
Introduction

Nikolai Hartmann

LMU Munich

July 27, 2023, PyHEP.dev Workshop

1 / 6

About me

• Postdoc at LMU in the group of Thomas Kuhr (Belle II)

• Working on Software, Computing, ML

• Did PhD at ATLAS

• still involved to make columnar data analysis working with DAOD_PHYSLITE

(small(ish) format for end-user analysis, similar to CMS NanoAOD)

• Big fan of columnar data analysis / array programming and awkward arrays
(i also like fitting and statistics stuff, e.g. pyhf)

What i’m struggling with / want to talk about in this workshop . . .

2 / 6

uproot reading / awkward representation of ATLAS DAOD_PHYSLITE

• Currently lots of not-so-nicely readable branches (vector<vector<... needs loops)

→ fortunately largely solved by awkward forth
• Currently cross references all over the place

• can be represented with awkward IndexedArray

• slightly more complicated than in NanoAOD due to not a-priori knowing where to link to
• but: basics implemented in PHYSLITE schema in coffea.nanoevents

→ need to “daskify” the linking stuff (thank a lot to Lindsey for the help)

3 / 6

ML preprocessing bag of tricks

• Feeding “awkward” data into ML models becomes increasingly popular

• However, students struggle getting the preprocessing done efficiently

• I have learned a bag of tricks . . . but is there some common functionality missing?
(and have others similar use cases?)

4 / 6

Example 1: join several flat ntuples of particle lists

• have several flat TTrees of different particle candidates

• want to join into per-event lists of all particle candidates using a set of identifying columns
(e.g. event number, production number)

• Trick
• concatenate all flat candidate lists
• use pandas groupby and .indices to get indices into flat array

• ak.run_lengths might also work, but a bit cumbersome with multiple columns

5 / 6

Example 2: use variable length lists with masking or graph network libraries

• slow: loop over awkward array

• could use numba (does actually support generators)

• or flatten array + ak.num and loop over slices to produce list of numpy arrays
→ loop over this fast enough to produce padded batches and graph NN library representations

6 / 6

