
Dask Custom Schedulers

Ben Tovar btovar@nd.edu
NDCMS - Center for Research Computing - Cooperative Computing Lab
July 2023

About me

- HPC engineer at Notre Dame working for CMS
- Computer Scientist
- Tools to construct and execute scientific workflows

(TaskVine, WorkQueue)
- How to measure and allocate resources for maximum

throughput?

2

Outline

1. Basics on Dask Task Graph

2. Custom Schedulers for Task Graphs

3. Development Opportunities

3

The Dask Task Graph

https://docs.dask.org/en/latest/graphs.html

4
user code

task graph
representation

https://docs.dask.org/en/latest/graphs.html

The Dask Task Graph

https://docs.dask.org/en/latest/graphs.html

5

dict-like
object

graph nodes can be
any hashable object,
except for tuples which
first element is callable

function calls are
tuples which first
element is callable

arguments to functions
are either keys to graph
nodes, other function
calls, python objects, or
lists of the previous.

lists represent potential
parallelism (or maybe the
function call just wants a
list as an argument)think s-expressions

https://docs.dask.org/en/latest/graphs.html

Executing the Graph

6

Note that the graph itself has no dask dependencies.
Here we just happen to use a dask scheduler (dask.threaded)

Executing the Graph | Custom Scheduler

7

anything that can
receive a task graph
and a (possibly nested)
listed of keys to
compute, can work as a
dask scheduler

Using .compute()

8

dask data types
and decorators
to construct the
task graph

We don't
explicitly refer to
the task graph
dict, only to
futures that
know their
graph.

tell dask which
executor to use

use dask default
executor

Using .compute()

9

dask data types
and decorators
to construct the
task graph

We don't
explicitly refer to
the task graph
dict, only to
futures that
know their
graph.

tell dask which
executor to use

10

Modifying the Task Graph

Change the graph
before sending it for execution.

(E.g., merging ephemeral
independent calls together, or
splitting subcalls for improved
parallelism.)

https://docs.dask.org/en/latest/optimize.html

https://docs.dask.org/en/latest/optimize.html

Questions I would like to explore

11

coffea

dask scheduler

dask

university
cluster HPC k8s

why

what

how

where

Control how the computation should
occur, e.g.:

how many resources to use?
which python environment to use?

how to activate environment?
what temp files should be cached?

what should be serialized?
how much should be serialized?

what should be retried?
how to retry?

TaskVine Application Stack

TaskVine Manager

ParslDaskCustom
App

PythonC or Python Python

HPC/University Cluster

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

TaskVine
Worker

import taskvine

file = URL(www)
m.submit(task)
task = m.wait(5)

12

TaskVine (successor of Work Queue)
is a system for executing data
intensive scientific workflows on
clusters, clouds, and grids from very
small to massive scale.

TaskVine controls the computation
and storage capability of a large
number of workers, striving to carefully
manage, transfer, and re-use data and
software wherever possible.

TaskVine in Action

13

specialized manager to execute dask
only final results loaded into memory

efficient
transfers

conda-pack
based
env delivery

explicit resources
measurement and
control

automatic
resource
allocation

Conclusions

14

coffea

dask scheduler

dask

university
cluster HPC k8s

Advantageous place to be to control
how the computations should occur.

Harness current computer science
developments and research in

workflow execution.

Harness previous experience on how
to execute workflows at scale.

https://cctools.readthedocs.io
https://github.com/cooperative-computing-lab/cctools
conda install -c conda-forge ndcctools

Thanks to team and
collaborators

ND CMS
Prof. Kevin Lannon
Prof. Mike Hildreth

Kelci Mohrman
 Brent R. Yates

 Andrew Wightman
John Lawrence
Andrea Trapote

Irena Johnson
Kenyi Hurtado

CCL
Prof. Douglas Thain
Thanh Son Phung
Barry Sly-Delgado
Colin Thomas
David Simonetti
Andrew Hennessee
Jachob Dolak
Other Collaborators
Parsl team This work was supported by

NSF Award OAC-1931348

https://cctools.readthedocs.io
https://github.com/cooperative-computing-lab/cctools

