
Statistical inference
& computational backends

& statistics serialization
Jonas Eschle
jonas.eschle@cern.ch

mailto:jonas.eschle@cern.ch?subject=zfit%20talk%20HOW%202019

PyHEP.dev 2023 fitting tools - zfit 2

About me

● Last months of PhD in experimental physics, LHCb, Zurich
from ~end of year post-doc in Syracuse, on zfit and friends

● «By education, physics; by heart and skill, software & statistics»
● Since ~2018:

– Main development of zfit

– Dev of phasespace

– Contributor (now maintainer) of hepstats

– Maintainer (low) of formulate

https://github.com/zfit/zfit
https://github.com/zfit/phasespace
https://github.com/scikit-hep/hepstats
https://github.com/scikit-hep/formulate
https://zfit-tutorials.readthedocs.io/en/latest/
https://mybinder.org/v2/gh/scikit-hep/hepstats/master

PyHEP.dev 2023 fitting tools - zfit 4

Outline

● Fitting landscape

● Computational backends

● Human readable serialization, HS3

PyHEP.dev 2023 fitting tools - zfit 5

Outline

● Fitting landscape

● Computational backends

● Human readable serialization, HS3

Favouring hand-waving arguments/outdated knowledge
for a broader overview

PyHEP.dev 2023 fitting tools - zfit 6

A brief history

~ year 2018: a lot of small projects are around

– No Scikit-HEP yet

No real model fitting ecosystem/library for HEP
that is well integrated into Python

But what is fitting?

Fitting in HEP

PyHEP.dev 2023 fitting tools - zfit 8

Statistical inference

Likelihood/loss/cost

Point estimate
(minimize, MAP)

Bayesian CI

Frequentist CI

Frequentist Limits

Toys/asymptotic

Model/PDF/(distribution)

Data

PyHEP.dev 2023 fitting tools - zfit 9

Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical

PyHEP.dev 2023 fitting tools - zfit 10

Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical
KDE
Gaussian kernel → analytic norm
ISJ → numeric norm

PyHEP.dev 2023 fitting tools - zfit 11

Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical
Double CB

PyHEP.dev 2023 fitting tools - zfit 12

Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical
(binned) Gaussian
fit to histogram

PyHEP.dev 2023 fitting tools - zfit 13

Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical

Stacked histograms PDFs

PyHEP.dev 2023 fitting tools - zfit 14

pyhf-like models

● One extreme: HistFactory model (pyhf)
– Template, binned, analytic normalization
– Assumption: Bins «free-standing», not next to each other

● «Closed-world» fitter
– Limited scope, specialized on 80%+ use-case in CMS/ATLAS
– extremely powerful/tested, serializable

PyHEP.dev 2023 fitting tools - zfit 15

Different kind of fits

● Binned (vs histfactory) vs unbinned
– Refers to data, cost/loss/likelihood and PDF
– Unbinned data: product of PDFs
– Binned data: «counting experiments»

● Template vs analytic
– Shape from (simulation) sample vs

closed-form function
● Analytical vs numerical normalization

– Bin or closed-form integral vs numerical

Amplitude (partial wave) analysis
Angular analysis

PyHEP.dev 2023 fitting tools - zfit 16

Partial wave analysis

● The other extreme: amplitude analysis (ComPWA, …)
– Unbinned, analytic, numerical normalisation
– Description of observable based on amplitude, can be 1k + lines

● Fitting is also hard
– Fitting time (~100 parameters): hours/days, up to weeks (one fit)
– Bottleneck: evaluation of PDF

https://compwa-org.readthedocs.io/report/020.html

PyHEP.dev 2023 fitting tools - zfit 17

Statistical inference landscape

Loss/Cost

Point estimate
(minimize, MAP)

Statistical inference
Model/PDF/(distribution)Data

Closed-world
HistFactory-like

Open world
Binned,
unbinned,
mixed

Building
amplitude
models

PyHEP.dev 2023 fitting tools - zfit 18

Errors

Minimize

Model

Data

Basic API example

Loss

PyHEP.dev 2023 fitting tools - zfit 19

zfit features

● Extended fits, Chi2, binned, unbinned, mixed
● PDFs convertable binned ↔ unbinned (including to hist), mixed
● Multidimensional
● Any backend supported (numpy-like), optimal with TF currently
● Sample from PDF
● Arbitrary constraints (custom made)
● Custom PDF: define shape → auto normalized, sampling etc.
● Automatic/numerical gradient
● Different minimizers, optimized API
● JIT/eager support

