About Myself

 assistant professor at the
University of Cincinnati

o focused on both
experiment and pheno

o physics interests ranging
from QCD to dark sectors AST

LI‘{Cb ARK
\) ;

CODEX-b

—_——

Ilten Python, Pythia 8, and Pythia 8 Contrib 1/11

Purpose and History

@ specify beam types and momenta

@ request specific physics processes to generate

® generate momenta for outgoing particles from collision

MC generators bridge the gap between first principle and

o 1978:
o 1997:
o 2004:
» 2007:
e 2014:
» 2019:
o 2023:

pheno calculations

JETSET from the Lund theory group
merged into FORTRAN based PYTHIA 6
rewrite into C++ began

first release of C++ based PyTHIA 8.1
mature PyTHIA 8.201 released

adopted C++11 standard with PyTHIA 8.301
release of PYTHIA 8.310 yesterday

Ilten

Python, Pythia 8, and Pythia 8 Contrib 2 /11

Philosophy

... another development was that the newly-formed LEP
collaborations mainly opted for JETSET

... [other] programs had been written on the DESY
mainframe, making extensive but inefficient use of existing
DESY software, such that they did not fit in the smaller CPU
memory of the CERN mainframe at the time.

...an ambition remained for programs to be designed to run
standalone and have a modest footprint.

... Lund was a remote isolated place in the days before
Internet, making the effort spent on writing detailed manuals
essential for successful usage elsewhere.

® no external dependencies

® comprehensive documentation

Ilten Python, Pythia 8, and Pythia 8 Contrib 3 /11

Document n

+ published physics manuals (6.4 at 576 pages and 8.3 at 315 pages)
o technical manual shipped with each release

* DOXYGEN reference avalable at pythia.org

o issue tracker (269 issues answered and growing)

e examples and 112 and growing shipped with each release

o tutorials for summer schools and workshops

In [14]: # Compare the two thrust histograms.
plot([monash.hist, varAlpha.hist],
xlim = (@, 0.5), ylog = True, xlabel = "1 - thrust", ylabel = "events")

— Monash
alpha s =0.2
0
g 17
g
@
0
100 T
00 01 02 03 04 05

1 - thrust

Try using a few different values of & to see what happens with the distribution. For example, we could try setting e to a lower value than the Monash
tune, so something like 0.1. In the cells above, we can do this by creating another AnalyzeThrust object and then plotting all the different distributions
using the command plot([analysisl.hist, analysis2.hist, analysis3.hist, ...]) .From a model perspective, try to build an intuition
as to why the thrust changes as it does for these different parameter values.

We can also explore different values of the shower cut-off value sepcified by the parameter TimeShower:pTmin . This is by default set to 0.5 GeV, but
we can change it to something higher, like 2 GeV. We can also try lower values as well, although at some point this will cause failures in the hadronization
process.

Ilten Python, Pythia 8, and Pythia 8 Contrib 4 /11

https://arxiv.org/abs/hep-ph/0603175
https://arxiv.org/abs/2203.11601
https://pythia.org/manuals/pythia8310/Welcome.html
https://pythia.org/doxygen/pythia8310/
pythia.org
https://gitlab.com/Pythia8/releases/-/issues
https://pythia.org/latest-manual/ExampleKeywords.html
https://gitlab.com/Pythia8/tutorials

Python Interface

o 8.219 — 8.245: monolothic block of bindings automatically
generated per release with SwiG
e 8.301 — present: use bespoke DOCKER container with BINDER
installation to automatically generate PYBIND11 bindings
« bindings can be regenerated by users, including user code
« partial (default) or full bindings can be generated
« custom BINDER configuration can be used
« support for both PYTHON 2 and 3

cd plugins/python/ && ./ generate
cd — && ./configure ——with—python && make

void bind_Pythia8_Basics(std::function< pybindil1l::module &(
std::string const &namespace_) > &M) {
{ // Pythia8::Vecd4 file:Pythia8/Basics.h line:32
pybind1l ::class_<Pythia8 ::Vec4, std::shared_ptr<Pythia8 ::Vec4>> cl(

M("Pythia8"), "Vec4", "");
pybindi11l :: handle cl_type = cl;
cl.def(pybindil::init([](){ return new Pythia8::Vec4(); }), "doc");
cl.def(pybindil::init([](double const & a0){
return new Pythia8::Vec4(a0); }), "doc" , pybindil::arg("xIn"));
cl.def(pybindi11l::init([](double const & a0, double const & al){

return new Pythia8::Vec4 (a0, al); } s
"doc" , pybindil1l::arg("xIn"), pybindil::arg("yIn"));

