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About me

● Last months of PhD in experimental physics, LHCb, Zurich
from ~end of year post-doc in Syracuse, on zfit and friends

● «By education, physics; by heart and skill, software & statistics»
● Since ~2018:

– Main development of zfit

– Dev of phasespace

– Contributor (now maintainer) of hepstats

– Maintainer (low) of formulate

https://github.com/zfit/zfit
https://github.com/zfit/phasespace
https://github.com/scikit-hep/hepstats
https://github.com/scikit-hep/formulate
https://zfit-tutorials.readthedocs.io/en/latest/
https://mybinder.org/v2/gh/scikit-hep/hepstats/master
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Outline

● Fitting landscape

● Computational backends

● Human readable serialization, HS3
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Outline

● Fitting landscape

● Computational backends

● Human readable serialization, HS3

Favouring hand-waving arguments/outdated knowledge
for a broader overview
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A brief history

~ year 2018: a lot of small projects are around

– No Scikit-HEP yet

No real model fitting ecosystem/library for HEP
that is well integrated into Python

But what is fitting?



Fitting in HEP
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Statistical inference

Likelihood/loss/cost

Point estimate
(minimize, MAP)

Bayesian CI

Frequentist CI

Frequentist Limits

Toys/asymptotic

Model/PDF/(distribution)

Data
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Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs 
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical
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Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs 
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical
KDE
Gaussian kernel → analytic norm
ISJ → numeric norm
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Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs 
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical
Double CB
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Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs 
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical
(binned) Gaussian
fit to histogram
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Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs 
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical

Stacked histograms PDFs
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pyhf-like models

● One extreme: HistFactory model (pyhf)
– Template, binned, analytic normalization
– Assumption: Bins «free-standing», not next to each other

● «Closed-world» fitter
– Limited scope, specialized on 80%+ use-case in CMS/ATLAS
– extremely powerful/tested, serializable
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Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs 
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical

Amplitude (partial wave) analysis
Angular analysis
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Partial wave analysis

● The other extreme: amplitude analysis (ComPWA, …)
– Unbinned, analytic, numerical normalisation
– Description of observable based on amplitude, can be 1k + lines

● Fitting is also hard
– Fitting time (~100 parameters): hours/days, up to weeks (one fit)
– Bottleneck: evaluation of PDF

https://compwa-org.readthedocs.io/report/020.html
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Statistical inference landscape

Loss/Cost

Point estimate
(minimize, MAP)

Statistical inference
Model/PDF/(distribution)Data

Closed-world
HistFactory-like

Open world
Binned,
unbinned,
mixed

Building 
amplitude 
models
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Errors

Minimize

Model

Data

Basic API example

Loss
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zfit features

● Extended fits, Chi2, binned, unbinned, mixed
● PDFs convertable binned ↔ unbinned (including to hist), mixed
● Multidimensional
● Any backend supported (numpy-like), optimal with TF currently
● Sample from PDF
● Arbitrary constraints (custom made)
● Custom PDF: define shape → auto normalized, sampling etc.
● Automatic/numerical gradient
● Different minimizers, optimized API
● JIT/eager support
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My take: fitting

● zfit, pyhf (also RooFit, HistFactory as C++ first) will co-exist
● API/Protocol needed in:

– Fit parameters, data, variables (axis), distribution (.pdf, .integrate,…)

… for
– Plotting (mplhep?)
– Hepstats?

● Hepstats can be more general
same interface that dispatches to two implementations?

● My job: zfit V2 (many things learnt)



Backends
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Backends overview

● Compiling vs tracing
– Compile code (like cython, numba) to fast code
– Trace computation «algebraic» (think Sympy), remember computation

● Gradient
– Create «analytic» gradient from computations,

apply chain rule consecutively
● Accelerators

– Run on CPU, GPU, ...
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Backends compile

Numba, Cython
● Good for «event-by-event» computation

– Event loop processing
● No gradient
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Backends trace

TensorFlow, JAX, Sympy (converter to others)
● Tracing with «algebraic» tensors
● (highly) optimized for vector computations
● Automatic gradients
● CPU, GPU, ...
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Detailed comparison

● TF, JAX vs Sympy
– Sympy has algebraic knowledge, can do more powerful transformations

...but lacks the ability to do «loop-like», numerical things
– Sympy can convert to JAX, TF etc

● TF vs JAX
– JAX compilation subset of TF: only statically known shapes
– JAX has no globals (but that’s maybe a good thing),

but wide support for arbitrary object pass-through (pytree)
– JAX has better support for arbitrary AD

https://stackoverflow.com/questions/66711706/jax-jit-and-dynamic-shapes-a-regression-from-tensorflow
https://github.com/tensorflow/tensorflow/issues/57365
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Cutting edge mentions