PyHEP.dev 2023 fitting tools - zfit 20

My take: fitting

● zfit, pyhf (also RooFit, HistFactory as C++ first) will co-exist
● API/Protocol needed in:

– Fit parameters, data, variables (axis), distribution (.pdf, .integrate,…)

… for
– Plotting (mplhep?)
– Hepstats?

● Hepstats can be more general
same interface that dispatches to two implementations?

● My job: zfit V2 (many things learnt)

Backends

PyHEP.dev 2023 fitting tools - zfit 22

Backends overview

● Compiling vs tracing
– Compile code (like cython, numba) to fast code
– Trace computation «algebraic» (think Sympy), remember computation

● Gradient
– Create «analytic» gradient from computations,

apply chain rule consecutively
● Accelerators

– Run on CPU, GPU, ...

PyHEP.dev 2023 fitting tools - zfit 23

Backends compile

Numba, Cython
● Good for «event-by-event» computation

– Event loop processing
● No gradient

PyHEP.dev 2023 fitting tools - zfit 24

Backends trace

TensorFlow, JAX, Sympy (converter to others)
● Tracing with «algebraic» tensors
● (highly) optimized for vector computations
● Automatic gradients
● CPU, GPU, ...

PyHEP.dev 2023 fitting tools - zfit 25

Detailed comparison

● TF, JAX vs Sympy
– Sympy has algebraic knowledge, can do more powerful transformations

...but lacks the ability to do «loop-like», numerical things
– Sympy can convert to JAX, TF etc

● TF vs JAX
– JAX compilation subset of TF: only statically known shapes
– JAX has no globals (but that’s maybe a good thing),

but wide support for arbitrary object pass-through (pytree)
– JAX has better support for arbitrary AD

https://stackoverflow.com/questions/66711706/jax-jit-and-dynamic-shapes-a-regression-from-tensorflow
https://github.com/tensorflow/tensorflow/issues/57365

PyHEP.dev 2023 fitting tools - zfit 26

Cutting edge mentions

● Aesara (fork of Theano), backend of PyMC
– Converts Sympy to JAX (and others) with optimizations

● Keras has now backend that supports multiple backends
● Data-api standard

PyHEP.dev 2023 fitting tools - zfit 27

My take on backends

● Sympy (+ Aesara) to JAX seems promising
● JAX as the general choice

– Sometimes less is more: multi-backend means also subset of features!
– Crucial for more elaborate tasks like loops etc (numerical integrals)

● JIT if we can
● AD if we can

Requires communication standards for JIT & gradients

Serialization

PyHEP.dev 2023 fitting tools - zfit 29

HS3

HEP Statistics Serialization Standard
Human-readable & preservable format for HEP statistics

● Serialize likelihood (including model, param, data, …)

● By RooFit, zfit and pyhf (+ more, growing), developing stage

● Explore and define common ground
– What is a Gaussian/Gauss/Normal? Sum? Variable?

https://github.com/hep-statistics-serialization-standard/hep-statistics-serialization-standard

PyHEP.dev 2023 fitting tools - zfit 30

HS3 goals

1) Publish and preserve

2) Create fit from scratch/edit existing

3) Exchange between libraries

Best effort base: «What works for all, works»

PyHEP.dev 2023 fitting tools - zfit 31

hepstats

● Can serialize toy studies to yaml
– Load toys instead of regenerating
– Uses asdf, mixing yaml with binary

● Goal: move to/create HS3 inference standard

PyHEP.dev 2023 fitting tools - zfit 32

Serialization — my take

● Parallel developement of «sub-formats»
● Needs «high-level-languages»: pyhf, amplitude analysis (physics)
● Best-effort base:

– Library can (and should!) extend, go beyond standard
– It should in the best case improve things, but never limit a library

