I.I[: SHNTH EH”Z EIEE}?\Sgl?rrl]eering

Optimizing Data Access with Compute
Offloading, Fast Hardware-Accelerated Data
Transport, and Modern Query Languages

Jayjeet Chakraborty, Carlos Maltzahn
UC Santa Cruz

CROSS



mailto:jayjeetc@ucsc.edu
mailto:carlosm@ucsc.edu

About Me

e PhD Student @ UC Santa Cruz

O  Going to 3rd yr.
o Advisor: Carlos Maltzahn
o Systems Research Lab, UCSC

Summer Intern at InfluxData Inc.
Former IRIS-HEP Fellow (2020/2021)
Former GSoC student (2019)
Co-Creator of SkyhookDM
Researching Data management, Databases, and Storage systems




My Interests/Ongoing Work

e Exploring ways to accelerate queries in data management systems
o Computational storage:
m Offload query execution logic to storage servers/devices
e Skyhook: Apache Arrow in Ceph Object Store
o Reduce data movement
o Reduce metadata overload on the client
o Low barrier to computational storage
o  Contributed to Apache Arrow open-source project last year
o Published in CCGrid’'22
m Embedding (de)compression, (de)serialization inside Smart NICs
e NVIDIA BlueField 2




Dataframe API

Analytics Functions

Query Engine

Dataset API

I

lextension |

A

Ceph POSIX Interface

1
1
1
\ 4

T ey
e, =

Data Index
Object Object

Librados API

Arrow FileFragment API

Embedded
Access Library
«—>

]

A

Execute .

Object Storage Device

Qﬂy\

RandomAccessObject

Interface

Chunk Store K/V Store

-

¥_//

<
<

In-Memory Object

RADOS
Object Store

Class Context



Dataframe API

Analytics Functions

Query Engine

# Reading from Parquet
import pyarrow.dataset as ds
format_ = "parquet"
dataset = ds.dataset (
" /dataset"™, Teormat=Fformat

)
dataset.to_table ()

# Reading from Parquet using Skyhook
import pyarrow.dataset as ds
format_ = ds.SkyhookFileFormat (
"parquet", "/ceph.conf"
)
dataset = ds.dataset (
" /dataset™, format=format .

)
dataset.to_table ()

T e
I

Index
Object

eFragment API

ccessObject

terface

] K/V Store

—//

> &
>

RADOS

<

<

In-Memory Object

Class Context

Object Store



Query Duration (s)

[ Without skyhook B With skyhook

10 25 5O 75
Selectivity (%)

99 100




My Interests/Ongoing Work 4ca Icite

e Deconstructed "Data Management” d a S k
Pick and choose your own stack ‘
No more redundant data management systems
Enable standardization
Build your custom data system with modular
interoperable frameworks
e Query languages
Query Interfaces and Compiler
Task schedulers
Query execution engines Q
Storage systems

File formats CEDh

o  We aim to prototype a initial version of such a syster-

ing the Python SDKs in each | %
using e Fython S In each layer /'////

O O O O

Parquet


https://www.usenix.org/system/files/login/articles/login_winter18_08_khurana.pdf

Client dcalcite ﬂfh/\ M
>lQuery [ Dask/Coffea/Spark }
Plan

. . APACHE D AT A
Execution Engine ARROW>>> @ Velox FUSIHON
. paN
Columnar i
Query  Columnar | Mochi
> l uer Data ”ARROW>>> EOH®
APACHE D ATA
Skyhook ARROW>>> @ Velox FUSIHON

Obiject Store ICEBERGU

Parquet




My Interests/Ongoing Work

e Leveraging modern networking devices
o RDMA-enabled NICs common in Data centers
m  ConnectX-3/5/6
m Upto 100 Gbps
o Move from TCP/IP to RDMA for fast data transfers
m Avoid copying and serialization overhead of TCP/IP
m Use data transport frameworks used in HPC
e Mochi Thallium from Argonne National Labs
m Thallus: Faster Columnar (Apache Arrow) Data Transport using RDMA

e Arrow Flight (JQRPC-based) as our baseline
e Preparing for submission
‘g ‘g ‘e 9



http://mochi.readthedocs.io
https://arrow.apache.org/docs/format/Flight.html

Client dcalcite ﬁ/\ M
> lQuery
Plan
Execution Engine Xﬁkow>>>@> Velox FUS KON

Colffmnar MOChi
2}»1%“.:3 » o000

Buffers

Skyhook AkRow I (& Velox FUSIHON
Object Store ICEBE RG“ {////7
Parquet




Client

do_rdma

init_scan() RPC

Server

Schema and scan descriptor (sd)

get_next_batch(sd) RPC

DuckDB
Engine

4

Scan Descriptor
Map

Record Batch

Bulk handle, Data sizes, Offset sizes

RDMA

v

\ 2 \ 2 7

Seg1 | Seg2 | Seg3 | Seg4

init_scan

Thallium Bulk get_next_batch

11



Client Server

init_scan() RPC
P | DuckDB
<€ Engine
Schema and scan descriptor (sd)
init_scan
Scan Descriptor =
Map
v  Record Batch
get_next_batch(sd) RPC >
< Bulk handle, Data sizes, Offset sizes
\ 2 \ \ 2 /
,f B - Seg1 | Seg2 | Seg3 | Seg4
| RDMA Thallium Bulk get_next_batch
Segment 1 Segment 2 Segment 3 Segment 4

T T T T

Data Buffer A Offset Buffer A Data Buffer B Offset Buffer B



30000

25000

20000

15000

Duration (ms)

10000

5000

Query No.

