in) :: s

my_expr = N/(-cmplx(0,1)*Gamma0*m0**3*sqrt((s - 0.25d0)*(s - 0.01d0)/s)* & (1 +

(1.0d0/4.0d0)*(m0**2 - 0.25d0)*(m0**2 - 0.01d0)/m0**2)*(s - & 0.25d0)*(s -

0.01d0)*sqrt(m0**2)/(s**(3.0d0/2.0d0)*sqrt((m0**2 - & 0.25d0)*(m0**2 -

0.01d0)/m0**2)*(1 + (1.0d0/4.0d0)*(s - 0.25d0)*(& s - 0.01d0)/s)*(m0**2 -

0.25d0)*(m0**2 - 0.01d0)) + m0**2 - s)

end function

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

SymPy lambdification

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)
// my_expr.h

#ifndef PROJECT__MY_EXPR__H

#define PROJECT__MY_EXPR__H

double my_expr(double Gamma0, double N, double m0, double s);

#endif

// my_expr.c

#include "my_expr.h"

#include <math.h>

double my_expr(double Gamma0, double N, double m0, double s) {

double my_expr_result;

return N/(-I*Gamma0*pow(m0, 3)*sqrt((s - 0.25)*(s - 0.01)/s)*(1 + (1.0/4.0)*(pow(m0, 2) -

0.25)*(pow(m0, 2) - 0.01)/pow(m0, 2))*(s - 0.25)*(s - 0.01)*sqrt(pow(m0, 2))/(pow(s,

3.0/2.0)*sqrt((pow(m0, 2) - 0.25)*(pow(m0, 2) - 0.01)/pow(m0, 2))*(1 + (1.0/4.0)*(s -

0.25)*(s - 0.01)/s)*(pow(m0, 2) - 0.25)*(pow(m0, 2) - 0.01)) + pow(m0, 2) - s);

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

SymPy lambdification

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

@jax.jit

def _lambdifygenerated(Gamma0, N, m0, s):

return N / (

-1j

* Gamma0

* m0

* ((1 / 4) * m0**2 + 0.9831)

* (s - 0.0676) ** (3 / 2)

* sqrt(m0**2)

/ (sqrt(s) * (m0**2 - 0.0676) ** (3 / 2) * ((1 / 4) * s + 0.9831))

+ m0**2

- s

)

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

SymPy lambdification

@jax.jit

def _lambdifygenerated(Gamma0, N, m0, s):

return N / (

-1j

* Gamma0

* m0

* ((1 / 4) * m0**2 + 0.9831)

* (s - 0.0676) ** (3 / 2)

* sqrt(m0**2)

/ (sqrt(s) * (m0**2 - 0.0676) ** (3 / 2) * ((1 / 4) * s + 0.9831))

+ m0**2

- s

)

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

Works just as well for models

with tens of thousands of nodes

https://compwa-org.rtfd.io/

compwa-org.rtfd.io

Symbolic amplitude models

5 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

SymPy lambdification

@jax.jit

def _lambdifygenerated(Gamma0, N, m0, s):

return N / (

-1j

* Gamma0

* m0

* ((1 / 4) * m0**2 + 0.9831)

* (s - 0.0676) ** (3 / 2)

* sqrt(m0**2)

/ (sqrt(s) * (m0**2 - 0.0676) ** (3 / 2) * ((1 / 4) * s + 0.9831))

+ m0**2

- s

)

A new technique: formulate your amplitude model with a Computer Algebra System

▪ Transparency: inspect the math as you formulate the model

▪ Flexibility: modify the model with analytic substitutions

▪ Performance: simplify expressions algebraically

▪ Code generation: symbolic model as template to computational back-ends (SSoT)

Works just as well for models

with tens of thousands of nodes

Can also be used

for serialization!

https://compwa-org.rtfd.io/

Self-documenting workflow
lc2pkpi-polarimetry.docs.cern.ch

Workflow powered recent study by LHCb
(arXiv:2301.07010, JHEP):

▪ Complete polarimetry analysis
performed with symbolic expressions in
Jupyter notebooks

▪ Automatically rendered as webpages
as the research progressed

▪ Analysis results fully reproducible in
around 2 hours

https://lc2pkpi-polarimetry.docs.cern.ch/
https://doi.org/10.48550/arXiv.2301.07010