● Challenges:
– Store data (asdf file format? YAML with «auto hdf5 feature»), hist
– Defining common statistical terms

PyHEP.dev 2023 fitting tools - zfit 33

Summary

● Fitting landscape

● Computational backends

● Human readable serialization, HS3

Looking forward to discussions

Bonus
Fitting with zfit

PyHEP.dev 2023 fitting tools - zfit 35

HEP Model Fitting in Python

Scalable
large data, complex models

Pythonic
integrate into ecosystem, stable API

HEP
advanced features,
simply extendable

PyHEP.dev 2023 fitting tools - zfit 36

Errors

Minimize

Model

Data

Complete fit

Loss

PyHEP.dev 2023 fitting tools - zfit 37

Complete fit: Model

PyHEP.dev 2023 fitting tools - zfit 38

Example: Mass fit

● Sum, Product, (Convolution)
● Gauss, (double) Crystalball,...
● Exponential, Polynomials,…
● Histograms, SplineInterpolation,...

PyHEP.dev 2023 fitting tools - zfit 39

Example: Mass fit

● Sum, Product, (Convolution)
● Gauss, (double) Crystalball,...
● Exponential, Polynomials,…
● Histograms, SplineInterpolation,...

Good for out-of-the-box but…
does not cover even closely all HEP PDFs

PyHEP.dev 2023 fitting tools - zfit 40

Custom PDF

implement custom function

use functionality of model

For example built with the
TensorFlow Analysis package

PyHEP.dev 2023 fitting tools - zfit 41

Custom PDF

use functionality of model

PyHEP.dev 2023 fitting tools - zfit 42

Custom PDF

use functionality of model

Example of zfit Base Classes
Can also override:
● integrate → _integrate
● pdf → _pdf
● sample → _sample

Or register integral

PyHEP.dev 2023 fitting tools - zfit 43

Arbitrary analytic shapes

For example, create amplitude
with ComPWA and zfit

https://compwa-org.readthedocs.io/report/020.html
https://compwa-org.readthedocs.io/report/020.html

PyHEP.dev 2023 fitting tools - zfit 44

Binned models

● Modelled after and compatible with boost-histogram/hist/UHI
– Axes, names, ….

● Have "counts" and "rel_counts" method (returns hist-like)

...and back

PyHEP.dev 2023 fitting tools - zfit 45

More histograms
Shape modifier

Unbinned → binned → interpolated

PyHEP.dev 2023 fitting tools - zfit 46

Complete fit: Data

PyHEP.dev 2023 fitting tools - zfit 47

Complete fit: Data

● From different sources
– Hist, numpy, Pandas, ROOT, …

● Sampled from a model (toy studies)

Use the HEP/Python
ecosystem for preprocessing

PyHEP.dev 2023 fitting tools - zfit 48

Complete fit: Loss

PyHEP.dev 2023 fitting tools - zfit 49

shared parameters

Equivalent

Loss

(arbitrary) constraints supported, added to loss

https://github.com/zfit/zfit/blob/develop/examples/simultaneous_fit.py

PyHEP.dev 2023 fitting tools - zfit 50

Complete fit: Minimization

PyHEP.dev 2023 fitting tools - zfit 51

Minimize

● Problem: many, non-unified minimizer APIs
– SciPy inferface "a bit messy", different convergence criterion, etc...

● Unified API: zfit minimizers, simply switch

● Can use zfit loss, but also pure Python function

PyHEP.dev 2023 fitting tools - zfit 52

Complete fit: Result

PyHEP.dev 2023 fitting tools - zfit 53

Back to HEP ecosystem: hepstats

● Inference library for hypothesis tests
● Takes model, data, loss from zfit
● sWeights, CI, limits, …
● asymptotic or toys calculator

PyHEP.dev 2023 fitting tools - zfit 54

zfit – status

0.10 1.0

binned, mixed

today

HS3
serialization

Cleanup
(legacy)

Lots of experience and proven API, but also design flaws (global parameters, ...)

Continue to incorporate feedback and adaptability to other libraries

V2 goal: incorporate other (smaller) fitting projects and have final API design

Road to V2

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

