
Training machines, training people | Kilian Lieret github.com/klieret

Training machines, training people

0

• Associate Research
• Tracking with Graph Neural Networks (GNNs)
• Organizing software training events with HSF

and IRIS-HEP
• With CMS

• till July ‘23: PhD with Belle 2
• Calibrating the FEI (aka Belle 2’s Skynet

candidate) for a Vcb measurement
• Maintaining Belle 2’s integration/performance

test (“validation”) framework
• Rebuilt Belle 2’s onboarding training

Kilian Lieret
 @klieret

Training machines, training people | Kilian Lieret github.com/klieret

Training people

1

Discuss in #7

https://github.com/HSF/PyHEP.dev-workshops/issues/7

Training machines, training people | Kilian Lieret github.com/klieret

Training people in cross-experiment software skills

2

Discuss in #7

Unified training center hepsoftwarefoundation.org/training/curriculum.html
How can we collaborate & be efficient?

https://github.com/HSF/PyHEP.dev-workshops/issues/7
https://hepsoftwarefoundation.org/training/curriculum.html

Training machines, training people | Kilian Lieret github.com/klieret

Training material (technical side)

3

Discuss in #7
• How to write material:

• HSF uses a lot of “carpentry-style” websites (built in Jekyll)
• SW Carpentry recently switched to new framework (in R): Good

time to reevaluate our choices!
• In an ideal world, there would be >=3 versions of each course:

• Self-study writeup/notebook (verbose & complete)
• Workshop presentation slides/notebook
• Workshop student notebooks (for exercises)

==> Not feasible? How to approach
• Running code in the browser:

• Binder is now low on resources
• Google collab will work for anything without big dependencies
• GitHub codespaces looks very promising

• Cool idea (via Jim): Include feedback buttons directly in exercise
notebook

https://github.com/HSF/PyHEP.dev-workshops/issues/7

Training machines, training people | Kilian Lieret github.com/klieret

Training machines

4

Discuss in #26, #19

(from CGP Grey)

https://github.com/HSF/PyHEP.dev-workshops/issues/26
https://github.com/HSF/PyHEP.dev-workshops/issues/19

Training machines, training people | Kilian Lieret github.com/klieret

Tracking with object condensation

5

GNNs

Learnt latent space
Hits already clustered by particle;
Clusters can be collected trivially

Condensation point
Represents the track, can learn
track parameters like pT (WIP)

Repulsion & attraction
of points in latent space

pT=1.1

pT=1.0

pT=0.9

pT=1.5

No time resolution of points
==> Everything everywhere all at once

Point cloud
(coordinates of hits in detector)

Training machines, training people | Kilian Lieret github.com/klieret

Tech stack & implementation

6

Fully open source framework:
github.com/gnn-tracking

Talking to the GPU

Dealing with graphs & GNNs

Cut boilerplate, checkpoints,
hyperparams

Online dashboard

https://github.com/gnn-tracking/gnn_tracking

Training machines, training people | Kilian Lieret github.com/klieret

Ongoing fights: SLURM & ML

7

• Our infrastructure (in my case, SLURM) is
often not a first class citizen for ML
frameworks: How can we get them to play
nice together?

Example 1: SLURM + Weights & Biases

• Batch nodes usually don’t have internet, but Weights &
Biases syncs to a cloud.

• Solution (self-advertisement): Trigger synchronizations
from the login node
github.com/klieret/wandb-offline-sync-hook

• Alternative: Use ray

Example 2: SLURM + Ray Tune

• SLURM example from Ray docs is
probably not what you want

• But can start ray head on login
node, then allocate ray workers
(example)

• But how to handle timeout of nodes
with long training jobs? Ideally
would like to not accept job if we
cannot finish it and instead
resubmit request for new node

Positive example: SLURM + Lightning
SLURMEnvironments can checkpoint + resubmit itself

Perhaps to discuss in #19

https://github.com/klieret/wandb-offline-sync-hook
https://github.com/klieret/ray-tune-slurm-demo
https://github.com/HSF/PyHEP.dev-workshops/issues/19

Training machines, training people | Kilian Lieret github.com/klieret

Collaborating on ML R&D

How can we structure ML frameworks for R & D such that we can get multiple
developers & scientists develop models together

8

Discuss in #26

1. Want: Cutting boiler plate & making it fun
2. Want: Mix & match models
3. Don’t want: “Fork & forget”, people starting forks for some experiment that

never contribute back to the original project
4. Don’t want: Constrain creativity

Bottom line:
• This very different from the requirements ML in production
• Both a “soft topic” and a framework question

https://github.com/HSF/PyHEP.dev-workshops/issues/26

Training machines, training people | Kilian Lieret github.com/klieret

Backup

9

Training machines, training people | Kilian Lieret github.com/klieret

Tracking as an edge classification task

10

Edge construction
(geometric constraints, module map,
latent space)

Edge Classifier (EC)
Graph neural network

Thicker line =
higher assigned probability

Postprocessing
(e.g., “graph walking”)

Fitting

Training machines, training people | Kilian Lieret github.com/klieret

Graph Neural Networks
In our case: Input, latent and output is (almost) the same graph (but different features)

11

x1

x7

x5 x6
x4

x3

x2

m57

m23
m25

m56

m24

m34

m47

m13

Node features xi
Edge features mij

Input

Edge classification: Final edge features
are probability that edge is correct
(connects hits that belong to the same
particle)

x’1

x’7

x’5 x’6
x’4

x’3

x’’2

m’57

m’23
m’25

m’56

m’24

m’34

m’47

m’13

x’’1

x’’7

x’’5 x’’6
x’’4

x’’3

x’’2

m’’57

m’’23
m’’25

m’’56

m’’24

m’’34

m’’47

m’’13

Latent
(usually more than one graph)

Output

some permutation invariant aggregationall neighboring nodes

Training machines, training people | Kilian Lieret github.com/klieret

Object condensation in action

12

2D latent space; random selection of particles colored
Early simplified study (much fewer hits than in real life)

Latent space dim 1

La
te

nt
 sp

ac
e

di
m

 2
Click here if video
doesn’t play

https://raw.githubusercontent.com/gnn-tracking/media/main/latent_space_animations/scatter_ntc_tpr1.mp4
https://raw.githubusercontent.com/gnn-tracking/media/main/latent_space_animations/scatter_ntc_tpr1.mp4

Training machines, training people | Kilian Lieret github.com/klieret

Object condensation: Training losses

13

Latent space
before training

GNN predicts condensation
likelihoods (CL) for every hit.
Hit with max CL for particle* is
condensation point (CP)

*during inference: for cluster

Attractive loss function
rewards hits close to their CP
quadratic potential
Attraction stronger if CP’s CL is high

Repulsive loss function
penalizes hits close to other CP
hinge loss: no more repulsion after certain distance
repulsion stronger for strong CP CLs

Background loss function
noise hits should have low CL

Loss functions implemented from
Kieseler 2020 (2002.03605)

http://arxiv.org/abs/2002.03605

Training machines, training people | Kilian Lieret github.com/klieret

Object condensation: Our current pipeline

14

EC GNN
EC score
threshold

Orphan node
mask

STAGE 1: EC

STAGE 2: OC

OC GNN
Learnt latent space

STAGE 3: Collect clusters

DBSCAN
• All three stages have their

own hyperparameters
• Can be trained/optimized

separately (fixing the previous
stage)

Loss fct = focal loss for
pt > 0.9 hits

Graph construction based on
geometric cuts

→ Working on replacing this with dynamic edge creation “Point cloud network”