● Aesara (fork of Theano), backend of PyMC
– Converts Sympy to JAX (and others) with optimizations

● Keras has now backend that supports multiple backends
● Data-api standard
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My take on backends

● Sympy (+ Aesara) to JAX seems promising
● JAX as the general choice

– Sometimes less is more: multi-backend means also subset of features!
– Crucial for more elaborate tasks like loops etc (numerical integrals)

● JIT if we can
● AD if we can

Requires communication standards for JIT & gradients



Serialization
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HS3

HEP Statistics Serialization Standard
Human-readable & preservable format for HEP statistics

● Serialize likelihood (including model, param, data, …)

● By RooFit, zfit and pyhf (+ more, growing), developing stage

● Explore and define common ground
– What is a Gaussian/Gauss/Normal? Sum? Variable?

https://github.com/hep-statistics-serialization-standard/hep-statistics-serialization-standard
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HS3 goals

1) Publish and preserve

2) Create fit from scratch/edit existing

3) Exchange between libraries

Best effort base: «What works for all, works»
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hepstats

● Can serialize toy studies to yaml
– Load toys instead of regenerating
– Uses asdf, mixing yaml with binary

● Goal: move to/create HS3 inference standard
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Serialization — my take

● Parallel developement of «sub-formats»
● Needs «high-level-languages»: pyhf, amplitude analysis (physics)
● Best-effort base:

– Library can (and should!) extend, go beyond standard
– It should in the best case improve things, but never limit a library

● Challenges:
– Store data (asdf file format? YAML with «auto hdf5 feature»), hist
– Defining common statistical terms
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Summary

● Fitting landscape

● Computational backends

● Human readable serialization, HS3

Looking forward to discussions



Bonus
Fitting with zfit
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HEP Model Fitting in Python

Scalable
large data, complex models

Pythonic
integrate into ecosystem, stable API

HEP
advanced features, 
simply extendable
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Errors

Minimize

Model

Data

Complete fit

Loss
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Complete fit: Model
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Example: Mass fit

● Sum, Product, (Convolution)
● Gauss, (double) Crystalball,...
● Exponential, Polynomials,…
● Histograms, SplineInterpolation,...



PyHEP.dev 2023 fitting tools - zfit 39

Example: Mass fit

● Sum, Product, (Convolution)
● Gauss, (double) Crystalball,...
● Exponential, Polynomials,…
● Histograms, SplineInterpolation,...

Good for out-of-the-box but…
does not cover even closely all HEP PDFs
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Custom PDF

implement custom function

use functionality of model

For example built with the
TensorFlow Analysis package
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Custom PDF

use functionality of model
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Custom PDF

use functionality of model

Example of zfit Base Classes
Can also override:
● integrate → _integrate
● pdf          → _pdf
● sample   → _sample

Or register integral
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Arbitrary analytic shapes

For example, create amplitude
with ComPWA and zfit

https://compwa-org.readthedocs.io/report/020.html
https://compwa-org.readthedocs.io/report/020.html
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Binned models

● Modelled after and compatible with boost-histogram/hist/UHI
– Axes, names, ….

● Have "counts" and "rel_counts" method (returns hist-like)

...and back
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More histograms
Shape modifier

Unbinned → binned → interpolated
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Complete fit: Data
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Complete fit: Data

● From different sources
– Hist, numpy, Pandas, ROOT, …

● Sampled from a model (toy studies)

Use the HEP/Python 
ecosystem for preprocessing 
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Complete fit: Loss
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shared parameters

Equivalent

Loss

(arbitrary) constraints supported, added to loss

https://github.com/zfit/zfit/blob/develop/examples/simultaneous_fit.py
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Complete fit: Minimization
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Minimize

● Problem: many, non-unified minimizer APIs
– SciPy inferface "a bit messy", different convergence criterion, etc...

● Unified API: zfit minimizers, simply switch

● Can use zfit loss, but also pure Python function
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Complete fit: Result
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Back to HEP ecosystem: hepstats

● Inference library for hypothesis tests
● Takes model, data, loss from zfit
● sWeights, CI, limits, …
● asymptotic or toys calculator
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zfit – status

0.10 1.0

binned, mixed

today

HS3
serialization

Cleanup 
(legacy)

Lots of experience and proven API, but also design flaws (global parameters, ...)

Continue to incorporate feedback and adaptability to other libraries

V2 goal: incorporate other (smaller) fitting projects and have final API design

Road to V2
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