Self-documenting workflow
lc2pkpi-polarimetry.docs.cern.ch

Mathematical expressions are
automatic rendering of the
implemented amplitude models

https://lc2pkpi-polarimetry.docs.cern.ch/

Self-documenting workflow
lc2pkpi-polarimetry.docs.cern.ch

Mathematical expressions are
automatic rendering of the
implemented amplitude models

https://lc2pkpi-polarimetry.docs.cern.ch/

Self-documenting workflow
lc2pkpi-polarimetry.docs.cern.ch

Mathematical expressions are
automatic rendering of the
implemented amplitude models

https://lc2pkpi-polarimetry.docs.cern.ch/

Self-documenting workflow
lc2pkpi-polarimetry.docs.cern.ch

High performance
Output from resource-intensive
computations is rendered alongside
the mathematical models

https://lc2pkpi-polarimetry.docs.cern.ch/

compwa-org.rtfd.io

Layered software development
▪ CAS allows us to separate physics from number crunching

▪ Symbolic expressions become a Single Source of Truth for physics implementations

▪ Model building through layers of configurability and generalization

1. Build up symbolic models directly in a script

2. Generalize model building with functions and classes

3. Project evolves into generalized library

▪ Result: grow a self-documenting collection of tools for amplitude model building

7 26 July 2023Self-documenting model building and improved fitting performance with a CAS

import sympy as sp

N, s, m0, w0 = sp.symbols("N s m0 Gamma0")

N / (m0**2 - sp.I * m0 * w0 - s)

1. builder = ampform.get_builder(reaction)
for particle in reaction.get_intermediate_particles():
 builder.dynamics.assign(particle.name,
create_relativistic_breit_wigner)
model = builder.formulate()

2.

22

https://compwa-org.rtfd.io/
https://ampform.readthedocs.io/en/latest/api/ampform.dynamics.html#ampform.dynamics.CoupledWidth
https://ampform.readthedocs.io/en/latest/api/ampform.dynamics.html#ampform.dynamics.CoupledWidth
https://ampform.readthedocs.io/en/latest/api/ampform.dynamics.html#ampform.dynamics.CoupledWidth
https://ampform.readthedocs.io/en/latest/api/ampform.dynamics.html#ampform.dynamics.CoupledWidth
https://ampform.readthedocs.io/en/latest/api/ampform.dynamics.html#ampform.dynamics.CoupledWidth

compwa-org.rtfd.io

Proof of concept | the project

8 Self-documenting model building and improved fitting performance with a CAS 26 July 2023

Common Partial Wave Analysis
Three main Python packages that together cover a full amplitude analysis:

All are designed as libraries, so they can be used by other packages
by installing through pip or Conda

Automated quantum number conservation rules

Fit models to data and generate data samples
with multiple computational back-ends

Formulate symbolic amplitude models
AmpForm

TensorWaves

QRulesPhysics

expressions

collected here

Computations

T
e
n
s
o
rW

a
ve

s
QRules

Ampform

https://compwa-org.rtfd.io/
https://ampform.rtfd.io/
https://tensorwaves.rtfd.io/
https://qrules.rtfd.io/
https://numpy.org/
https://github.com/google/jax
https://www.tensorflow.org/
https://numba.pydata.org/

compwa-org.rtfd.io

Topics to discuss

• Main ideas presented:
▪ CAS-assisted model building:

symbolic expressions as template to numerical functions

▪ Amplitude analysis documentation

▪ Improved modularity and improved interoperability

• Related topics:

▪ Fit performance with JAX, TensorFlow, Numba, etc. on different devices

▪ Effect and useability of autodiff for amplitude models
▪ Standardization and serialization of amplitude models like HS3

(reproducibility, metadata etc.?)

26 July 2023Self-documenting model building and improved fitting performance with a CAS9

https://compwa-org.rtfd.io/

	Main
	Slide 1: The ComPWA project
	Slide 2: Self-introduction
	Slide 3: Context: amplitude analysis software
	Slide 4: Context: amplitude analysis software
	Slide 5: Mission: bring code closer to theory

	Numerical backends
	Slide 6: Computational backends
	Slide 7: Computational backends

	Computer Algebra System
	Slide 8: Symbolic amplitude models
	Slide 9: Symbolic amplitude models
	Slide 10: Symbolic amplitude models
	Slide 11: Symbolic amplitude models
	Slide 12: Symbolic amplitude models
	Slide 13: Symbolic amplitude models
	Slide 14: Symbolic amplitude models
	Slide 15: Symbolic amplitude models
	Slide 16: Symbolic amplitude models

	Self-documenting workflow
	Slide 17: Self-documenting workflow
	Slide 18: Self-documenting workflow
	Slide 19: Self-documenting workflow
	Slide 20: Self-documenting workflow
	Slide 21: Self-documenting workflow

	Layered approach
	Slide 22: Layered software development
	Slide 23: Proof of concept | the project

	Summary
	Slide 24: Topics to discuss