350

300

250

Duration (ms)
- N
(@) o
o o

—
o
o

(o)
o

0

|||||““\ |IIIIIIIII ——— =
3 4 5

Query No.

13



My Interests/Ongoing Work

Alternative query languages for HEP data
Malloy QL, project by Google

(@)

Designed for handling hyper-dimensional data
Generates the most optimized SQL possible
Much simpler syntax than SQL, better UX
Plugins for BigQuery, DuckDB, PostGres
2 parts to every query:
e Source: A table or computation result set
e Query: Pipelined set of stages defining a query operation
Python package for Malloy: malloy-py

14


http://malloydata.dev
https://github.com/malloydata/malloy-py

[cs.DB] 30 Oct 2021

Evaluating Query Languages and Systems
for High-Energy Physics Data

[Extended Version]

Dan Graur Ingo Miiller Mason Proffitt
Department of Computer Science Department of Computer Science Department of Physics
ETH Zurich ETH Zurich University of Washington
dan.graur@inf.ethz.ch ingo.mueller@inf.ethz.ch masonLp@uw.edu

Ghislain Fourny
Department of Computer Science
ETH Zurich
ghislain.fourny@inf.ethz.ch

ABSTRACT

In the domain of high-energy physics (HEP), query languages in
general and SQL in particular have found limited acceptance. This
is surprising since HEP data analysis matches the SQL model well:
the data is fully structured and queried using mostly standard op-
erators. To gain insights on why this is the case, we perform a com-
prehensive analysis of six diverse, general-purpose data processing
platforms using an HEP benchmark. The result of the evaluation
is an interesting and rather complex picture of existing solutions:
Their query languages vary greatly in how natural and concise
HEP query patterns can be expressed. Furthermore, most of them

Gordon T. Watts
Department of Physics
University of Washington
gwatts@uw.edu

Gustavo Alonso
Department of Computer Science
ETH Zurich
alonso@inf.ethz.ch

only a small subset of the available attributes, derivation of addi-
tional measures (potentially by joining and reducing the sequences
within the same event), and selection of an interesting subset of
events, which are then summarized using a reduction. HEP data is
thus stored and analyzed in non-first normal form (NF?)—a feature
that early database systems did not support and thus the main rea-
son why relational engines were rejected by physicists historically
(along with the lack of support for used-defined code [39]).
Nowadays, most particle physicists work with a domain-specific
system called the ROOT framework [4, 12], and increasingly so
with its new RDataFrame interface [27]. In ROOT, queries are writ-

15



Handwritten SQL to Malloy for Q4

SELECT Preview
FLOOR( ( source: hep is table('duckdb:../hep.parquet') {
GASE declare: x 1is

WHEN MET.pt < @ THEN -1 _
WHEN MET.pt > 2000 THEN 2001 floor((pick -1 when MET.pt < 0

ELSE MET.pt pick 2001 when MET.pt > 2000
END) / 20) * 20 + 10 AS X, else MET.pt) / 20) * 20 + 10
COUNT(x) AS y )
FROM '{dataset_path}' -
WHERE (
SELECT query: hep —> {
COUNT (%) declare: t is Jet.count() {? Jet.pt > 40} > 1
FROM UNNEST (Jet) group_by: x, event
WHERE Jet.pt > 40 where: t
) 5 1
GROUP BY FLOOR( ( }
CASE > {
WHEN MET.pt < @ THEN -1 group_by: x
WHEN MET.pt > 2000 THEN 2001 aggregate: y i's coun't()
ELSE MET.pt

order_by: x
END) / 20) * 20 + 10

ORDER BY X; ¥ 16



Equivalent Malloy gen. SQL for Q4

WITH _ stage® AS (
SELECT
((floor((
CASE WHEN hep.MET."pt"<@ THEN -1
WHEN hep.MET."pt">2000 THEN 2001
ELSE hep.MET."pt" END)%1.0/20))%20)+10
as "x",
hep."uid" as "uid"
FROM (SELECT gen_random_uuid() uid, * FROM '{dataset_path}') as hep
LEFT JOIN (select UNNEST(generate_series(1,
100000, —-
—— (SELECT genres_length FROM movies limit 1),
1)) as __row_id) as Jet_@ ON Jet_0._ row_id <= array_length(hep."Jet")
GROUP BY 2, 1
HAVING (COUNT( CASE WHEN hep.Jet[Jet_@._ row_id]."pt">40 THEN 1 END)>1)

SELECT
base."x" as "x",
COUNT( 1) as "y"
FROM __stage@® as base
GROUP BY 1
ORDER BY 1 asc NULLS LAST

17



runtime

1 2 3 4 7
query_no

18



Goals

Leverage modern hardware and protocols in data management
Expose complex functionality using simple interfaces and APls

World is moving towards composable data management, stay ahead !
Prepare for the Analysis Grand Challenge

19


https://iris-hep.org/projects/agc.html