Ilten Python, Pythia 8, and Pythia 8 Contrib 5/ 11

» support for multi-threaded PythiaParallel

Configure Pythia.
pythia = pythia8.PythiaParallel ()

pythia.readString ("HardQCD:all = on")

Configure the parallel runs.
pythia.readString("Parallelism:numThreads = 4")
pythia.readString("Parallelism:processAsync = off")
pythia.readString("Main:numberOfEvents = 10000")

Define the histogram to fill.
mult = pythia8.Hist("charged multiplicity", 100, —0.5, 799.5)

Initialize (can pass custom initializer).
pythia.init (init)

Generate events.
def analyze (pythiaNow):

mult.fill (pythiaNow.event.nFinal (True))
pythia.run(analyze)

Finish.
pythia.stat ()
print (mult)

Ilten Python, Pythia 8, and Pythia 8 Contrib

6/ 11

Python Interface

o bi-directional support for relevant classes like UserHooks

Write own derived UserHooks class.
class MyUserHooks (pythia8.UserHooks):

Constructor creates anti—kT jet finder with (—1, R, pTmin, etaMax).

def __init__(self):
pythia8 .UserHooks . __init__(self)
self .slowJet = pythia8.SlowJet(—1, 0.7, 10., 5.)
self . pTHat = 0.

Allow process cross section to be
def canModifySigma (self):
return True

modified ...

...which gives access to the event at the
selection .

def multiplySigmaBy (self, sigmaProcessPtr ,
return 1

trial level, before —

phaseSpacePtr , inEvent):

Generator.
pythia = pythia8.Pythia ()

Set up to do a user veto and send it
myUserHooks = MyUserHooks ()
pythia.setUserHooksPtr (myUserHooks)

in .

Ilten Python, Pythia 8, and Pythia 8 Contrib 7/ 11

Event Anatomy

A Baryon
W Antibaryon
@ Heavy Flavour

Ilten Python, Pythia 8, and Pythia 8 Contrib 8/ 11

o UserHooks allow interaction with PYTHIA at steps throughout the
generation

o other classes also allow for modification of PYTHIA,
e.g. ShowerModel, PDF, ...

» new plugin system allows for runtime loading of user classes

o allows for external dependencies in PYTHON interface without
regenerating bindings

‘pythia.readstring(”lnit:plugins = {1ibMyPlugins.so::MyUserHooks}")

» can also return shared pointer in C++

shared_ptr <PDF> pdf = make_plugin<PDF>("1libMyPlugins.so", "MyPDF");

» simple macro definitions for defining plugin libraries

PYTHIA8 _PLUGIN_CLASS (BaseClass , MyClass , RequirePythia , RequireSettings,
Requirelogger)

PYTHIA8 _PLUGIN_XML ("pluginLibraryName/xmldoc/startFile.xml")

PYTHIA8 _PLUGIN_VERSIONS (8310, 8311)

Ilten Python, Pythia 8, and Pythia 8 Contrib 9 /11

o similar in principle to FASTJET-CONTRIB, but more complicated
ecosystem

» provide template generation and general requirements and
guidelines

» give contributors full control of their own repository under the
pythia8-contrib group on gitlab.com

cd template
./ generate PACKAGE CLASS/NAME ... [OPTIONS]

» single point of entry for users to build plugins

cd contrib

./ enable PACKAGE[/VERSION] ... [OPTIONS]
./ configure [OPTIONS]
make

Pythia-Contrib is in alpha phase, but let me know if you are
interested

Ilten Python, Pythia 8, and Pythia 8 Contrib 10 / 11

gitlab.com

Some Questions

@ any general feedback or wisdom is appreciated

® we don’t provide a PYTHIA PYTHON package (although others
do), should we?

® can we improve the PYTHON interface to PYTHIA, without
introducing a significant maintenance overhead or external
dependencies?

@ can we provide interoperability with the HEP PYTHON ecosystem?

@ do we expand the PYTHIA-CONTRIB platform to include PYTHON
contributions?

Ilten Python, Pythia 8, and Pythia 8 Contrib 11 /11

	About Myself
	Purpose and History
	Philosophy
	Documentation
	Python Interface
	Event Anatomy
	Plugins
	Contrib
	Some Questions

